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Abstract: An intrusion detection system is one of the network security tools installed to monitor suspicious activity 

in the network and act as a last line of defense. It normally notifies about the skeptical activity occurred in the network 

using sensors by sending alarms to the administrator. However, the IDS present in the large network generates not 

only a large number of alerts but also abundant false alerts. These generated alerts are very difficult to handle as it 

increases the burden for the network administrator and also pulls down the performance of the defense system. In order 

to overcome the issue, various countermeasures have been proposed. Commonly, to increase the quality of alerts, the 

alerts are post-processed in such a way that the false alerts are filtered out thereby refining the performance of the IDS 

defense. In this paper, we propose an IDS quality framework using alert post-processing techniques to separate out the 

false alerts generated by various sensors in the network. At low level alert post-processing, the priority scores are 

assigned based on the quality measures to filter the irrelevant alerts having less significance. At high level alert post-

processing, higher level operations such as alert aggregation, clustering, and hyper alert correlation have been carried 

out to minimize the number of alerts and the high level report consisting of significant alerts is presented to the 

administrator. Experiments have been conducted using DARPA 2000 dataset to assess the performance of the proposed 

system. The system has produced pleasing results than many of the existing methods with 95% of alert reduction rate, 

99% of completeness and 100% of soundness towards enlightening the quality of the alerts generated by the IDS. 

Keywords: Intrusion detection system, False alert, Alert prioritization, Filtering, Alert aggregation, Alert clustering, 

Alert correlation. 

 

 

1. Introduction 

Computer networks and devices are considered to 

be an important asset for sharing files and other 

information. Due to the increase in the usage of the 

network, the security of these resources has become 

a major concern in this digital era. Tremendously, 

several critical activities are carried out through 

computer networks. Abundant security tools exist in 

protecting the computer networks and its resources 

from undesirable harmful traffic.  

Among these tools, intrusion detection systems 

(IDS) play a significant role in protecting the network. 

The ability of the IDS is to warn the network 

administrator by generating alerts on identifying 

suspicious activities in the network. These malicious 

activities can be generally categorized as internal 

(caused by authorized user intentionally or 

unintentionally) and external (real alerts caused by 

unauthorized users) [1]. As it is difficult for IDS to 

differentiate the unintentional and intentional attacks, 

it largely generates false alerts. Meanwhile, in some 

cases, false alerts are also produced by 

misconfiguration of network devices and duplicate 

alerts generated by more than one sensors form the 

underlying network [2].  

As the alerts are massive in numbers, analyzing 

and identifying the true alerts manually is certainly a 

time-consuming process. Though several measures 

have been taken in reducing false alerts, the most 

effective way is to post-processing the generated 

alerts [3]. Typically, IDS obtains input from various 

sensors and hosts in the network. This generates a 
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huge amount of alerts with low quality [4]. A 

preliminary low level operation includes alert 

filtering that filters out the enormous duplicate alerts 

for the same event that are produced by various 

numbers of sensors deployed in the network in a 

distributed fashion.  

After eliminating the low priority alerts, the alerts 

are passed over to the higher level operations that 

include various processes such as aggregation and 

clustering to reduce the number of alerts by merging 

a group of similar alerts, alert correlation to find real 

attacks and to eliminate other alerts from further 

processing. Several methods and tools have been 

proposed by the researchers with the aim of 

improving the quality of the alerts produced by the 

IDS.  However, the methods focus on specific needs 

and constraints that drive on specific tasks such as 

prioritization, fusion, and correlation. Also, the 

performance of the existing systems highly depends 

on the quality of the input given to the system.  

In this paper, we proposed a comprehensive IDS 

quality framework using two level post-processing 

for improving the quality of the alerts produced by 

the IDS. At a lower level, the alerts are normalized 

and the priority score for the alerts are computed 

based on which the low quality alerts are filtered out. 

Higher level post-processing includes three 

components. Aggregation and merging of alerts are 

carried out in which similar alerts are aggregated and 

the alerts having similar characteristics are clustered 

together in the first and second component. The third 

component correlates the alerts by computing the 

correlation score between the alerts to find the 

dependency between them. Finally, significant alerts 

are presented to the administrator.  

The paper is organized as follows. Section 2 

discusses the solution from the literature related to the 

problem specified. Section 3 explains the proposed 

IDS quality framework along with all its components. 

Experimental results are discussed in section 4 and 

the paper is concluded in the conclusion section. 

2. Related works 

The idea of intrusion detection was first 

introduced by James P. Anderson in his technical 

report on intrusion detection systems [5]. From the 

last decade, research in the field of IDS and its 

security has attracted a number of researchers. Post-

processing of intrusion alerts is comparatively a new 

field. There are various techniques used for 

eliminating false positives during post-processing of 

alerts. The most prominent solution is to apply a filter 

to reduce the number of false alerts. A filter with 

three components was proposed where each one 

computes the score for the alerts, and based on the 

combined score, the false alerts are filtered out [6-7]. 

However, the results depend on the quality of input 

data. Neural networks and the fuzzy logic based 

method was introduced in filtering low quality alerts 

but the method requires necessary training [8].  

Another idea was proposed wherein the quality of 

the alerts are measured using network topology [9-

10]. The methods analyze the alerts using quality 

parameters that include correctness, accuracy, 

reliability, and sensitivity. The main demerit of this 

method was that it employs inflexible parameter. 

Aggregation and correlation operations had been 

used as a component for handling IDS alerts [11]. 

Regrettably, the method is not tested with any 

datasets. An alert management approach with 

enhanced alert verification and alert aggregator 

modules were proposed to reduce the alerts quantity 

wherein the method produces inefficient clustering 

[12]. A correlation based alert processing model was 

introduced with an ample set of components. This not 

only produces better results but also increases the 

complexity and processing time of the system [13]. 

 Complex theory based approach for 

hypothesizing missed security events was suggested 

[14]. Two parameters such as prerequisites and 

consequences of different types of attacks were 

utilized to correlate alerts. This method works on the 

predefined correlations between alerts for which 

prior analysis must be carried out. An attribute 

similarity clustering for reducing the alarms and 

reverse causation algorithm for creating a complete 

attack path centered on the attack association method 

was anticipated that depends on the professional 

knowledge base which increases the complexity [15]. 

Graph based IDS alert correlation method was 

proposed by correlating the subattacks, unfortunately, 

the method suffers from false alerts and also missed 

several attack scenarios [16-17].  

An ontology based framework with inference 

language XSWRL was developed to correlate the 

attack [18]. The method utilizes multiple agents and 

sensors to convert the information to ontology. The 

method is very difficult to deal with new attack types. 

A similar hybrid approach was proposed using 

semantic analysis and ontology [19]. While the 

approach was considered to be novel, the work 

undergoes a major inadequacy during online 

correlation. A new alert correlation method based on 

complex Bayesian network was introduced which 

works without experts’ knowledge [20]. Conversely, 

the method was computationally complex to 

implement. Another post-processing method 

comprising of prioritization and scalable distance-

based clustering steps was introduced. The method 
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lacks in performance compared with other significant 

existing algorithms and is compared only with the 

DBSCAN clustering [21]. A multi-step attack 

scenario reconstruction based method was offered 

but the method runs on a predefined attack paradigm 

[22].   

Similar methods were proposed in detecting false 

alerts using correlation wherein the methods execute 

only with prior knowledge about the attacks [23, 24]. 

These methods fail to handle novel attacks as they do 

not have any past experience. A new idea based on 

attack scenario reconstruction using attack semantics 

was suggested [25] with a major requirement of 

mature ontology related to the intrusion detection 

domain in which updating the ontology is a major 

concern. 

3. Proposed IDS quality framework 

The proposed IDS quality framework is based on 

applying post-processing steps on the alerts 

generated from various IDS of the network. The main 

aim of the post-processing is to reduce the false 

positive of the underlying intrusion detection system. 

This highly improves the quality of the results 

produced, as the increase in the false positives is the 

main issue that degrades the performance of an 

intrusion detection system. The overall architecture 

of the proposed work is divided into two broad 

categories in which the first one is the low level alert 

post-processing and the second is the high level alert 

post-processing. Maximum elimination of false 

positive alerts is the most challenging issue in 

intrusion detection research as it contributes to the 

quality alarms. This dual level mechanism has been 

introduced for processing the received alerts further 

collected from various IDS of the network and 

thereby eliminating the false positive alerts in an 

extensive way.  

Instead of accepting the generated alerts as such, 

the alerts are processed to analyze the trustworthiness 

of the generated alerts and finally converts them into 

valuable intrusion reports. Initially, the alerts are 

normalized and duplicate alerts are filtered out based 

on which the priorities are issued to the alerts in the 

low level alert post-processing. In the high level alert 

post-processing, similar alerts are aggregated based 

on the alert attributes, then the similar aggregated 

alerts are clustered and finally, the hyper alert 

correlation carried out for extracting the useful alerts 

and based on which the reports are given to the user. 

The framework comprises of several components and 

the detailed framework is depicted in Fig. 1. 

 

 

 
 

Figure. 1 Detailed structure of IDS quality framework with alert post-processing 
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Vulnerability information database: The 

vulnerability information database is formed mainly 

using the National Vulnerability Database (NVD) 

[26] which is primarily based on CVE (Common 

Vulnerabilities and Exposures) [27]. These databases 

are up to date. Vulnerability databases are freely 

available for download. The databases are updated 

regularly for the best performance of the relying 

processes. 

Network and host information database: Network 

and host configuration collector gathers all the details 

of the network and the devices installed in the 

network and stores in the information in this database. 

It contains the information about the devices, the 

ports they listen and details of various software 

installed including the operating systems. Details of 

the vulnerabilities and exploits in the network and 

hosts are stored in this database. It also monitors the 

live hosts. Here, the destination IP, destination port 

and the vulnerabilities in the target device software 

and services are checked from the respective database 

to identify whether it is an attack or not.  

3.1 Alert pre-processing with normalization  

The intrusion detection system implemented on 

the network comprises of several sensors and 

obviously, these sensors generate different alerts for 

the same intrusion identified on the network or they 

may generate different alerts for different intrusions. 

These alerts collected from various IDSs in the 

network may have different formats. However, for 

further processing, the alerts are to be converted to a 

common format for applying prioritization. Thus, the 

primary goal of this step is to transform the collected 

alerts into a common form which makes further 

processing easy. The common format to be employed 

in the system must be a standardized format. From 

the literature, Intrusion Detection Message Exchange 

Format (IDMEF) [28] is the most widely used data 

format which is mainly used for exchanging the 

information and for successful interaction between 

the intrusion detection systems and the management 

systems. It is designed in such a way that the alert 

class sends the alerts from the analyzer to the 

manager. Some of the significant attributes that 

signify the alert information communicated between 

the analyzer and the manager is listed in Table 1. 

Based on the alert information, the alerts are encoded 

with a common IDMEF format [29]. The main 

parameters used to store the information about alerts 

are the alert number, sensor number, time stamp, 

attack type, IP addresses and port numbers of source 

and destination machines. 

Table 1. Significant alert information 

Alert attribute Information 

Analyzer (AID) Alert originated Analyzer ID  

CreateTime (CT) Alert generated time 

DetectTime (DT) Intrusion detected time 

AnalyzerTime Alert sent time  

Source Details about attacks’ origin 

Target Details about attacks’ target.  

Classification Name of the attack 

Assessment Evaluation of attack severity 

Additional Data Other information of the attack 

 

However, the common names for the alerts are 

taken from the vulnerability information database 

that is maintained by the framework. Though the 

alerts are converted to the common format, there is a 

possibility of incomplete information on the 

significant attributes. Basically, time related details 

along with the source and target are most important 

for processing the alerts. Thus the main goal is to pre-

process the alerts by cleaning the alert database in 

such a way that the incomplete details or missing 

values are filled with appropriate values [13]. The 

missed alert created can be filled with attack 

detection time if it is not null, else filled with analyzer 

time at which the alert is sent. Similarly, the detection 

time can be filled with the creation time, a source and 

a target can be filled with analyzer ID. 

3.2 Prioritization based alert filtering   

The alerts are analyzed based on the quality 

measures. The score is computed for each alert and 

based on the scores, the low level alerts are filtered 

out. The significant alerts are prioritized based on the 

scores computed through quality measures [9]. Some 

of the quality measures employed in the proposed 

work are precision, accuracy, reliability, integrity, 

and relevance of the alerts.   

Precision (P): It verifies the status of the destination 

host at the time of alert creation and assigns the score 

0 or 1.  

Accuracy (A): It validates whether the destination is 

vulnerable to attack specified by the alert and assigns 

the score 0 or 1 accordingly. 

Reliability (R): It verifies whether the rules and the 

attack signatures specified in the sensor are 

frequently updated and assigns the score 0 or 1. 

Integrity (I): It identifies the past history of the alerts 

generated from the particular sensor and assigns the 

score 0 or 1. 

Relevancy (Re): It is verified by identifying the 

evidence of the attack (particular attack pattern) in the 

particular destination host [30] and assigns the score 

0 or 1. 
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Once the scores are assigned for all the criteria, 

the weights are assigned for each criterion and based 

on which the total quality scores are computed for the 

alerts. Among these criteria, the precision and 

relevancy are most significant as it specifies the 

generated alert is true. So the weights can be assigned 

equally as 1. The accuracy plays second significant 

as it partially signifies the created alert is true as it 

depicts whether the destination host is vulnerable to 

attack and the score can be assigned as 0.6. Finally, 

reliability and integrity are less significant as the 

value 1 may also lead to false alarm rate and thus the 

weights are assigned as 0.2 each. Thus the final score 

can be computed using the formula given in Eq.(1) in 

which the total score (TS) is scaled between 0 and 1. 

 

𝑇𝑆 =
𝑃 + (𝐴 × 0.6) + (𝑅 × 0.2) + (𝐼 × 0.2) + 𝑅𝑒

3
    (1) 

 

where, P, A, R, I and Re represent the scores of 

precision, accuracy, reliability, integrity, and 

relevancy respectively.  

The pseudocode for computing the final score 

using prioritization based filtering of the alerts are 

given in Fig. 2. The input parameters are accessed 

form vulnerability information database and network 

and host information database. Based on the total 

quality score, the priority can be assigned for the 

alerts. If the total alert score is 0 which implies the 

alert is completely false positive and if the total alert 

score is 1 which implies that the alert is completely 

true positive. However, if the value lies above 0 and 

0.3 then it is almost false alert whereas if the score 

lies above 0.3 and 0.6 then the alert is feasibly true 

positive and if the score lies above 0.6 and below 1, 

then the alert is almost true positive. Thus the true and 

almost true alerts are given as an input for the high 

level alert post-processing steps. 

3.3 Aggregation and merging of identical alerts  

One of the major issues is that the occurrence of 

the same attacks may be identified by several 

analyzers in which they produce similar identical 

alerts. These similar alerts are grouped into 

representative alerts and are also known as meta 

alerts. Similar alerts are aggregated only if they have 

same Source_IP (SIP), Target_IP (TIP) and 

Attack_type (AID) with the closer time period as it 

belongs to the same event. Thus, the temporal data 

and other information pertaining to the alerts are 

compared for aggregation. The maximum closer 

period can be set with a threshold based on which the 

alerts can be aggregated. 
 

 
Figure. 2 Prioritization based alert filtering pseudocode 

 

However, if the difference between the detection 

time of alert crosses the given threshold, then the 

alerts are considered as different.  

The aggregation can be done by replacing the 

similar alerts with an aggregated alert that contains 

SIP, TIP, AID and the earliest time of the detection 

time along with the number of alerts (NOA) in the 

aggregated alert. This is because, as the alert belongs 

to the same event, the later time indicates that the 

event is identified with a time delay. In the proposed 

work, the threshold value for the detection time is set 

as 3 seconds. The pseudocode for the alert 

aggregation is given in Fig. 3. Each alert a in the input 

alert set A is compared with all the other alerts. A new 

single alert is created if they have same Source_IP 

(SIP), Target_IP (TIP) and Attack_type (AID) with 

the closer time period of 3 seconds. Here NOA 

represents the number of alerts in the aggregated alert.  
 

Global Vul_Info_db, NW_Host_Info_db 

Function Score_Computation (alert parameters) 

//Precision Score 

If a destination host at the time of alert is ‘online'  
      Assign a precision score as 1 else 0. 

//Accuracy Score 

If a destination host network is vulnerable 
      Assign accuracy score as 0.25. 

If a destination host running OS is vulnerable 

      Assign accuracy score as 0.25. 

If a destination host opened port is vulnerable 

      Assign accuracy score as 0.25. 

If destination host running application is vulnerable 

      Assign accuracy score as 0.25. 

//Reliability Score 

If the attack signature is updated before 12hrs of alert 

    Assign reliability score as 1. 

Elseif attack signature is updated before 24hrs of alert 

     Assign reliability score as 0.75. 

Elseif attack signature is updated before 7days of alert 

     Assign reliability score as 0.5. 

Else Assign reliability score as 1. 

//Integrity Score 

   If the past history contains true alert for the attack 

     Assign integrity score as 1. 

   Elseif past history contains more no. of true attacks 

     Assign integrity score as 0.5. 

   Else Assign integrity score as 1. 

//Relevancy Score 

   If an attack pattern is found in a destination host 

     Assign relevancy score as 1. 

   Else Assign integrity score as 0. 

Compute total score as in Eq. (1) 

End Function 
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Figure. 3  Pseudocode for alert aggregation  

 

After Aggregation, the process of merging 

identical alerts from different analyzers at various 

point of time is carried out. The alerts having similar 

attributes but different detection time with the 

threshold of 3 minutes which is relaxed when 

compared to aggregation are merged together to form 

hyper alerts. Thus the merging of two alerts is 

possible only if the following condition is met.  

 

If (a1.SIP==a2.SIP ˄ a1.TIP==a2.TIP) 

     If (a1.DT ≠ a2.DT ˄ a1.AID ≠ a2.AID) 

         Merge(a1, a2); 

 

where a1 and a2 are alerts, SIP and TIP represent the 

source and the target machines, AID represents the 

attack ID and DT represents the attack detection time. 

3.4 Clustering using weighted similarity measure  

The clustering component is employed to group 

similar alerts into groups. The feature based 

similarity is used to group similar alerts. In the 

proposed method, the features or alert attributes used 

for computing the similarity value are Attack_type 

(AID), Source_IP (SIP), Target_IP (TIP), 

Source_port (SP) and Target_port (TP). The 

agglomerative clustering is applied to group similar 

alerts. Each alert is considered as the singleton cluster 

and based on which the similarity between the 

clusters is computed. The pseudocode for clustering 

is given in Fig. 4. 

The similarity score is computed by aggregating 

the similarity score of alert attributes where the final 

score always lies between 0 and 1. Only the 

similarities that are greater than the given threshold is 

considered in which the cluster having a maximum 

similarity score is merged. The process continues 

until the similarity scores between all the clusters are 

less than the threshold value. The similarity between 

 

 
Figure. 4 Pseudocode for clustering 

 

the cluster having more than one alert is computed by 

taking the mean value. 

The similarity measures between the alert 

attributes are computed based on the similarity 

between the attack type, IP address, and port used by 

the attack in of the alerts.  

Similarity between attack: The similarity between 

the attack_type or AID of the alerts is computed by 

comparing the attack classes. This can be represented 

as in Eq. (2). 

 

𝑠𝑖𝑚𝐴𝐼𝐷(𝐴1, 𝐴2) = {
1, 𝐴1(𝐴𝐼𝐷) ≡ 𝐴2(𝐴𝐼𝐷)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (2) 

 
𝐴1 and 𝐴2 represent the two alerts or singleton 

clusters. If the clusters have more than one alert, then 

each alert in one cluster is compared with all the alert 

in the other cluster under comparison and the final 

score is the average of all the scores. Here for 

simplicity, the formula is given for the singleton 

clusters having single alerts. 

Similarity between port number: For computing the 

similarity measure between the port number, they are 

grouped according to Internet Assigned Numbers 

Authority (IANA) [31]. The listing has three 

categories such as well-known ports (0-1023), 

registered ports (1024-49151), and dynamic or 

private ports (49151-65535). Port numbers within the 

same group are considered to be closer than the port 

numbers of a different group. Thus, well-known ports 

are closer to registered ports than private ports as the 

service provided by them are similar. The formula to 

compute the similarity score between the source ports 

𝑠𝑖𝑚𝑆𝑃(𝐴, 𝐵) is given in Eqs. (3) and (4). 

Function Alert_Aggregation (alert set A) 

For each alert a in the input alert_set A 

//compare the alert attributes of a and other alerts A[i] 

 If (a.SIP=A[i].SIP ˄ a.TIP=A[i].TIP ˄ a.AID=A[i].AID)  

  If (Time_diff(a, A[i])< threshold) then 

   New_alert r; r.NOA=1; 

   For each attribute attr 

     If attr=detect_time then 

       r.detect_time = min(a.detect_time, A[i].detect_time) 

     r.attr = a.attr; 

     r.NOA = r.NOA+1; 

   End For 

End For 

End Function 

Function Clustering (aggregated alert set A) 

Let each aggregated alert as a Singleton Cluster 

While True do 

  For each pair of clusters 

    Compute the similarity value 

  End For 

  Find the cluster pair having max. similarity score 

  If sim(Ci, Cj)> threshold then 

     Merge Ci and Cj 

  Else Terminate loop 

End While 

End Function 
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      𝑠𝑖𝑚𝑆𝑃(𝐴, 𝐵) =

        {

1, 𝐴(𝑆𝑃) = 𝐵(𝑆𝑃)
0.75, 𝛿𝑝(𝐴(𝑆𝑃))  = 𝛿𝑝(𝐵(𝑆𝑃))

0.5, 𝛿𝑝(𝐴(𝑆𝑃) ∧ 𝛿𝑝(𝐵(𝑆𝑃)) ∈ {0,1}
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3) 

 

𝛿𝑝(𝑆𝑃) = {

0, 𝑆𝑃 ∈ [0,1023]
1, 𝑆𝑃 ∈ [1024,49151]

2, 𝑆𝑃 ∈ [49152,65535]
            (4) 

 

Here, A and B are two alerts, SP represents the source 

port ID. 𝛿𝑝(𝑆𝑃) represents the port numbers of different 

groups. Similarly, the similarity score can be 

computed for the target port (TP) as 𝑠𝑖𝑚𝑇𝑃(𝐴, 𝐵). 

Similarity between IP address: As port numbers, the 

IP address has several hierarchies of categories such 

as unicast that includes public and private, multicast, 

broadcast, etc. Accordingly, assigning the similarity 

scores based on these categories are very difficult. 

Thus, the hamming distance between the IP address 

is computed for the measuring the similarity. As a 

scaling factor, the distance is divided by the total 

number of bits compared. The formula to compute 

the similarity score between the source IP address of 

two alerts A1 and A2 𝑠𝑖𝑚𝑆𝐼𝑃(𝐴1, 𝐴2) is in Eq. (5). 

𝑠𝑖𝑚𝑆𝐼𝑃(𝐴1, 𝐴2) =  
𝑑𝐻(𝐴1(𝑆𝐼𝑃),𝐴2(𝑆𝐼𝑃))

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑏𝑖𝑡𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑
       (5) 

 

here, SIP represents source IP addresses. The same 

formula can be applied for the target IP address (TIP) 

if two alerts A1 and A2  𝑠𝑖𝑚𝑇𝐼𝑃(𝐴1, 𝐴2)  for 

computing similarity. 

Based on the attribute significance, the weights 

are assigned to them. The attribute weights and 

attribute similarity scores are used to compute the 

total similarity between the alerts. The weights are 

assigned in such a way that the values lie between 0 

and 1 with a constraint that the sum of weights must 

be 1. As the attack type is most significant, the weight 

assigned for the attribute 𝑤𝐴𝐼𝐷  is 0.3. The next 

important attributes are SIP and TIP and thus the 

weights assigned for the attributes 𝑤𝑆𝐼𝑃 and 𝑤𝑇𝐼𝑃 are 

0.2 each. Finally, the least important attributes SP and 

TP are assigned a weight 𝑤𝑆𝑃 and 𝑤𝑇𝑃 as 0.15 each. 

The final similarity score based on AIP, SIP, TIP, SP 

and TP for the alerts A1 and A2 is given in Eq. (6). 

 

𝑠𝑖𝑚(𝐴1, 𝐴2) = ∑ 𝑠𝑖𝑚𝑖 × 𝑤𝑖

5

𝑖=1

              (6) 

where i value represents the alert attributes AID, SIP, 

TIP, SP, TP. Thus the alerts are clustered based on 

the computed similarity score and in the proposed 

method the threshold value for clustering is set as 0.4 

as it provides optimal results. 

3.3 Hyper alert correlation  

Generally, hyper alerts provide high level 

abstraction or patterns about attacks identified by the 

generated alerts. Hyper alert correlation tries to 

identify the relationship between the generated hyper 

alerts in the form of cluster. The clustered alerts are 

correlated to gather knowledge about the alerts. To 

compute the correlation between the alerts four 

parameters such as the number of common SIP pairs 

(A), common TIP pairs (B), common SIP & TIP pairs 

(C) and common TIP & SIP pairs (D) are employed. 

The correlation represented as Corr between any two 

clusters containing hyper alerts A1 and A2 as given by 

[32] is given in Eq. (7). 

 

𝐶𝑜𝑟𝑟(𝐴1, 𝐴2) =  
𝐴 + 𝐵 + 𝐶 + 𝐷

2(𝑚 + 𝑛)
                (7) 

 

Here, 𝐴 = 𝑈𝐼𝑃𝑎𝑖𝑟(𝐴1(𝑆𝐼𝑃), 𝐴2(𝑆𝐼𝑃)) implies the 

unique identical pairs of source IP address that are 

common for the alerts A1 and A2. 𝐵 =
𝑈𝐼𝑃𝑎𝑖𝑟(𝐴1(𝑇𝐼𝑃), 𝐴2(𝑇𝐼𝑃)) implies the unique 

identical pairs of the target IP address that are 

common for A1 and A2. C =
UIPair(A1(SIP), A2(TIP))  implies the unique 

identical pairs where the source IP address in A1 and 

target IP address in A2 are same. D =
UIPair(A1(TIP), A2(TIP)) implies the unique 

identical pairs in alerts A1 and A2 where the target IP 

address in A1 is the same as the source IP address in 

A2. The variable m and n is the total number of alerts 

in the clusters. Each pair of clusters are compared to 

compute the correlation score and finally, the total 

correlation score is computed by summing the 

correlation score of the cluster with all the other 

cluster. Obviously, the correlation between the same 

cluster can be set as 0. The pseudocode for hyper alert 

correlation is shown in Fig. 5 where CM represents 

the correlation matrix and C represents the set of 

clusters. 

Based on the total correlation value and the 

individual correlation score, the score of the cluster 

that deviates more than other clusters can be 

neglected and the other cluster having higher 

correlation value can be presented to the 

administrator. Based on the correlation value, the 

correlation graph can also be generated. The clusters 

can be arranged in such a way that their scores are 

arranged in descending order. Each cluster is 
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Figure. 5 Pseudocode for hyper alert correlation 

 

removed and the correlation with other cluster are 

compared in which the cluster having maximum 

correlation value is related to the first cluster. This 

process continues until all the clusters are mapped. 

4. Experimental analysis 

Experimental analysis has been carried out to 

justify the improved performance of the proposed 

system.  

4.1 Experimental setup 

The hosts in the network are configured with core 

i7 3.4Ghz with 8GB RAM. Operating system used is 

64 bit Windows 8.1. The network is connected to the 

outside network through the router and firewall. We 

use IDS in the form of mobile agents which employs 

the ensemble classification technique [33]. The 

multiple sensors collect the data and store it in the 

databases where mobile analysis agents in JADE 

environment [34] analyses the events. The generated 

alerts are normalized and prioritization based 

filtering is applied to the collected alerts. The quality 

alerts with higher priorities are aggregated using the 

alert aggregation algorithm. These hyper alerts were 

served to the correlation process for generating 

correlated attack graphs. Alert post-processing 

programs are written in Java and SQL Server 

database is used for storage purpose. 

4.2 Dataset used 

The DARPA 2000 1.0 dataset is used for the 

evaluation process which contains network traffic 

data from two sensors (inside and DMZ) with two 

LLDOS 1.0 and LLDOS 2.0.2 scenario specific 

datasets which were created by MIT Lincoln Labs 

[35]. In order to experiment the two scenarios, 

Tcpreplay 2.3.2 [36] is used as the replay tool to feed 

the sensors in the network which are eventually 

processed by various phases ending with 

identification of significant alert and alert correlation 

graphs. The dataset contains attack with multiple 

steps. The steps are as follows. 

1. In the initial stage, the attacker scans the whole 

network to obtain the active hosts. 

2. The attacker use ping to exploit sadmint on the 

hosts found in the previous step. 

3. Now, the attacker uses the sadmint vulnerability 

to attain the root privilege. 

4. After getting the root access, the attacker installs 

the DDOS malware in the compromised hosts 

and makes the machine DDOS master. 

5. The master machine launches the DDOS attack. 

4.3 Experimental Results 

The experiments are performed using inside and 

DMZ traffic of LLDOS 1.0 and LLDOS 2.0.2 

datasets. The prioritization based filtering of alerts 

has been performed and are analyzed by varying the 

threshold value from 0.5 to 0.8. The number of alerts 

filtered (false positive) and the number of high 

priority alerts (true positive) selected for the next 

phase along with their rates are shown in Table 2. 

The rates of reduction for the proposed method 

with the threshold value as 0.5, 06, 0.7 and 0.8 are 

nearly 70%, 80%, 87%, and 93%. Thus, if the 

threshold is set with a minimum value as 0.5, the high 

priority alerts include false positive. 

At the same time, if the threshold is set with 

maximum value as 0.7 and 0.8, then higher priority 

alerts (true positive) will get filtered out. Thus for 

implementation, the threshold is set as 0.6 which 

provide optimum reduction rate. The detailed report 

on a varying range of alert scores (AS) for the four 

datasets LLDOS 1.0 Inside, LLDOS 1.0 DMZ, 

LLDOS 2.0.2 Inside, LLDOS 1.0 DMZ with 0.6 as 

threshold is given in Table 3. The number of alerts 

filtered at each step such as priority based filtering 

during low level alert post-processing and 

aggregation & merging, clustering and hyper alert 

correlation during high level alert post-processing are 

analyzed. A detailed picture is given in Table 4. The 

number of input and output alert with detection rate 

at each stage for the four datasets LLDOS 1.0 Inside, 

LLDOS 1.0 DMZ, LLDOS 2.0.2 Inside, LLDOS 1.0 

DMZ are given in Table 4. Thus, the total alert 

reduction rates for the four datasets such as LLDOS 

1.0 Inside, LLDOS 1.0 DMZ, LLDOS 2.0.2 Inside, 

LLDOS 1.0 DMZ are 94.98%, 94.05%, 93.48%, and 

94.60% respectively. 

 

Function Correlation (C number of clusters A[]) 

    Create 2D correlation matrix CM[][] 

    //For each pair of clusters 

    For i=1 to C do 

          For j=1 to C do 

               If i != j then 

                    CM[i][i] = Corr(Ai,Aj) 

               End IF 

           End For 

     End For 

     Compute Total Correlation Values for the cluster 

     Present Top most cluster to the administrator 

     Create correlation graph based on correlation score 

End Function 
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Table 2. Separation of low and high priority alerts by varying threshold value 

Dataset 

No. of Input 

Alerts 

No. of Low 

priority Alerts 

No. of High 

priority Alerts 

Reduction 

Rate 

Accepted 

Rate 

Threshold value for High Priority Alerts = 0.5 

LLDOS 1.0 Inside 578 405 173 70.07% 29.93% 

LLDOS 1.0 DMZ 941 654 287 69.50% 30.50% 

LLDOS 2.0.2 Inside 276 188 88 68.12% 31.88% 

LLDOS 2.0.2 DMZ 389 271 118 69.67% 30.33% 

Threshold value for High Priority Alerts = 0.6 

LLDOS 1.0 Inside 578 466 112 80.62% 19.38% 

LLDOS 1.0 DMZ 941 743 198 78.96% 21.04% 

LLDOS 2.0.2 Inside 276 221 55 80.07% 19.93% 

LLDOS 2.0.2 DMZ 389 313 76 80.46% 19.54% 

Threshold value for High Priority Alerts = 0.7 

LLDOS 1.0 Inside 578 511 67 88.41% 11.59% 

LLDOS 1.0 DMZ 941 819 122 87.04% 12.96% 

LLDOS 2.0.2 Inside 276 242 34 87.68% 12.32% 

LLDOS 2.0.2 DMZ 389 342 47 87.92% 12.08% 

Threshold value for High Priority Alerts = 0.8 

LLDOS 1.0 Inside 578 548 30 94.81% 5.19% 

LLDOS 1.0 DMZ 941 882 59 93.73% 6.27% 

LLDOS 2.0.2 Inside 276 258 18 93.48% 6.52% 

LLDOS 2.0.2 DMZ 389 361 28 92.80% 7.20% 

 

 
Table 3. A detailed report on a varying range of alert scores 

Dataset 

No. of  

Input  

Alerts 

No. of Low Priority Alerts No. of High Priority Alerts 

False Alert  

AS = 0 

Almost False  

Alert 0<AS<0.3 

Possibly False 

 Alert 0.3≤AS<0.6 

Almost True  

Alert 0.6≤AS<1 

True Alert  

AS = 1 

LLDOS 1.0 Inside 578 21 211 234 100 12 

LLDOS 1.0 DMZ 941 11 333 399 190 8 

LLDOS 2.0.2 Inside 276 8 96 117 46 9 

LLDOS 2.0.2 DMZ 389 9 128 176 59 17 

 

 
Table 4. Alert reduction rate at each stage for DARPA datasets 

Stages Dataset 
Input 

Alerts 

Output 

Alerts 

Reduction 

Rate 
Dataset 

Input 

Alerts 

Output 

Alerts 

Reduction 

Rate 

Prioritization 
LLDOS 

1.0 

Inside 

578 112 80.62% 
LLDOS 

2.0.2 

Inside 

276 55 80.07% 

Aggregation  112 76 32.14% 55 37 32.73% 

Clustering 76 48 36.84% 37 24 35.14% 

Alert correlation 48 29 39.58% 24 18 25.00% 

Total Alert Reduction Rate 94.98% Total Alert Reduction Rate 93.48% 

Prioritization 

LLDOS 

1.0 DMZ 

941 198 78.96% 
LLDOS 

2.0.2 

DMZ 

389 76 80.46% 

Aggregation  198 127 35.86% 76 52 31.58% 

Clustering 127 87 31.50% 52 38 26.92% 

Alert correlation 87 56 35.63% 38 21 44.74% 

Total Alert Reduction Rate 94.05% Total Alert Reduction Rate 94.60% 

 

The clustering of meta alerts are carried out and 

the threshold value is fixed as 0.4 which has effective 

results when compared with other values. The 

clustered hyper alerts are correlated and the 

correlation matrix is created in which the correlation 

value between the clusters will be the elements of the 

matrix. Based on the correlation values, the final 

correlation is computed by summing the values and 

the value that deviates from other values will be 

removed. Thus the performance of the proposed 

method is evaluated using completeness (Cm) and 

soundness (Sm) measures [16]. The performance of 

the alert correlation is analyzed for the DARPA 

datasets and are presented in Table 5.  
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Table 5. Performance analysis for alert correlation for 

DARPA datasets 

Details 
LLDOS 1.0 LLDOS 2.0.2 

Inside DMZ Inside DMZ 

Correlated 

alerts 
29 56 18 21 

Correctly 

correlated alerts 
29 56 18 20 

Incorrectly 

correlated alerts 
0 0 0 1 

Related alerts 29 57 18 22 

Missed alerts 0 1 0 1 

Completeness 100% 99.11% 100% 90.94% 

Soundness 100% 100% 100% 95.24% 

 
Table 6. Alert reduction rate comparison using DARPA 

datasets 

Methods Alert 

reduction  

Intrusion alert quality framework [10] 98.03% 

Intrusion detection alert correlation [13] 53.00% 

Correlation based alert detection [14] 81.21% 

Inverse causal correlation [15] 86.77% 

Correlation, prioritization clustering [21]  89.50% 

Proposed work 94.28% 

 

The proposed method provides better results with 

100% completeness for LLDOS 1.0 Inside, LLDOS 

2.0.2 Inside and produces 99.11% completeness for 

LLDOS 1.0 DMZ and 90.94 % completeness for 

LLDOS 2.0.2 DMZ. Also, the method produces 

100% soundness for LLDOS 1.0 Inside and DMZ and 

LLDOZ 2.0.2 Inside and 95.24% soundness for 

LLDOS2.0.2 DMZ. 

The number of alerts used for the study differs 

from one researcher to another and therefore it is not 

possible to compare the proposed method with other 

methods. However, the existing low level alert post-

processing methods and high level post-processing 

methods are compared individually with the 

proposed method based on the percentage of values. 

The final rate of high priority alerts filtered by the 

proposed method is compared with the final rate of 

high priority alerts filtered by the various existing 

methods. The alert reduction rate for the proposed 

method and existing methods are listed in Table 6.  

From the analysis, the proposed method has 

better alert reduction rate of 94.28% than all the 

existing methods under comparison except Intrusion 

alert quality framework having the false reduction 

rate of 98.03%. This is because the several true alerts 

are get filtered out in Intrusion alert quality framework. 

Though the proposed method has better performance, 

few of the true alerts having alert scores less than 0.5 

 

Table 7. Performance comparison 

Techniques Cm (%) Sm (%) 

Correlation based [14] 93.96 95.06 

Abstracted correlation graph [16] 86.5 100 

Grammar-based Approach [17] 96.41 100 

Ontology based method [18] 92.2 NA 

Ontology based method [19] 100 99.7 

Iterative alert correlation [20] 96.72 100 

Attack pattern modelling [22] 87.1 86.27 

Ontology based method [25] 100 97.22 

Proposed Technique 99.11 100 

 

is also considered as false alert with the error rate of 

0.4%. Thus additional quality measures have to be 

incorporated to increase the accuracy. Similarly, the 

correlated alerts of the proposed method are 

compared with existing methods based on the 

completeness and soundness measures using DARPA 

LLDOS 1.0 dataset. The comparison is presented in 

Table 7. 

From the analysis, the soundness of 100% is 

produced by the proposed method which is highly 

promising than the existing techniques. Meanwhile, 

the 99.11% completeness of the proposed method is 

better than many of the existing methods except 

ontology based methods.  

Thus, the method has to be analysed in such a way 

to improve its performance towards 100% 

completeness. Though the proposed method provides 

better theoretical results for the alerts generated by 

the IDS, the method lacks in providing visual 

representation about the attack scenario and 

correlation graph has to be implemented. Also, the 

method does not handle the attacks missed by the IDS 

and the system must be implemented in the real 

environment. These limitations provide a room for 

enhancement of the work in the future.  

5. Conclusion 

Due to the large size of networks, the IDS has 

been installed with several sensors and many of them 

will generate alerts for the same suspicious activity 

which ends up with the low quality results. Post-

processing of alerts is thus become more substantial 

as it improves the quality of results produced by the 

IDS. In this paper, an IDS quality framework using 

alert post-processing techniques to filter out the false 

alerts generated by various sensors have been 

proposed. The post-processing operations such as 

priority based filtering, aggregation, clustering, and 

correlation have been employed to analyze the 

quality of alerts and to remove the trivial alerts. Our 

implementation converts the large set of alerts with 

false positive into a reasonable amount of quality 

alerts. Experimental analysis has been made with 
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DARPA datasets in which the proposed system 

produced 94.28% of alert reduction thereby 

increasing the completeness and soundness to 99% 

and 100% respectively. From the results, it is found 

that the proposed approach is highly promising and 

capable of producing good results. The future study 

aims at improving the proposed method in achieving 

the 100% completeness.  
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