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Abstract: In many applications, in industry and laboratory, there is a robot with a human, in close motion, to satisfy 

the work requirement. Therefore, for safety and monitoring the quality, the classification between them is important. 

The robot is considered as a semi-rigid object because it has many parts in the half upper, while the lower half is 

rigid, and a human is a non-rigid object. This paper presents a practical result which investigates the classification 

between these two objects based on the micro-Doppler signatures. The object's data were acquired using an S-band 

2.4 GHz radar. The improved Stockwell transform was used to analyze the radar received signal in the time-

frequency domain and feature extraction. The singular value decomposition is used for data filtering based on the 

Hankel matrix (HSVD) while using the Temporal Radial Basis Function to satisfy the classification. The 

classification accuracies gained are; 96.4%-100% for semi-rigid, 92%-95% for non-rigid closed objects. 

Keywords: Micro-doppler, Semi-rigid body, Non-rigid body, Classification, Singular value decomposition, Hankel 

matrix, Temporal radial basis function. 

 

 

1. Introduction 

In most industrial applications and laboratory, 

there are robots and workers (human) in close 

motion (co-working), therefore, to satisfy the safety 

and quality of the required work, and identify the 

state of the robot [1] and Avoid robot malfunction 

[2], the motion monitoring and classification is 

important. Many sensors can satisfy this monitoring; 

the most famous are the cameras. However, the 

limitation of the camera is the blind spot, and cannot 

use it in everywhere and at all time, therefore, can 

use the radar [3]. 

In this context, the non-rigid object (Human) 

have many rigid parts. These rigid parts have 

different motions. Therefore, when the radar 

illuminates these objects, there are different 

frequency components will be produced 

(modulation) [4]. The main object body produces a 

Doppler frequency caused by the main movement, 

while object body parts produce the micro-Doppler 

(MD) caused by their motions [5]. Accordingly, the 

Doppler and micro-Doppler are representing the 

signatures of the moving objects and include the 

properties of the transmitted signal (frequency) and 

the velocity and direction of these moving objects 

[6-8]. Therefore, the Doppler and micro-Doppler 

have been used in classifying process for different 

end applications over the years [9].  

In effect, the semi-rigid object (robot) which has 

the main part (the lower half) as rigid, while it has 

some parts in motion (in the upper half). In some 

application, the main part of the semi-rigid object in 

motion as a single piece (rigid), and in other 

application is in a fixed situation as shown in Fig. 1.  

In general form, the difference between the 

semi-rigid, and non-rigid is in the nature of the 

upper half motion and the lower half of the main 

body. Where, the motion of the semi-rigid (robotic) 

upper half is periodically, and the lower half is fixed, 

while in non-rigid (human), it has rotation or 
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Figure. 1 The difference between Human and robot in 

motion 

 

vibration in all parts with the fixed motion of the 

main body, as in Fig. 2.  

In this context, When the human and the robot 

are in an effective state, two different features have 

been considered: the time-velocity (TV) feature 

method, and the cadence-velocity (CV) feature 

method. The method TV feature which can extract 

the Doppler from it, while the CV tends to the usage 

the acceleration, in our work will be used the 

Doppler features [10]. Furthermore, the Short-time 

Fourier transform (STFT) is used to analyze the 

received signal and then extracted the required 

signatures in the time-frequency domain [11]. 

Several studies have dealt with the analysis of 

the object's motion by using the Doppler and micro-

Doppler and other features. Some researchers have 

studied the effect of the transmission media of the 

radar signal, free space, the wall, and trees [12-15]. 

While [16, 17] were studying the algorithms of 

classifications, where, Empirical Mode 

Decomposition, Support Vector Machines, artificial 

neural networks, and linear predictive coding have 

been used. In this context, many other studies have 

dealt with the types of moving objects and 

identifying their motion, were [13, 15] for vehicle 

classification, while [17, 18] are working to classify 

the human and animal motions.  A human walking 

mode identification was done [11,19,20] by 

calculating the velocities of reference points on the 

human body. A robotic motion identification by 

using the Inertial Measurement Unit (IMU) signal 

was presented in [1]. In this context, [1] was gaining 

90% classification, the leak of this work is in using 

the wavelet in pre-processing, and then uses the 

wavelet's high and low frequency to determine the 

starting of the motion, while in this case some 

information will be lost. As for, the Ref. [11] was 

 

 
(a) 

 

 
(b) 

Figure. 2 The motion of Semi-Rigid and Non-rigid 

objects: (a) Semi-Rigid body (representation) and (b) 

non-rigid body (human) 

 

not concerned with the classification rate, while his 

concentration was on the separation of different 

object motion.  In [21] a human activity recognition 

by using a convolutional neural network for human-

robotic interaction was presented. The robotic 

behavior classification was presented in [2], where, 

multiple robotic behaviors were classified and 

recognized to avoid the failure in co-working with 

humans. In the work of ref. [2], The HMM was used 

as a classification algorithm, which is depending on 

the state, while he uses the semantic reasoning for 

representing the human motion, this tends to confuse 

with HMM states.   

Other researchers’ works [4, 10] were 

concentrated on the optimality of features, where, in 

[4] a micro-doppler feature extraction algorithms 

were presented and applied to a data of moving 

ground targets. The dimensional reduction was 

carried out using principal component analysis 

(PCA) and incorporated into the feature extraction 

process. Extracted features are classified using a 

support vector machine (SVM) classifier. The 

drawback of the work in Ref. [4] is by using the 
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feature reduction, where this reduction is active in 

the case and not in others.  In this context, the ref. 

[10] was gained a classification rate of 92% because 

he had only two features (the target base velocity 

and the main limb cadence frequency), and it was 

possible to increase the percentage of classification 

if he increased or chose other features.  In other 

words, the work of Ref. [22] is based on the 

measurement of the distance between each data 

point and a certain threshold, where, this give a leak 

in the classification caused by noisy measurement 

data. 

In effect, in indoor applications, especially some 

factory and laboratory, there are semi-rigid and non-

rigid objects, robotic and human in co-working). 

Therefore, the accuracy of classification is based on 

the features of the objects, while these features 

depend on the signatures of that object. Therefore, 

the accuracy of signatures extraction is related to the 

object's motion, sensory properties, and short time 

Fourier transform (STFT) which is used. The 

computation of the STFT is to obtain information 

concerning the variation in the time of the frequency 

content of the signal [22].  

Despite the advances of the previous works, the 

gap of these studies did not address the semi-rigid, 

which expresses the robot, which is a co-working 

with a human in the factories. In all the previous 

studies, traditional STFT was used, and did not pay 

attention to its effect on the feature extraction and 

thus on the classification 

In this paper, the improved Stockwell transforms 

with optimal parameters was used to analyze the 

Doppler and micro-Doppler signature and then 

increasing the accuracy of the features extraction. 

Also, the singular value decomposition (SVD) is 

used for data filtering based on the Hankel matrix, 

while the Temporal Radial Basis Function to satisfy 

the classification was used. The drawbacks which 

appeared in previous works has been avoided and 

the average classification rate of 95.65% has been 

gained. 

The rest of the paper is organized as follows. In 

section 2, Radar Received Signal and Doppler effect. 

The Time-Frequency Analysis in section 3. The 

Denoising stage is presented in section 4, while the 

Temporal Radial Basis Function is presented in 

section 4. In section 5, an experimental case study is 

presented. The simulation and experimental results 

and discussion of classification are presented in 

section 6. The conclusions are summarized in 

section 7. 

2. Radar received signal and doppler effect 

The frequency of the received signal is [23]; 

 

𝑓𝑅 =  𝑓𝑇 ∓  𝑓𝐷                                                  (1) 

 

Where; 

𝑓𝑅 - Received frequency. 

𝑓𝑇 - Transmitted frequency. 

𝑓𝐷 - Doppler frequency   

 

 𝑓𝐷 = − 𝑓𝑇  
2𝑣

𝑐
=  

1

2𝜋
 
𝑑𝜑(𝑡)

𝑑𝑡
                                (2) 

 

∓  - depends on the motion direction of the 

object (+ toward the transmitter, - away from the 

transmitter). 

v - object velocity. 

c - transmitted signal velocity. 

φ(t)  - phase difference between received and 

transmitted signal. 

The received signal frequency which is 

intercalated the object movement properties [12] 

according to the object's physical nature (rigid or 

non-rigid). Therefore, the rigid object produces a 

shift in transmitting signal frequency, while the non-

rigid object produces a band shift in that frequency 

called micro-Doppler. The Doppler is caused by the 

motion of the main part of the object (rigid part), 

while the micro-Doppler is caused by vibration or 

rotation of some parts of that moving object (non-

rigid parts) as shown in Fig. 2. 

Then from this Doppler, the object's velocity and 

direction can be extracted, while from the micro-

Doppler, the velocity of the object's parts is 

extracted. In effect, the object can be recognized 

based on these Doppler and micro-Doppler, which 

are represented as the object's signatures [24]. In this 

context, the received Doppler (MD) as a function of 

time which shows the variation of the object 

(object's parts) with the time, where, the m-D 

frequency spectrum consists pairs of harmonic 

spectral lines around the transmitted frequency, as 

[6]; 

 

𝑠(𝑡) = 𝐴 ∑ 𝐽𝑛(𝛽) 𝑒(𝑗(2𝜋𝑓𝑇+𝑛𝜔𝑣)𝑡)∞
𝑛=−∞          (3) 

 

where; 

𝐴 - object cross-section from the scattered point. 

𝜔𝑣  - radian frequency oscillation of scattered 

point. 

𝐽𝑛(𝛽)  - nth-order Bessel function of the first 

kind. 
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In this context, the instantaneous Doppler 

frequency induced by the scattered points is; 

 

𝑓𝐷 =  
1

2𝜋
 
𝑑𝜑(𝑡)

𝑑𝑡
=  

1

2𝜋
 𝛽𝜔𝑣 𝑐𝑜𝑠(𝜔𝑣𝑡)                          

                        =  
2

𝜆
 𝐷𝑣𝜔𝑣𝑐𝑜𝑠 (𝜔𝑣𝑡)                (4) 

 

where; 

𝛽 =  
4𝜋 𝐷𝑣

𝜆
   

𝐷𝑣 - amplitude of the scattered point. 

 𝜆 - transmitted wavelength signal.  

 

Then, this effect on the transmitted signal will 

appear as a modulation in the received signal, as; 

                                                                  

𝜑(𝑡) =  𝛽 𝑠𝑖𝑛(𝛺𝑡 + 𝜃𝑜)                                   (5) 

where; 

𝛺 - rotation or vibration rate. 

𝜃𝑜 - rotation or vibration angle at time t=0. 

 

Therefore, the Doppler one rotating or scattering 

point is; 

 

𝑠(𝑡) = 𝐴𝑒(𝑗(2𝜋𝑓𝑇𝑡+𝛽 𝑠𝑖𝑛(𝛺𝑡+𝜃𝑜)))                      (6) 

 

then, if there are N rotating scatters on an object, 

then caused N different initial rotating angles as; 

 

𝜃𝑘 =  𝜃𝑜 +  𝑘2𝜋/𝑁             for 𝑘 = 0, ........N-1  

                                                                          (7) 

 

then, the total received signal is; 

 

𝑠(𝑡) =  ∑ 𝐴 𝑒(𝑗(2𝜋𝑓𝑇+ 𝛽 𝑠𝑖𝑛(𝛺𝑡+ 𝜃𝑜+𝑘 2 𝜋𝑁))) 𝑁−1
𝑘=0                                                                                                                          

                                                                          (8) 

3. Time-frequency analysis 

The Fourier transform represents a powerful tool 

to extract the frequency of the signal, while when 

the frequency is the time variant, this tool is not 

efficient.  Therefore, a Time-Frequency Transforms, 

which appear the time-dependent frequency 

information, may be considered powerful tools [25]. 

Many time-Frequency transforms have been 

used in previous researches, where that usage is 

dependent on the required information. Also, the 

difference between these transforms is the resolution 

and processing time and the interference cross terms, 

where each one has advantages on one side and 

disadvantages on the other.  

The Wigner-Ville (WV) transform is a powerful 

tool which can make a balance between the 

resolution, process time, and the interference term. 

Where this transform can give a high resolution in 

time-frequency resolution, but it is limited by 

interference cross term. Therefore, to gain these 

advantages and to overcome the disadvantages of 

the time-frequency transform, the Stockwell 

transform (ST) can be used; which is a hybrid 

between the short-time Fourier transform (STFT) 

and wavelet transform (WT). After that, for more 

accuracy, the improvement of the ST with optimal 

parameters to control the Gaussian window is used, 

as [26]; 

 

𝑆𝑥
𝑚,𝑝,𝑘(𝜏, 𝑓) =

 ∫ 𝑥(𝑡)
|𝑓|

(𝑚𝑓𝑝+𝑘)√2𝜋
 𝑒

−(𝑡−𝜏)2 𝑓2

2 (𝑚 𝑓2+𝑘)2  𝑒−𝑖2𝜋𝑓𝑡+∞

−∞
 𝑑𝑡       (9) 

 

where; 

m, k, and p - Gaussian window control 

parameters.  

It is often beneficial the understanding of the 

physical phenomena of the object, which is lead to 

efficient extraction of the required features, and then 

the classification problem has been solved 

efficiently also. Therefore, the object features, 

Signal energy, Average Doppler frequency, Total 

bandwidth, Doppler offset, Bandwidth without 

micro-Doppler, Standard deviation (STD) of the 

lower frequency envelope, and Standard deviation 

(STD) of upper-frequency envelope [11,17,19], are 

used for object classification. Where these features 

are derived from the basic object's parameters like 

the object’s micro-Doppler period, micro-Doppler 

energy, and range-weighted object energy.  The 

calculating of the micro-Doppler period starts with 

accumulating the object energy around the bulk-

scattered and depending on the direction of motion 

[27] as; 

 

𝐸𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟[𝑛] =

 ∑ |𝑆𝑥
𝑚,𝑝,𝑘(𝜏, 𝑓)|

2

𝑘>𝑘𝑏𝑢𝑙𝑘+𝑘𝑜
                                 (10) 

 

where; 

k-center frequency. 

The discrete autocovariance function Cxx(τ) 

provides a measure of the period of a discrete-time 

sequence Emicro−Doppler[i].  

 

𝐶𝑥𝑥(𝜏) =  
1

𝑀
∑ (𝐸𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟[𝑖] −𝑀−𝜏

𝑖−1

�̂̅�𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟[𝑖 + 𝜏])(𝐸𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟[𝑖 + 𝜏] −

�̂̅�𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟)                                                   (11) 

 

where; 
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�̂̅�𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟 =
1

𝑀
 ∑ 𝐸𝑚𝑖𝑐𝑟𝑜−𝐷𝑜𝑝𝑝𝑙𝑒𝑟[𝑖]𝑀

𝑖=1  (12) 

     

τ = 0,1,2 ............, M ( lag variable) 

M - number of samples. 

The micro-Doppler period is the time difference 

between the peak at zero lag and the next closest 

peak of 𝐶𝑥𝑥(𝜏). The micro-Doppler period is helped 

to know the periodic of the motion.  

4. The denoising stage 

Singular value decomposition (SVD) provides a 

convenient way of decomposing a matrix, and 

eliminate the random noise which perhaps contains 

some data which are interested, by selecting 

appropriate singular values [28]. 

The SVD matrix is; 

 

𝑋 = 𝑈𝑆𝑉𝑇 = [𝑢1 … 𝑢𝑛] [
𝜎1 ⋯ 0
⋮ ⋱ 𝜎𝑚

0 ⋯ 0
]               (13) 

 

where  

U,V - left, right singular orthogonal matrices, 

respectively,  

U -  n × n, 

V - m × m, 

S - a diagonal matrix with a size of n × m;  

the elements 𝜎𝑠  (1 ≤ s ≤ m) of matrix S are the 

singular values of matrix X; and 𝜎1 > 𝜎2 > ⋯ 𝜎𝑚 > 

0. 

Then, the data with m traces in each frequency 

slice of the frequency domain denoted by 𝑎𝑡 (1 ≤t ≤ 

m) can be arranged in a Hankel matrix as [28] : 

 

𝐻 = [

𝑎1 𝑎2 … . . 𝑎𝑚−𝑝+1

𝑎2 . .
𝑎𝑚 𝑎𝑝+1 𝑎𝑚

]                             (14) 

5. The classification stage 

The classification stage has been based on the 

Temporal Radial Basis Function (TRBF) neural 

network, as shown in Fig. 3.  

 

 
Figure. 3 Temporal radial basis function (TRBF) neural 

network 

 

This stage is affected by many factors; one of 

the most powerful ones is the number of training 

and testing patterns. Therefore, the increasing of the 

training pattern will cause to undermine the 

similarity between the patterns to appear the 

difference between these patterns. The output of the 

TRBF‘O’ according to the radial basis function 

of n’. The input to the radbas transfer function is the 

vector distance between its weight vector ‘w’ 

and the input vector ‘a’ (the elements of Hankel 

matrix) multiplied by the bias ‘b,' where [29]; 

 

𝑛 =  ‖𝑤 − 𝑎‖ 𝑏                                              (15) 

 

𝑂 = 𝑟𝑎𝑑𝑏𝑎𝑠(𝑛) = 𝑒𝑥𝑝 (−𝑛2)                      (16) 

5. Experimental case study 

An Ancortek Inc.[30], is the S-band radar, which 

has the parameters as in Table 1. In the research 

laboratory, many experiments have been done in an 

indoor environment for objects features, analysis 

using Stockwell transform with optimal parameters 

as in Table 2. 

 
Table 1. Radar properties 

Parameters Values 

Center Frequency 2.4 GHz 

Waveform FMCW-Saw tooth 

BW 400 MHz 

Sweep Time 0.5 msec. 

Sampling Number 128 

 Polarization Horizontal 

 
Table 2. ST parameters 

Parameters Values 

m 0.45 

p 0.5 

k 0.03 

 

The robotic model was used as in [31] with 

average error is 5 mm in the required position for 

different SNR.  

Many measurements have been done; these 

measurements are; I, Q of the received signals as in 

Fig. 4, the range against the radial velocity as in Fig. 

5 frames against Range as in Fig. 6, and Doppler 

against the time as in Fig. 7. 

The features which can be extracted from these 

measurements are; signal energy from the received 

I-Q, velocity and Doppler range from the velocity 

against range. In this context, the Doppler statistical 

features (standard deviations and total bandwidth) 

are also extracted.  
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(a) 

 
(b) 

Figure. 4 I (green), Q (yellow) of reflected signals: (a) 

semi-rigid body and (b) non-rigid body 

 

Where Fig. 4 indicates the concentration of 

samples per sweep. This indication referred to the 

energy related to the motion of the object. 

Fig. 5 indicates the elapsed time with a range, in 

Fig. 5 (a) there is no motion, while in Fig. 5 (b), 

there is a semi-rigid object in motion, and in Fig. 5 

(c) semi-rigid and non-rigid are in motion. From Fig. 

5 (b), the periodical motion and time segmentation 

of semi-rigid object is clear, while in Fig. 5 (c), the 

periodical motion of semi-rigid and slow motion of 

non-rigid according to semi-rigid, is clear. 

Accordingly, the mechanical motion for the semi-

rigid and the non-rigid, it is clear that the semi-rigid 

is near to square pulse wave, which is related to the 

periodical motion of semi-rigid (rapid robotic 

motion). The non-rigid is near to a segment of 

sinusoidal wave (human motion) slow periodical 

motion. 

Fig. 6 indicates the radial velocity against the 

range; Fig. 6 (a) is indicated, no motion, Fig. 6 (b) 

semi-rigid in motion and Fig. 6 (c) semi-rigid and 

non-rigid in motion. From this figure, the motion 

period and speed of semi-, and non-rigid objects are 

clear, where the radial velocity of non-rigid is lower 

than that of semi-rigid. The semi-rigid (robotic) is 

faster, and the range of motion is related to the 

length of its moving parts, while the non-rigid 

(human) is a slow and limited range of motion. 

 

 
                                  (a) 

 
(b) 

 
(c) 

Figure. 5 Elapsed time (sec.)  against a range (m): (a) no 

motion, (b) semi-rigid object in motion, and (c) semi-

rigid and non-rigid objects in motion 

 

Fig. 7 shows the range frame diagram for the 

semi-rigid object and non-rigid object in motion. 

Where this figure appears the variation of signal 

energy with the range for each frame caused by 

object motion, it is clear from that figure ((b) and 

(c)), the expanded of non-rigid motion to the frames 

more than the expansion of the semi-rigid motion 

for the same frames, this is because of the fast and 

slow motion of semi-, and non-rigid objects with 

frames respectively. 
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(a) 

 
(b) 

 
(c) 

Figure. 6 Range against radial velocity: (a) no motion, (b) 

semi-rigid object, and (c) non-rigid and semi-rigid 

  

Then, the extracted features have been arranged 

in Table 3. for semi-rigid and non-rigid objects.  

 
Table 3. Objects features 

Object Energy 

(normalized) 

Doppler 

(average) 

Hz 

Total 

BW Hz 

STD 

(lower-

upper) 

Hz 

Semi-

Rigid 

1 75 100 90-120 

Non-

rigid 

[32] 

0.9794 55 50 32-76 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 7 Range against the frame: (a) no motion, (b) 

semi-rigid object, and (c) non-rigid body (human), with a 

semi-rigid object in motion 

6. Classification results 

The SVD with Hankel matrix (HSVD) 

approaches have been applied as denoising and 

arrange the denoising feature, which extracted by 

STFT. Then TRBF is applied as a classifier with the 

highest output function assign the class. Then, the 

Temporal Radial Basis Function was used with the 

HSVD after the initial testing. The collected data 

have been split for training and testing, where, 50/10, 

50/15, and 50/20 are used. In effect, the 

classification, resolution depends on the number 

arrange of features and which the specific feature 

effects on the classification decision. Then, the 
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Table 4. Classification results using the SVM-TRBF 

classifier 

Features used Classification % 

Semi-rigid 

object 

non-rigid 

objects 

Energy 96.4% 92% 

Doppler +total BW 97.5% 93% 

Doppler +total BW + 

STD 

100% 95% 

 
Table 5. Comparison of present work with the others 

Work  

[Ref] 

Features Classification 

Algorithm 

Avg. 

Classification% 

[1] IMU1 

signal 

Rule-based 

decision logic 

90 

[2] Neural 

language 

HMM2 83 

[4] Time-

Frequency 

SVM3+PCA4 93.8 

[10] Energy 

+statistical 

features 

SVM+Liear 

Kernal 

92 

[11] Statistical  

Features 

SVM+RBF5 92.005 

[21] Kinemati

c data 

CNN 95.71 

[22] Statistical 

Features 

SVM + PCA 94.12 

Present 

work 

Statistical 

Features 

HSVD+TRBF 95.65 

1 IMU -Inertial Measurement Unit. 
2 HMM -Hidden Markov Model. 
3 SVM -Support Vector Machine. 
4 PCA -Principle Component Analysis. 
5 RBF -Radial Base Function. 

 

classification results as in Table 4 were validated 

with untrained data for improving the accuracy. The 

denoising by SVD are made the arrange of the 

Hankel matrix is efficient, then this tends to 

classification by TRBF is powerful, that is mean the 

classification accuracy is overperformed. 

These results are overperformed to those 

reported by [1, 2, 4, 10, 11, 22].  Therefore, for 

putting our work in a suitable place among the 

others, a comparison with the other work has been 

done as in Table 5. 

 Table 5 shows, there is a significant difference 

between the present work and the others. From this 

table, the references [1, 2, 4, 10, 11, 22] was 

explaining the lack of their work in section 1, while 

the ref [21] is advance our work by 0.06%, and this 

work depends on the kinematic data. This data is 

measured by special sensor, and the error in 

measurement is relatively considered.  
The stages of the present work were selected 

precisely, where, the dancing stage and feature 

extraction and then arrange it for the classification 

stage. This work, then, was avoided many 

drawbacks which appeared in previous works. 

Interestingly, our work has been advanced the 

others; this advancement is related to three points; 

the time-frequency transforms which was used, 

specific features which were extracted and used for 

classification, and the efficient denoising by using 

SVD, with accuracy in arranging in Hankel matrix 

with TRBF as a classifier. 

The improved Wigner-Ville STFT with optimal 

parameters as in Table 2 was used, where, this 

transform was operated as an optimal feature 

extractor. After that, the TRBF classifier which is 

used based on the arrange of the features in the 

Hankel matrix makes the classification process is 

accurate and easy. 

7. Conclusions 

The present study was designed to determine the 

importance of the statistical Doppler frequency 

parameters for the analysis and classification of 

moving objects (semi, and non-rigid, which is 

represented robotic and human in co-working). 

Where, Ancortek Inc. S-band radar has been used 

for Doppler analysis. Also, the Stockwell transform 

with optimal parameters has been proved as an over-

perform tool for analyzing the time frequency of the 

moving semi-rigid and non-rigid objects according 

to the reflected signal frequency shift. The object 

energy and Doppler statistical features can be used 

in the object classification by using TRBF after 

denoising by using SVD and arranging in the 

Hankel matrix to prepare the data for the 

classification stage. Where, a 96.4-100% 

classification rate for semi-rigid objects have been 

found, while 92-95% classification rate for non-rigid 

objects are gained. The radar sensor can be used for 

safety, quality, and malfunction monitoring in 

industry crowded locations, where the robot is co-

working with a human. 
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