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Abstract: Frequent item exploration is a fundamental element in many data mining problems aimed at finding 

interesting models in the data. Recently, the PrePost algorithm, a new algorithm for extraction frequent element sets 

based on the idea of N-lists, which in most cases surpasses other current state-of-the-art algorithms, has been 

introduced. The PrePost algorithm's performance deteriorates when it comes to handling big data. Nevertheless, the 

current existing PrePost algorithms in place implemented with the MapReduce model are not sufficiently powerful 

for iterative computation. To reduce IO overhead and take advantage of cluster memory, this article offers an 

enhanced version of PrePost, the Distributed PrePost (DisPrePost), a parallel algorithm built on the Spark framework, 

which incorporates the concept of resilient distributed datasets and performs in-memory processing to optimize the 

execution time of operation, that also utilises a HashMap to further refine the N-list creation process. Experience has 

shown that the DisPrePost algorithm is more efficient and scalable than the two advanced state-of-the-art methods 

HPrePostPlus and the well-known algorithm HFIM. 

Keywords: Frequent itemset mining, PrePost, Spark, Big data. 

 

 

1. Introduction 

In the late years, the great evolution of 

technology and science has strongly affected the 

growth of data. In addition to its large size, these 

enormous datasets are also of an unstructured and 

semi-structured natures, including the challenges of 

capture, storage, sharing, research, analysis, etc.; 

they have been named "Big Data"[1]. The Data 

Mining, being the process used to evaluate great 

amounts of data stored in businesses, helps to 

facilitate making decisions. In addition, it helps to 

find hidden information in the database that 

demands specific capabilities. Classification, 

association mining rule, clustering, sequential 

pattern discovery, etc., are several required tasks in 

Data Mining [2].  

By association mining rule, we mean a rule-

based learning technique, discovering significant 

relationships between data object in dataset. Thus, 

only frequent itemsets are considered to build the 

association rules for the purpose of reducing the 

number of potential itemsets, and in order to extract 

frequent itemsets from data, various algorithms 

along with numerous improvements were proposed. 

Agrawal, first, proposed mining customer 

transaction database itemsets problem [3], now FIM 

(frequent itemsets mining) has become an essential 

part of data mining. Most of the current algorithms 

can be grouped into two categories: Apriori-like 

algorithm and FP-growth algorithm. Repeatedly, the 

Apriori scans the database to find frequent itemsets 

with generating a large set of candidates [4]. FP-

Growth algorithm scans database twice to mine 

frequent itemsets without generating candidates [5]. 

 The FP-growth uses FP tree data structure to 

store database and employs a divide-and-conquer 

strategy to find frequent itemsets, which is much 

more efficient than Apriori method.  

In recent years, the PrePost [6] and PrePost+ [7] 

algorithms based on the N-list data structure have 

been proposed to shorten mining time and memory 
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utilization with frequent itemsets. These algorithms, 

working on single computers, have demonstrated 

high performance in processing small data. However, 

conventional methods encounter important 

challenges when computing power and memory 

space are constrained in big data era. There have 

been certain practices and attempts to mine frequent 

itemsets from massive data using parallel computing 

technologies [8, 9].  

Parallel programming frameworks are split into 

two groups: memory sharing and distributed 

architectures (share nothing). Despite the fact that it 

is more convenient to make algorithms implemented 

in parallel on the memory sharing framework, their 

scalability is not sufficient. The Message 

Transmission Interface (MPI) [10], which is a 

common framework for scientific distributed 

computing, benefits from the locality of the memory. 

Due to some advantages of the MPI in iterative 

calculation, some researches apply it to mine 

frequent itemset [11]. Yet its drawbacks are its 

heavy workload of communication due to data 

interchange between various computer nodes and 

the absence of fault tolerance.  

MapReduce [12], a framework embedded in 

Apache Hadoop for parallel processing of high 

volumes of distributed data, has been designed to 

work with distributed computing in a cloud 

computing model, proving to be a powerful and 

reliable platform for the parallel data mining of large 

datasets. However, MapReduce is not suitable for 

iterative algorithms due to high network and I/O 

overhead in writing intermediate output to disk and 

read data back from disk [13].  Moreover, the 

MapReduce framework follows a strict pre-defined 

execution order of mapper and reducer stage, which 

limits the flexibility of the algorithm. 

 To surmount the above problem, the Spark 

platform [14], a memory-based distributed 

framework, has been used as solution architecture in 

this paper. Spark is a better alternative framework, 

which is more efficient in batch and interactive 

processing, and assures high performance over 

MapReduce. Spark programming interface is based 

on a data structure called Resilient Distributed 

Dataset (RDD), a read only collection of data 

objects distributed across nodes of cluster. Many 

advanced features of Spark, i.e., in-memory 

processing, job caching, improved fault tolerance 

mechanism, etc., optimize the job execution. 

A number of distributed frequent itemset mining 

methods [15] have been proposed, which are 

relatively simple extensions of a sequential method 

using distributed data processing frameworks. 

Although the existing distributed methods solve 

the limit on scalability partially, most of them still 

have the following problems in terms of scalability. 

First, they do not have good scalability due to 

workload skewness. The existing parallel methods 

usually split the search space for patterns to be 

investigated into multiple blocks and allocate them 

to a single machine (or processor). Each sub-tree of 

the enumeration tree has a distinct workload size. In 

particular, the distributed methods based on Eclat 

and FP-Growth have this problem noticeably. 

The other point is that the multiple database 

scans necessitate multiple MapReduce jobs: Each 

MapReduce job also needs to read sequence 

databases or projected databases. When the output 

of each MapReduce job and databases are stored in 

the HDFS, it leads to a high I/O overload. Hence, 

minimizing input-output overhead expenses 

becomes a vital aspect of algorithmic design. 

Consequently, the existing parallel methods are 

not particularly scalable in terms of to the number of 

machines. In the same way, their effectiveness does 

not expand in proportion to the rise in the number of 

machines or processors. 

 In addition to that, they do not have good 

scalability due to high network communication 

overhead. The existing methods usually perform 

frequent itemsets mining by redistributing 

intermediate data via network. This approach could 

largely degrade the performance and scalability as 

the amount of data transferred among machines 

increases. 

In this paper, we introduce an enhanced version 

of PrePost, the Distributed PrePost (DisPrePost), a 

parallel algorithm based on the RDD Spark 

framework. DisPrePost solves the above problems, 

and so can find frequent patterns on much larger 

datasets compared with the existing distributed 

methods. 

Contrary to FP tree-based approaches, 

DisPrePost does not construct any extra tree at  each 

iteration; it extracts frequent itemsets directly using 

the N-list concept. The efficiency of DisPrePost is 

achieved because: (i) Since the N lists are 

considerably more compact than the earlier 

suggested vertical structures, (ii) the support of a 

candidate frequent itemset can be determined 

through N-list intersection. Determining the 

intersection of the TID lists is more cost-effective 

than in the case of the TID lists since it has 

unnecessary comparisons. 

To reduce IO overhead and take advantage of 

cluster memory, the first MapReduce job loads the 

sequence database from the HDFS into the Spark 

RDDs, and subsequent MapReduce jobs read the 
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database from the RDDs and store intermediate 

results back into the RDDs. 

For solving the problem of network 

communication overhead, DisPrePost broadcasts 

only frequent itemsets Fk, whose size is much 

smaller than that of intermediate data via network, 

we use a special feature of the Spark framework 

called the broadcast variable. As a result, DisPrePost 

shows much higher performance than the state-of-

the-art approaches. 

The main contributions of this paper are the 

following: 

i. We propose an algorithm has been 

implemented over Apache Spark, a fast and 

general engine for large scale data processing, 

which could provide a solution for big data 

analytics. 

ii. We propose DisPrePost, a scalable Spark-based 

method for frequent itemset mining, that has 

low IO overhead by adopting in-memory 

computation technique with the help of RDD 

storage.  

iii. We propose an algorithm which has small 

network communication because we only 

broadcast frequent itemsets Fk, whose size is 

much smaller than that of intermediate data via 

network by using a special feature of Spark 

framework called broadcast variable. 

iv. We use HashMap to traverse efficiently the 

PPC tree and to speed up the process of 

creating the N-lists associated with frequent 1-

itemsets. 

Experiments show that DisPrePost outperforms 

the state-of-the-art MapReduce-based methods in 

terms of speed and scalability.  

The rest of the paper is organized as follows: 

Section 2 outlines survey of related works. Section 3 

presents the basic concepts. Section 4 gives 

proposed approach. Then, section 5 gives results and 

discussion. Finally, section 6 provides the 

conclusion. 

2. Related work 

In the context of frequent pattern mining and 

association rules, numerous studies have been 

carried out. As a result, a broad spectrum of 

knowledge discovery techniques has been debated 

and are now being explored for big data. 

Lin et al [16] developed three Apriori methods 

that were distributed on MapReduce: SPC, FPC and 

DPC. The SPC performs iteratively the steps of 

generating and checking applicants as a MapReduce 

cycle. In the k-th iteration, each mapper reads a 

partitioned database, generates the candidate 

itemsets and calculates support counts of them for 

the partitioned database. Afterwards, the reduce 

phase aggregates and tests the support counts of the 

same candidate itemset with regard to minsup. The 

outcome of the reduce step is broadcasted for use in 

the next iteration. FPC reduces the number of 

MapReduce rounds through the use of the map 

function that handles candidate k-itemsets, (k+1)-

itemsets, (k+2)-itemsets together in a single 

MapReduce round. DPC automatically collects 

candidate itemsets to be handled by the mappers in a 

single MapReduce round depending on the number 

of candidates itemsets. By comparing these Apriori-

based methods, DisPrePost performs support 

counting much faster from the intersection of N-lists, 

avoiding needless comparisons. The PApriori 

algorithm proposed by Li et al [17], is very similar 

to the SPC algorithm. The map function performs 

the procedure of counting each occurrence of all the 

candidates in a parallel way and then the reduce 

function sums up the occurrence. The PFP [18] and 

its variations [19] are the distributed methods based 

on the FP-Growth approach. Initially, they project 

an input database and construct separate FP trees, 

which are basically conditional databases, through 

the use of the projected databases. Then, they 

perform frequent itemset mining on each FP Tree 

independently in each machine. In summary, the 

main principle of PFP is to group the items and then 

distribute the conditional databases to the mappers, 

which is not efficient in memory or speed. 

Moens et al [20] proposed BigFIM, a hybrid 

approach between Apriori and Eclat. It starts by 

finding frequent itemsets of short lengths using the 

distributed algorithm of the Apriori approach and 

generates conditional databases. Then, he executes 

the sequential Eclat algorithm [21, 22] on each 

conditional database separately. Its support counting 

is fast by using an efficient sequential Eclat 

algorithm. 

Nevertheless, since the sizes of conditional 

databases are quite different with each other, i.e., 

there is workload skewness, mining task tends to fail 

due to lack of memory in a certain machine, or takes 

too long time due to the machine having the largest 

workload. Moreover, it generates a large amount of 

intermediate data and incurs large network 

communication surcharge when generating 

conditional databases. Therefore, BigFIM tends to 

show bad scalability as the number of machines 

increases. 

Likewise with BigFIM, PFP and its variations 

have a number of drawbacks, in particular workload 

asymmetry, large intermediate data size and large 

network communication overhead. Thus, they tend 
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to fail due to lack of memory, and show bad 

scalability. Compared to BigFIM and PFP, 

DisPrePost shows much better scalability with an 

increasing number of machines, since it does not 

intermediate data, and small network overhead. 

MRPrePost [23] is a parallel program based on 

the Hadoop platform, which improves PrePost by 

inserting a prefix pattern, as well as on this basis in 

parallel design ideas, so that the MRPrePost 

program can be adapted to mining large data's 

association rules. Comparing to the precedent 

versions of PrePost based on Hadoop [24, 25], 

general tree method is utilized to traverse the tree 

PPC tree. The general tree method utilized linked 

list which is an implementation of the List interface. 

It provides sequential access and effective for 

inserting and deleting items in the list. But, it 

became less efficient while accessing items in the 

list. In DisPrePost algorithm, general tree method is 

implemented with HashMap which is an 

implementation of the Map interface. It provides an 

efficient and fast for locating value based on the key. 

It does not save the item in the order and it provides 

an easy way to access and delete items on the basis 

of key value pairs. The DisPrePost algorithm uses 

also a HashMap to improve the process of creating 

the N-lists associated with 1-itemsets and combines 

the features of Hadoop in order to process large data. 

In 2018, we presented, HPrePostPlus algorithm 

[26], a better version of PrePost, based on Hadoop, 

which uses a HashMap to traverse efficiently 

through the PPC tree and enhance the N-list creation 

process. The HPrePostPlus algorithm is very 

powerful and surpasses the state-of-the-art 

algorithms, such as PrePost [6], MRPrePost [23], 

PFP [18], and negFIN [27]. Although N-list are 

effective structures for mining frequent itemsets, 

hey need to contain pre-order and post-order number, 

which is memory-consuming and inconvenient to 

mine frequent itemsets. 

Even though, Hadoop is not suitable for iterative 

algorithms as it saves intermediate data to HDFS 

and reads it back, which takes high I/O cost. Spark 

is a cluster computing framework, which deals with 

iterative algorithms in an efficient way by using its 

RDD architecture. RDDs store the results in the 

main memory at the end of iteration while making 

them available for the next iteration to faster the 

execution. To solve this issue, more efficient 

approaches are proposed by implementing Apriori in 

Spark platform. In 2014, Qiu [28] had already 

reported accelerations of more than 18 times on 

average for different benchmarks for the YAFIM 

algorithm (yet another frequent item exploration set) 

for the RDD Spark framework. Their results on real 

medical data are much faster than on the 

MapReduce framework. YAFIM was many times 

faster than all Hadoop based algorithms, but for the 

2nd phase when the number of candidate pairs was 

too much, it was not as efficient.  

HFIM algorithm [29] is another Spark-based 

implementation of the Apriori algorithm for various 

data sets, which uses the vertical layout of the data 

set to solve the problem of scanning the dataset in 

each iteration. It is implemented on the Spark 

framework, integrating the concept of resilient 

distributed datasets and in-memory processing to 

optimize the processing time of the operation. These 

results motivated us to come with innovative 

approaches for distributed association rule mining 

algorithms. Afterwards, Zhang [30] proposed an 

association rule mining algorithm called DFIMA 

(Distributed Frequent Itemset Mining Algorithm) 

that is being implemented on Spark. A matrix size 

technique is used in the DFIMA algorithm to reduce 

the size of candidates. The author claims that it 

outperforms PFP algorithm when both are 

implemented on Spark. 

A new efficient algorithm named R-Apriori [31] 

is proposed by Rathee, to solve the second phase 

when the number of candidate pairs is much. Rathee 

continued improving his idea. In 2018, he developed 

a new algorithm named Adaptive-Miner [32] which 

is one of the best state-of-the-art frequent itemset 

mining algorithms. It uses an adaptive method for 

extracting frequent itemsets with higher accuracy 

and efficiency. Based on the nature of dataset, 

Adaptive-Miner dynamically adapts execution for 

every iteration. It reduces time and space by 

selecting the best plan. R-Apriori and Adaptive-

Miner use bloom filters, which are faster than hash 

trees that make these algorithms more efficient with 

respect to time and space [31, 32]. 

 Although Rathee’s algorithms are efficient, they 

have to visit the dataset in every iteration to filter the 

frequent items. They apply intersection every 

transaction with frequent itemsets that stored in the 

bloom filter, so this process takes extra time and 

space. 

The existing methods in Spark are popular 

parallel recommendation methods, but getting the 

best performance only when the memory of 

machines can accommodate all immediate Resilient 

Distributed DataSets (RDDs). However, memory of 

many practice data centers, is still not large enough 

for large data sets. Therefore, in this paper, a 

caching-based DisPrePost algorithm is proposed 

which consists of an RDD-caching strategy to 

improve the efficiency. 
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3. Preliminaries 

3.1 Frequent itemset mining 

Suppose that I = {I1, I2, . . . , Im} is an itemset 

composed of m items. A database D consists of a 

series of transactions. Each transaction is a subset of 

I and has a unique label denoted by TID. A set of 

items is referred to as an itemset. An itemset that 

contains k items is a k-itemset. The occurrence 

frequency of an itemset is the number of 

transactions that contain the itemset. Given an 

itemset X, the support number of X is the number of 

transactions in D that contain X. If the support 

number of X is greater than or equal to the specified 

minimum support threshold, then the itemset X is 

labelled as a frequent itemset. The purpose of 

frequent itemset mining is to find all frequent 

itemset in a given database. 

3.2 Spark 

Spark is defined as a distributed computing 

framework developed at the Berkeley AMPLab [33] 

which offers a certain quantity of features in order to 

make big data processing fast. The main key feature 

is its in-memory parallel execution model which 

memory contains all loaded data. This first key 

principally benefits the iterative computations. The 

second feature considers the fact that Spark may 

offer very scalable DAG-based (directed acyclic 

graph) data flow in deferring from the nominated 

two-stage data flow model in MapReduce. Both of 

these features may determinately rush the 

computation for those iterative algorithms just like 

the Apriori algorithm and other few machine 

learning algorithms. That way, Spark achieves 1-2 

orders of magnitude in a way faster speed than 

MapReduce.  

Spark’s programming model is working with a 

new distributed memory abstraction applied on large 

cluster for in-memory computations named resilient 

distributed datasets (RDDs). An RDD which is an 

immutable collection of data records has the ability 

to offer a variety of built-in operations in order to 

change one RDD into another RDD. It’s on the 

worker nodes where Spark caches the contents of 

the RDDs, and that’s what makes data reuse way 

faster. The fault-tolerance that is based on lineage 

information may be achieved by RDDs rather than 

replication. If a node fails, Spark tracks enough 

information in order to reconstruct RDDs. Fig. 1 

illustrates the working model of Spark framework. 

 

 

 

 
Figure 1. Working method of Spark framework 

3.3 PrePost algorithm 

PrePost algorithm [8, 9] presents a data structure 

named N-list, which is a modification of the vertical 

database, storing the association rule mining all the 

information needed. PrePost also need to scan the 

database twice to construct a PPC-Tree, and make 

use of PPC-Tree to generate the N-list of frequent 1-

itemsets (FIM1). In the mining process, the database 

does not require rescanning, only need to intersect 

the merger N-list, and the complexity of the 

algorithm is O(m+n), m and n are the length of two 

N-list. Each element of N-list composed by PrePost 

Code, which is called after the sequence encoding 

the preamble, the composition in the form of «pre-

order, post-order: count», PrePost Code is based on 

the PPC-Tree respectively from the previous order 

traversal and post order traversal. Fig. 1 shows the 

PPC-Tree, which is similar to FP-Tree, and the 

construction process is the same with the FP-Tree 

but not the same as the composition of the node, 

PPC Tree node consists of five components: 

1. Item-name: represent node name 

2. Count: represent node count 

3. Children-list: represent a children collection of 

the node 

4. Pre-order: represent order of node when pre-order 

5. Post-order: represent order of node when post-

order. 

Each k-frequent itemsets Fk corresponds to a N-

list, which in ascending order according to the pre-

order, at the same time must also be ascending 

according to post-order. PPC-Tree's main purpose is 

to construct N-list liking shown by Fig. 2, then find 

all the frequent itemsets based on N-list. We can 

then delete the PPC-Tree to reduce memory 

overhead. The main steps of the PrePost algorithm: 
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Figure. 1 PPC-Tree corresponding with Table 1 

 
Table 1. Transaction database 

ID Items Ordered 
frequent items 

1 a, c, g, f c ,f ,a 

2 e, a, c, b b ,c ,e ,a 

3 e, c, b, i b ,c ,e 

4 b ,f, h b ,f 

5 b, f, e, c,d b ,c ,e ,f 

 

1. Scan transaction database named D, output the 

FIM 1, and in descending order according to 

the number of its support to generate F1. 

2. Scan D again, select the frequent items in each 

record and arrange them in the order of F1, 

assuming list of items in each record is [p|P], p 

is the first item in the list, P is the rest of the 

items. Call the function insert tree ([p|P], Ti ). 

3. Tree formed on the second step, respectively 

pre-order traversal and post-order traversal, set 

pre-order and post-order of each node and 

establish N-list of I-frequent itemsets. 

4. Mining frequent itemsets based on N-list using 

the method liking Apriori Algorithm. 

5. Table 1 shows a transaction database, 

corresponding to Fig. 1 for PPC-Tree, assuming 

the minimum support is 3. 

4. DisPrePost algorithm 

4.1 DisPrePost design 

DisPrePost algorithm is a data mining algorithm 

for frequent itemsets which uses N-list data structure 

to represent the itemsets. All the required 

information of the itemsets is to be stored by N-list. 

 

 
Figure. 2 N-list of frequent 1-itemsets 

 

Efficiency of the DisPrePost algorithm is achieved 

by using the method of generating frequent itemsets 

without generation of candidate itemsets. 

The DisPrePost algorithm is implemented with 

Spark to improve its performance. We store the big 

transactional data in Hadoop distributed file system 

(HDFS) of Hadoop framework, and multiple 

partitions of data are distributed across cluster nodes. 

Job execution on data partitions takes place in 

parallel by Spark engine.  

In the DisPrePost algorithm, general tree method 

is used to traverse the PPC tree. The general tree 

method used the same technique that is used by 

linked based binary tree that uses linked list which is 

an implementation of the List interface. It provides 

sequential access and more efficient for inserting 

and deleting items in the list. But, it became less 

efficient while accessing items in the list. In 

DisPrePost, general tree method is implemented 

with HashMap which is an implementation of the 

Map interface to speed up the process of creating the 

N-lists associated with frequent 1-itemsets from the 

PPC tree. It provides an efficient for locating value 

based on the key. It does not store the item in the 

order and it provides an easy way to access and 

delete items on the basis of key value pairs. 

Algorithm of parallel statistical 1-frequent itemsets and 

sort them 

Input: D: Transactional Dataset, minsup= Minimum 

Support Threshold, I = item 

Output: FL1: RDD of the set of frequent l -itemsets by 

descending order 

1. for each transaction t in D 

2. flatMap(Id,t) 

3. for each item I in t  

4. Output (I,1) 

5. End foreach 

6. End flaMap 

7. End foreach 

8. reduceByKey(I,count) 

9. Sum=0 
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10. While(Item I in partition) 

11. Sum+=count 

12. End While 

13. If (sum>=minsup)  

14. Output(Fim1) 

15. End if 

16. Sort(Fim1) 

17. Output (FL1) 

Figure. 4 Pseudo code of parallel statistical 1-frequent 

itemsets and sort them 

 

Phase1: As we are dealing with big data, dataset 

may have a large number of transactions. We store 

the big transactional data in Hadoop distributed file 

system (HDFS) of Hadoop framework, and multiple 

partitions of data are distributed across cluster nodes. 

Job execution on data partitions takes place in 

parallel by Spark engine. A set of RDDs is created 

and processed to produce the set of frequent l-

iternsets by descending order: FL1. The 

transactional data are loaded into RDD, which 

makes better use of cluster memory and improves 

fault tolerance. All the items from dataset are 

generated by using flatMap () function. Then, map() 

function is applied on each item to produce a (key, 

value) pair, where key is the item and value is one.  

The phase 1 generates only singleton items. Pruning 

step is applied on itemsets to filter out the non-

frequent items. The complete RDD of paired 

itemsets is grouped using Reducebykey() function 

and pruned using the filter() function .As a result, 

only frequent items ranked in descending order of 

support are generated at the end of Phase 1. The 

Pseudo-code for the complete process of phase 1 is 

presented in Fig. 4. 

Phase 2: All the non-frequent items are removed 

from the original input data, which reduces the data 

size. The transactional data are stored in form of 

RDD and distributed over cluster nodes. The 

resulting FL1 of the first phase is shared with all the 

executors of cluster using a special feature of Spark 

framework called broadcast variable. Initially, the 

set of frequent 1-itemset FL1 from phase 1 is 

assigned to broadcast variable, which is shared 

among all the nodes. Therefore, scanning the FL1 

reduces the cost of I/O and required disk space. 

Then we filter the Transactions RDD based on FL1 

by applying a flatMap () function. For each 

transaction, sort frequent item based on sequence of 

FL1 and output the result as value. By applying a 

flatMap () function. Finally, the reduceByKey () 

function constructs the compressed tree similarly 

constructing FP-Tree. Post-order traversal the tree to 

determine post-order and pre-order the tree to 

determine pre-order, and then use a HasMap to 

speed up the process of creating the N-lists 

associated with 1-frequent items. The Pseudo-code 

is shown in Figs. 5 and 6. 

 

Algorithm of constructing PPC-Tree and corresponding 

HashMap 

lnput: shard of the transactional data and FL1: the set of 

frequent l -itemsets by descending order 

Output: PPC-Tree, H1 the HashMap of FL1 

1. Create H1 the hash table of FL1 

2. for each transaction t in D 

3. flatMap(Id,t) 

4. Select the frequent item in T and  sort out them 

according to the order of FL1, Let the sorted frequent 

item list in T be a path[p|P] as the value to output<Id, 

[p|P]> where is the first element and P is the remaining 

list 

5. End for 

6. reducerByKey(Id, [p|P]) 

7. Create the root of a PPC-tree, R, and label it as null 

8. for each [p|P]) 

9. Call insert_tree([p|P],T) 

10. End for 

11. Scan PPC tree to generate the postorder of each node 

12. Return H1 

Function insert_tree([p|P],T) 

1.if T has a child N such that N.item-name = p.item-name 

2.then  increase N’s count by 1 

3.else create a new node N, with its count initialized to 1, 

and add it to T’s children-list 

4.if P is nonempty then  call insert tree(P,N)  recursively. 

5.end if 

6.end if 

Figure. 5 Pseudo code of constructing PPC-Tree 

 

Phase 3: The N-lists of 1-frequents itemsets NL1 

are stored in form of RDD and distributed over 

cluster nodes as a group of lists for loading balance 

on the cluster. For example, from PPC-tree of Fig. 2:  

NLG1 = {b → {< (4,8): 4 >}, f → {< (2,1): 1 >, < 

(8,4): 1 >, < (9,7): 1 >}}  

NLG2 = {c → {< (1,2): 1 >, < (5,6): 3 >}, a → {< 

(3,0): 1 >, < (7,3): 1 >}}  

NLG3 = {e → {< (6,5): 3 >}. 

We save thus the N-list of 1-frequent itemsets in 

a distributed cache using the broadcast variable of 

spark, which is shared among all the nodes. Each 

node independently depth-first traversals every 

frequent item in the group assigned, until all 

frequent item sets with the current prefixes sub-tree 

are located far. For b in group 1, the current prefix is 

b, when c and e are added to the prefix sub-tree to 

generate 2-frequent itemsets {bc, be} (bf and ba are 

not frequent itemsets). To bc, be prefixed to 

continue the operation, eventually get all the 

frequent item sets on b.{b,bc,be,bce} In the prefix 
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subtree merge process, normally when b and c are 

combined, the original algorithm generates PPCode 

<(b.pre-order, b.post-order): c.count> when the 

condition is b.pre-order <c. pre-order && b.post-

order> c.post-order. But, this paper will generate 

PPCode as "c.pre-order, c.post-order): c.count> in 

the same condition.  

As a result of the depth-first and prefix subtree 

policy, we must promise the new added element and 

the current prefix subtree on the same path, 

necessary and sufficient condition is the new 

element added and the last element of the current 

prefix subtree are on the same path.This's the reason 

why we generate PPCode as <(b.pre-order, b.post-

order): c.count>. Finally, reduce combines output. 

The Pseudo-code of phase 3 is presented in Fig. 7. 

 

Algorithm of generating N-List of 1-frequent itemsets 

from the HasMap 

Input: PPC-tree and FL1 the set of frequent 1-itemsets,  

                                 H1 the HashMap of FL1 

Output: NL1: the set of the N-lists of frequent 1-itemsets. 

1. Procedure N-lists construction (R, H1) 

2. Let C=(R.preorder,R.postorder,R.count) 

3. Add C to H1 [R,name] count by C.count 

4. Increase H1 [R.name].count by C.count 

5. For each child in R.children do 

6. N-lists construction(child) 

7. End for 

Figure. 6  Pseudo code of generating N-List of 1-frequent 

itemsets 

 

Algorithm of mining frequent itemsets 

Input: shared the NL1: the set of the N-lists of frequent 1-

itemsets  to be saved in distributed cache and NLG [i]: 

group i of  lists NL1. 

Output: frequent k-itemsets F 

1. for each mapper do 

2. for each NL_l of NLG [i] do 

3. call mining_fim_k(NL_l, FLk,NL1, minsup)  

4. End for  

5. End for 

6. Function mining_fim_k(NL_k, NL1,minsup) 

7. For  i = 0 to NL1 do 

8. if (NL_k.count  >= |DBI|* minsup) 

9. F=F U Lk 

10. if (NL_kcount >= NL1[i].count) 

11. Assume Lk= x1x2….xk , L[i].item = xk+1 , supp(xk) > 

supp(xk+1) 

12. FLk+1 = FLk+FL1[i] // FLk+1 = x1x2….xkxk+1 

13. FLk= FLk+1 

14. compare N-list of NL_k with N-list of NL1[i] 

15. if  ( NL_k.preorder < NL1 [i].postorder && NL_k . 

postorder > NL1[i].preorder) 

16. NL_k+l.N-list.add ( NL1[i].PrePost , 

NL1[i].postorder.count ):NL1[i].count) 

17. End if  

18. End If. 

19. End if 

20. End for 

Figure. 7 Pseudo code of mining frequent itemsets 

5. Performance evaluation 

In this section, the DisPrePost algorithm has 

been compared to two advanced algorithms, 

HPrePostPlus [26] and the well-known HFIM [29]. 

DisPrePost is the first implementation of the PrePost 

algorithm in the Spark framework, HPrePostPlus is 

a recent implementation of the Hadoop-based 

PrePost parallel algorithm [26] with good results, 

and HFIM is a typical implementation of the Spark-

based Apriori parallel algorithm [29] with good 

performance. We evaluated speed performance by 

analyzing runtime and scalability. 

To implement the DisPrePost in distributed 

environment, we set up a Spark cluster of 3 nodes 

where each node contains Intel® Core ™ i5- 3230M 

CPU@2.60GHz processing units and 12.00GB 

RAM. Each node is installed with Hadoop version 

2.6.0, Spark version 1.6.0 and Scala version 2.11.8. 

Source of DisPrePost were written in Scala language. 

HDFS was used for storage of input dataset and 

output frequent itemsets. The datasets T10I4D100K 

and T40l10D100K are used for experiments. These 

two real datasets which have been commonly used 

for many frequent itemset mining algorithms. Table 

2   shows the information of these datasets, and all 

of these can be found in [34]. 

The running time with different support degree 

for dataset T10l4D100K and T40l10D100K is 

shown in Figs. 8 and 9 separately. The x-axis 

denotes the support degree and y-axis represents the 

running time. The support degree grows from 0.1% 

to 0.5%. 

The purpose of the first comparisons is to 

estimate the speed performance by analyzing the 

operating time of DisPrePost, HPrePostPlus and 

HFIM.  

 
Table 3 The properties of datasets used in experiment 

Dataset Size Transactions Items Average 

length 

T10I4D 

100K 

3.8MB 100.000 870 10 

T40l10D 

100K 

14 MB 100.000 1000 40 
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Figure. 8 The running time of T10I4D100K 

 

 
Figure. 9 The running time of T10I4D100K 

 

 
Figure. 10 The running time with different computer 

nodes 

 

We can see that the execution time of 

DisPrePost is much lower than that of HPrePostPlus 

for both datasets. The both algorithms tend to be 

more efficient when the degree of support is set to a 

higher level.  The execution time of HPrePostPlus is 

nearly three times that of DisPrePost. This is 

because the HPrePostPlus algorithms needs to read 

data from the HDFS in every MapReduce job, thus 

causing huge IO overhead. In contrast, DisPrePost 

load the input dataset from the HDFS into the RDDs 

and then just read the data and intermediate results 

from the RDDs later, thus reducing IO overhead. 

We also notice that the execution time of 

DisPrePost is apparently lower than that of HFIM 

for the two datasets.  

In Fig. 8, we observe that the value of the 

execution time HFIM is always greater than the 

same value for DisPrePost. Fig. 9 shows that the 

superiority of DisPrePost in terms of remaining time 

metrics becomes clearer when you use larger data 

sets. It can be seen that the difference between the 

two algorithms is greater than that observed in Fig. 8. 

The results also reflect, whether on a large or 

small dataset, runtime of DisPrePost is shorter than 

HFIM, because of sharing large data with all the 

executors of cluster using a special feature of Spark 

framework called broadcast variable, when 

DisPrePost conducts a depth-first strategy, which 

reduces the communication. However, using a 

HasMap to speed up the process of creating the N-

lists associated with frequent items from PPC tree is 

very effective. 

For a given size of input large data, dividing the 

data into different numbers of partitions is crucial to 

the performance. The execution time of DisPrePost 

is also decreased through caching essential RDDs 

appropriately. The reason lies in the fact that 

essential intermediate RDDs are cached to avoid 

recomputing them when the memory is not large 

enough to hold all intermediate RDDs. 

The following experiment in Fig. 10, evaluates 

the scalability of DisPrePost, which is also measured 

by the running time. The dataset T10I4D100K is 

used here. The experiment is performed on 

condition that the number of cluster computer nodes 

ranges from 2 to 8 while the support degree remains 

to be 0.5%. 

In Fig. 10, the x-axis indicates the number of 

computer nodes in the Spark cluster, and the y-axis 

represents the runtime of the DisPrePost algorithm. 

Fig. 10 illustrates the execution time with different 

numbers of computer nodes. With more computer 

nodes, DisPrePost requires less running time, and 

the curve of DisPrePost has a nearly linear decline. 
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DisPrePost shows a characteristic of near-linear 

scalability. 

6. Conclusion 

This paper has suggested the DisPrePost 

algorithm as an effective algorithm for mining 

frequent itemsets using the N-list. First, we 

proposed several ameliorations on the previously 

published PrePost algorithm: (i) the use of a 

HashMap to improve the process of creating the N-

lists associated with the frequent 1-itemsets from 

PPC tree and (ii) the implementation of a scalable 

Spark-based method for frequent itemset mining that 

has no intermediate data and small network 

communication (iii) the  implementation an 

algorithm which has small network communication 

because we only broadcast frequent itemsets Fk  by 

using a special feature of Spark framework called 

broadcast variable. 

Through experiments, we compare the 

performance of DisPrePost, HPrePostPlus and 

HFIM. DisPrePost algorithm is the fastest of all 

algorithms. The experimental results indicate that 

the proposed algorithm shows better efficiency and 

scalability.  

For future work we will focus on applying our 

approach for mining frequent over data streams, 

mining erasable itemsets, mining frequent closed 

itemsets and maximal itemsets. 
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