
Received: May 7, 2019 367

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

An Efficient Distributed Frequent Itemset Mining Algorithm Based on Spark for

Big Data

Yassir Rochd1* Imad Hafidi1

1Laboratory of Process Engineering and Optimization of Industrial Systems, National School of Applied Science,

Moulay Sultan Slimane University, Khouribga, Morocco
* Corresponding author’s Email: y.rochd@gmail.com

Abstract: Frequent item exploration is a fundamental element in many data mining problems aimed at finding

interesting models in the data. Recently, the PrePost algorithm, a new algorithm for extraction frequent element sets

based on the idea of N-lists, which in most cases surpasses other current state-of-the-art algorithms, has been

introduced. The PrePost algorithm's performance deteriorates when it comes to handling big data. Nevertheless, the

current existing PrePost algorithms in place implemented with the MapReduce model are not sufficiently powerful

for iterative computation. To reduce IO overhead and take advantage of cluster memory, this article offers an

enhanced version of PrePost, the Distributed PrePost (DisPrePost), a parallel algorithm built on the Spark framework,

which incorporates the concept of resilient distributed datasets and performs in-memory processing to optimize the

execution time of operation, that also utilises a HashMap to further refine the N-list creation process. Experience has

shown that the DisPrePost algorithm is more efficient and scalable than the two advanced state-of-the-art methods

HPrePostPlus and the well-known algorithm HFIM.

Keywords: Frequent itemset mining, PrePost, Spark, Big data.

1. Introduction

In the late years, the great evolution of

technology and science has strongly affected the

growth of data. In addition to its large size, these

enormous datasets are also of an unstructured and

semi-structured natures, including the challenges of

capture, storage, sharing, research, analysis, etc.;

they have been named "Big Data"[1]. The Data

Mining, being the process used to evaluate great

amounts of data stored in businesses, helps to

facilitate making decisions. In addition, it helps to

find hidden information in the database that

demands specific capabilities. Classification,

association mining rule, clustering, sequential

pattern discovery, etc., are several required tasks in

Data Mining [2].

By association mining rule, we mean a rule-

based learning technique, discovering significant

relationships between data object in dataset. Thus,

only frequent itemsets are considered to build the

association rules for the purpose of reducing the

number of potential itemsets, and in order to extract

frequent itemsets from data, various algorithms

along with numerous improvements were proposed.

Agrawal, first, proposed mining customer

transaction database itemsets problem [3], now FIM

(frequent itemsets mining) has become an essential

part of data mining. Most of the current algorithms

can be grouped into two categories: Apriori-like

algorithm and FP-growth algorithm. Repeatedly, the

Apriori scans the database to find frequent itemsets

with generating a large set of candidates [4]. FP-

Growth algorithm scans database twice to mine

frequent itemsets without generating candidates [5].

 The FP-growth uses FP tree data structure to

store database and employs a divide-and-conquer

strategy to find frequent itemsets, which is much

more efficient than Apriori method.

In recent years, the PrePost [6] and PrePost+ [7]

algorithms based on the N-list data structure have

been proposed to shorten mining time and memory

Received: May 7, 2019 368

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

utilization with frequent itemsets. These algorithms,

working on single computers, have demonstrated

high performance in processing small data. However,

conventional methods encounter important

challenges when computing power and memory

space are constrained in big data era. There have

been certain practices and attempts to mine frequent

itemsets from massive data using parallel computing

technologies [8, 9].

Parallel programming frameworks are split into

two groups: memory sharing and distributed

architectures (share nothing). Despite the fact that it

is more convenient to make algorithms implemented

in parallel on the memory sharing framework, their

scalability is not sufficient. The Message

Transmission Interface (MPI) [10], which is a

common framework for scientific distributed

computing, benefits from the locality of the memory.

Due to some advantages of the MPI in iterative

calculation, some researches apply it to mine

frequent itemset [11]. Yet its drawbacks are its

heavy workload of communication due to data

interchange between various computer nodes and

the absence of fault tolerance.

MapReduce [12], a framework embedded in

Apache Hadoop for parallel processing of high

volumes of distributed data, has been designed to

work with distributed computing in a cloud

computing model, proving to be a powerful and

reliable platform for the parallel data mining of large

datasets. However, MapReduce is not suitable for

iterative algorithms due to high network and I/O

overhead in writing intermediate output to disk and

read data back from disk [13]. Moreover, the

MapReduce framework follows a strict pre-defined

execution order of mapper and reducer stage, which

limits the flexibility of the algorithm.

 To surmount the above problem, the Spark

platform [14], a memory-based distributed

framework, has been used as solution architecture in

this paper. Spark is a better alternative framework,

which is more efficient in batch and interactive

processing, and assures high performance over

MapReduce. Spark programming interface is based

on a data structure called Resilient Distributed

Dataset (RDD), a read only collection of data

objects distributed across nodes of cluster. Many

advanced features of Spark, i.e., in-memory

processing, job caching, improved fault tolerance

mechanism, etc., optimize the job execution.

A number of distributed frequent itemset mining

methods [15] have been proposed, which are

relatively simple extensions of a sequential method

using distributed data processing frameworks.

Although the existing distributed methods solve

the limit on scalability partially, most of them still

have the following problems in terms of scalability.

First, they do not have good scalability due to

workload skewness. The existing parallel methods

usually split the search space for patterns to be

investigated into multiple blocks and allocate them

to a single machine (or processor). Each sub-tree of

the enumeration tree has a distinct workload size. In

particular, the distributed methods based on Eclat

and FP-Growth have this problem noticeably.

The other point is that the multiple database

scans necessitate multiple MapReduce jobs: Each

MapReduce job also needs to read sequence

databases or projected databases. When the output

of each MapReduce job and databases are stored in

the HDFS, it leads to a high I/O overload. Hence,

minimizing input-output overhead expenses

becomes a vital aspect of algorithmic design.

Consequently, the existing parallel methods are

not particularly scalable in terms of to the number of

machines. In the same way, their effectiveness does

not expand in proportion to the rise in the number of

machines or processors.

 In addition to that, they do not have good

scalability due to high network communication

overhead. The existing methods usually perform

frequent itemsets mining by redistributing

intermediate data via network. This approach could

largely degrade the performance and scalability as

the amount of data transferred among machines

increases.

In this paper, we introduce an enhanced version

of PrePost, the Distributed PrePost (DisPrePost), a

parallel algorithm based on the RDD Spark

framework. DisPrePost solves the above problems,

and so can find frequent patterns on much larger

datasets compared with the existing distributed

methods.

Contrary to FP tree-based approaches,

DisPrePost does not construct any extra tree at each

iteration; it extracts frequent itemsets directly using

the N-list concept. The efficiency of DisPrePost is

achieved because: (i) Since the N lists are

considerably more compact than the earlier

suggested vertical structures, (ii) the support of a

candidate frequent itemset can be determined

through N-list intersection. Determining the

intersection of the TID lists is more cost-effective

than in the case of the TID lists since it has

unnecessary comparisons.

To reduce IO overhead and take advantage of

cluster memory, the first MapReduce job loads the

sequence database from the HDFS into the Spark

RDDs, and subsequent MapReduce jobs read the

Received: May 7, 2019 369

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

database from the RDDs and store intermediate

results back into the RDDs.

For solving the problem of network

communication overhead, DisPrePost broadcasts

only frequent itemsets Fk, whose size is much

smaller than that of intermediate data via network,

we use a special feature of the Spark framework

called the broadcast variable. As a result, DisPrePost

shows much higher performance than the state-of-

the-art approaches.

The main contributions of this paper are the

following:

i. We propose an algorithm has been

implemented over Apache Spark, a fast and

general engine for large scale data processing,

which could provide a solution for big data

analytics.

ii. We propose DisPrePost, a scalable Spark-based

method for frequent itemset mining, that has

low IO overhead by adopting in-memory

computation technique with the help of RDD

storage.

iii. We propose an algorithm which has small

network communication because we only

broadcast frequent itemsets Fk, whose size is

much smaller than that of intermediate data via

network by using a special feature of Spark

framework called broadcast variable.

iv. We use HashMap to traverse efficiently the

PPC tree and to speed up the process of

creating the N-lists associated with frequent 1-

itemsets.

Experiments show that DisPrePost outperforms

the state-of-the-art MapReduce-based methods in

terms of speed and scalability.

The rest of the paper is organized as follows:

Section 2 outlines survey of related works. Section 3

presents the basic concepts. Section 4 gives

proposed approach. Then, section 5 gives results and

discussion. Finally, section 6 provides the

conclusion.

2. Related work

In the context of frequent pattern mining and

association rules, numerous studies have been

carried out. As a result, a broad spectrum of

knowledge discovery techniques has been debated

and are now being explored for big data.

Lin et al [16] developed three Apriori methods

that were distributed on MapReduce: SPC, FPC and

DPC. The SPC performs iteratively the steps of

generating and checking applicants as a MapReduce

cycle. In the k-th iteration, each mapper reads a

partitioned database, generates the candidate

itemsets and calculates support counts of them for

the partitioned database. Afterwards, the reduce

phase aggregates and tests the support counts of the

same candidate itemset with regard to minsup. The

outcome of the reduce step is broadcasted for use in

the next iteration. FPC reduces the number of

MapReduce rounds through the use of the map

function that handles candidate k-itemsets, (k+1)-

itemsets, (k+2)-itemsets together in a single

MapReduce round. DPC automatically collects

candidate itemsets to be handled by the mappers in a

single MapReduce round depending on the number

of candidates itemsets. By comparing these Apriori-

based methods, DisPrePost performs support

counting much faster from the intersection of N-lists,

avoiding needless comparisons. The PApriori

algorithm proposed by Li et al [17], is very similar

to the SPC algorithm. The map function performs

the procedure of counting each occurrence of all the

candidates in a parallel way and then the reduce

function sums up the occurrence. The PFP [18] and

its variations [19] are the distributed methods based

on the FP-Growth approach. Initially, they project

an input database and construct separate FP trees,

which are basically conditional databases, through

the use of the projected databases. Then, they

perform frequent itemset mining on each FP Tree

independently in each machine. In summary, the

main principle of PFP is to group the items and then

distribute the conditional databases to the mappers,

which is not efficient in memory or speed.

Moens et al [20] proposed BigFIM, a hybrid

approach between Apriori and Eclat. It starts by

finding frequent itemsets of short lengths using the

distributed algorithm of the Apriori approach and

generates conditional databases. Then, he executes

the sequential Eclat algorithm [21, 22] on each

conditional database separately. Its support counting

is fast by using an efficient sequential Eclat

algorithm.

Nevertheless, since the sizes of conditional

databases are quite different with each other, i.e.,

there is workload skewness, mining task tends to fail

due to lack of memory in a certain machine, or takes

too long time due to the machine having the largest

workload. Moreover, it generates a large amount of

intermediate data and incurs large network

communication surcharge when generating

conditional databases. Therefore, BigFIM tends to

show bad scalability as the number of machines

increases.

Likewise with BigFIM, PFP and its variations

have a number of drawbacks, in particular workload

asymmetry, large intermediate data size and large

network communication overhead. Thus, they tend

Received: May 7, 2019 370

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

to fail due to lack of memory, and show bad

scalability. Compared to BigFIM and PFP,

DisPrePost shows much better scalability with an

increasing number of machines, since it does not

intermediate data, and small network overhead.

MRPrePost [23] is a parallel program based on

the Hadoop platform, which improves PrePost by

inserting a prefix pattern, as well as on this basis in

parallel design ideas, so that the MRPrePost

program can be adapted to mining large data's

association rules. Comparing to the precedent

versions of PrePost based on Hadoop [24, 25],

general tree method is utilized to traverse the tree

PPC tree. The general tree method utilized linked

list which is an implementation of the List interface.

It provides sequential access and effective for

inserting and deleting items in the list. But, it

became less efficient while accessing items in the

list. In DisPrePost algorithm, general tree method is

implemented with HashMap which is an

implementation of the Map interface. It provides an

efficient and fast for locating value based on the key.

It does not save the item in the order and it provides

an easy way to access and delete items on the basis

of key value pairs. The DisPrePost algorithm uses

also a HashMap to improve the process of creating

the N-lists associated with 1-itemsets and combines

the features of Hadoop in order to process large data.

In 2018, we presented, HPrePostPlus algorithm

[26], a better version of PrePost, based on Hadoop,

which uses a HashMap to traverse efficiently

through the PPC tree and enhance the N-list creation

process. The HPrePostPlus algorithm is very

powerful and surpasses the state-of-the-art

algorithms, such as PrePost [6], MRPrePost [23],

PFP [18], and negFIN [27]. Although N-list are

effective structures for mining frequent itemsets,

hey need to contain pre-order and post-order number,

which is memory-consuming and inconvenient to

mine frequent itemsets.

Even though, Hadoop is not suitable for iterative

algorithms as it saves intermediate data to HDFS

and reads it back, which takes high I/O cost. Spark

is a cluster computing framework, which deals with

iterative algorithms in an efficient way by using its

RDD architecture. RDDs store the results in the

main memory at the end of iteration while making

them available for the next iteration to faster the

execution. To solve this issue, more efficient

approaches are proposed by implementing Apriori in

Spark platform. In 2014, Qiu [28] had already

reported accelerations of more than 18 times on

average for different benchmarks for the YAFIM

algorithm (yet another frequent item exploration set)

for the RDD Spark framework. Their results on real

medical data are much faster than on the

MapReduce framework. YAFIM was many times

faster than all Hadoop based algorithms, but for the

2nd phase when the number of candidate pairs was

too much, it was not as efficient.

HFIM algorithm [29] is another Spark-based

implementation of the Apriori algorithm for various

data sets, which uses the vertical layout of the data

set to solve the problem of scanning the dataset in

each iteration. It is implemented on the Spark

framework, integrating the concept of resilient

distributed datasets and in-memory processing to

optimize the processing time of the operation. These

results motivated us to come with innovative

approaches for distributed association rule mining

algorithms. Afterwards, Zhang [30] proposed an

association rule mining algorithm called DFIMA

(Distributed Frequent Itemset Mining Algorithm)

that is being implemented on Spark. A matrix size

technique is used in the DFIMA algorithm to reduce

the size of candidates. The author claims that it

outperforms PFP algorithm when both are

implemented on Spark.

A new efficient algorithm named R-Apriori [31]

is proposed by Rathee, to solve the second phase

when the number of candidate pairs is much. Rathee

continued improving his idea. In 2018, he developed

a new algorithm named Adaptive-Miner [32] which

is one of the best state-of-the-art frequent itemset

mining algorithms. It uses an adaptive method for

extracting frequent itemsets with higher accuracy

and efficiency. Based on the nature of dataset,

Adaptive-Miner dynamically adapts execution for

every iteration. It reduces time and space by

selecting the best plan. R-Apriori and Adaptive-

Miner use bloom filters, which are faster than hash

trees that make these algorithms more efficient with

respect to time and space [31, 32].

 Although Rathee’s algorithms are efficient, they

have to visit the dataset in every iteration to filter the

frequent items. They apply intersection every

transaction with frequent itemsets that stored in the

bloom filter, so this process takes extra time and

space.

The existing methods in Spark are popular

parallel recommendation methods, but getting the

best performance only when the memory of

machines can accommodate all immediate Resilient

Distributed DataSets (RDDs). However, memory of

many practice data centers, is still not large enough

for large data sets. Therefore, in this paper, a

caching-based DisPrePost algorithm is proposed

which consists of an RDD-caching strategy to

improve the efficiency.

Received: May 7, 2019 371

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

3. Preliminaries

3.1 Frequent itemset mining

Suppose that I = {I1, I2, . . . , Im} is an itemset

composed of m items. A database D consists of a

series of transactions. Each transaction is a subset of

I and has a unique label denoted by TID. A set of

items is referred to as an itemset. An itemset that

contains k items is a k-itemset. The occurrence

frequency of an itemset is the number of

transactions that contain the itemset. Given an

itemset X, the support number of X is the number of

transactions in D that contain X. If the support

number of X is greater than or equal to the specified

minimum support threshold, then the itemset X is

labelled as a frequent itemset. The purpose of

frequent itemset mining is to find all frequent

itemset in a given database.

3.2 Spark

Spark is defined as a distributed computing

framework developed at the Berkeley AMPLab [33]

which offers a certain quantity of features in order to

make big data processing fast. The main key feature

is its in-memory parallel execution model which

memory contains all loaded data. This first key

principally benefits the iterative computations. The

second feature considers the fact that Spark may

offer very scalable DAG-based (directed acyclic

graph) data flow in deferring from the nominated

two-stage data flow model in MapReduce. Both of

these features may determinately rush the

computation for those iterative algorithms just like

the Apriori algorithm and other few machine

learning algorithms. That way, Spark achieves 1-2

orders of magnitude in a way faster speed than

MapReduce.

Spark’s programming model is working with a

new distributed memory abstraction applied on large

cluster for in-memory computations named resilient

distributed datasets (RDDs). An RDD which is an

immutable collection of data records has the ability

to offer a variety of built-in operations in order to

change one RDD into another RDD. It’s on the

worker nodes where Spark caches the contents of

the RDDs, and that’s what makes data reuse way

faster. The fault-tolerance that is based on lineage

information may be achieved by RDDs rather than

replication. If a node fails, Spark tracks enough

information in order to reconstruct RDDs. Fig. 1

illustrates the working model of Spark framework.

Figure 1. Working method of Spark framework

3.3 PrePost algorithm

PrePost algorithm [8, 9] presents a data structure

named N-list, which is a modification of the vertical

database, storing the association rule mining all the

information needed. PrePost also need to scan the

database twice to construct a PPC-Tree, and make

use of PPC-Tree to generate the N-list of frequent 1-

itemsets (FIM1). In the mining process, the database

does not require rescanning, only need to intersect

the merger N-list, and the complexity of the

algorithm is O(m+n), m and n are the length of two

N-list. Each element of N-list composed by PrePost

Code, which is called after the sequence encoding

the preamble, the composition in the form of «pre-

order, post-order: count», PrePost Code is based on

the PPC-Tree respectively from the previous order

traversal and post order traversal. Fig. 1 shows the

PPC-Tree, which is similar to FP-Tree, and the

construction process is the same with the FP-Tree

but not the same as the composition of the node,

PPC Tree node consists of five components:

1. Item-name: represent node name

2. Count: represent node count

3. Children-list: represent a children collection of

the node

4. Pre-order: represent order of node when pre-order

5. Post-order: represent order of node when post-

order.

Each k-frequent itemsets Fk corresponds to a N-

list, which in ascending order according to the pre-

order, at the same time must also be ascending

according to post-order. PPC-Tree's main purpose is

to construct N-list liking shown by Fig. 2, then find

all the frequent itemsets based on N-list. We can

then delete the PPC-Tree to reduce memory

overhead. The main steps of the PrePost algorithm:

Received: May 7, 2019 372

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

Figure. 1 PPC-Tree corresponding with Table 1

Table 1. Transaction database

ID Items Ordered
frequent items

1 a, c, g, f c ,f ,a

2 e, a, c, b b ,c ,e ,a

3 e, c, b, i b ,c ,e

4 b ,f, h b ,f

5 b, f, e, c,d b ,c ,e ,f

1. Scan transaction database named D, output the

FIM 1, and in descending order according to

the number of its support to generate F1.

2. Scan D again, select the frequent items in each

record and arrange them in the order of F1,

assuming list of items in each record is [p|P], p

is the first item in the list, P is the rest of the

items. Call the function insert tree ([p|P], Ti).

3. Tree formed on the second step, respectively

pre-order traversal and post-order traversal, set

pre-order and post-order of each node and

establish N-list of I-frequent itemsets.

4. Mining frequent itemsets based on N-list using

the method liking Apriori Algorithm.

5. Table 1 shows a transaction database,

corresponding to Fig. 1 for PPC-Tree, assuming

the minimum support is 3.

4. DisPrePost algorithm

4.1 DisPrePost design

DisPrePost algorithm is a data mining algorithm

for frequent itemsets which uses N-list data structure

to represent the itemsets. All the required

information of the itemsets is to be stored by N-list.

Figure. 2 N-list of frequent 1-itemsets

Efficiency of the DisPrePost algorithm is achieved

by using the method of generating frequent itemsets

without generation of candidate itemsets.

The DisPrePost algorithm is implemented with

Spark to improve its performance. We store the big

transactional data in Hadoop distributed file system

(HDFS) of Hadoop framework, and multiple

partitions of data are distributed across cluster nodes.

Job execution on data partitions takes place in

parallel by Spark engine.

In the DisPrePost algorithm, general tree method

is used to traverse the PPC tree. The general tree

method used the same technique that is used by

linked based binary tree that uses linked list which is

an implementation of the List interface. It provides

sequential access and more efficient for inserting

and deleting items in the list. But, it became less

efficient while accessing items in the list. In

DisPrePost, general tree method is implemented

with HashMap which is an implementation of the

Map interface to speed up the process of creating the

N-lists associated with frequent 1-itemsets from the

PPC tree. It provides an efficient for locating value

based on the key. It does not store the item in the

order and it provides an easy way to access and

delete items on the basis of key value pairs.

Algorithm of parallel statistical 1-frequent itemsets and

sort them

Input: D: Transactional Dataset, minsup= Minimum

Support Threshold, I = item

Output: FL1: RDD of the set of frequent l -itemsets by

descending order

1. for each transaction t in D

2. flatMap(Id,t)

3. for each item I in t

4. Output (I,1)

5. End foreach

6. End flaMap

7. End foreach

8. reduceByKey(I,count)

9. Sum=0

Received: May 7, 2019 373

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

10. While(Item I in partition)

11. Sum+=count

12. End While

13. If (sum>=minsup)

14. Output(Fim1)

15. End if

16. Sort(Fim1)

17. Output (FL1)

Figure. 4 Pseudo code of parallel statistical 1-frequent

itemsets and sort them

Phase1: As we are dealing with big data, dataset

may have a large number of transactions. We store

the big transactional data in Hadoop distributed file

system (HDFS) of Hadoop framework, and multiple

partitions of data are distributed across cluster nodes.

Job execution on data partitions takes place in

parallel by Spark engine. A set of RDDs is created

and processed to produce the set of frequent l-

iternsets by descending order: FL1. The

transactional data are loaded into RDD, which

makes better use of cluster memory and improves

fault tolerance. All the items from dataset are

generated by using flatMap () function. Then, map()

function is applied on each item to produce a (key,

value) pair, where key is the item and value is one.

The phase 1 generates only singleton items. Pruning

step is applied on itemsets to filter out the non-

frequent items. The complete RDD of paired

itemsets is grouped using Reducebykey() function

and pruned using the filter() function .As a result,

only frequent items ranked in descending order of

support are generated at the end of Phase 1. The

Pseudo-code for the complete process of phase 1 is

presented in Fig. 4.

Phase 2: All the non-frequent items are removed

from the original input data, which reduces the data

size. The transactional data are stored in form of

RDD and distributed over cluster nodes. The

resulting FL1 of the first phase is shared with all the

executors of cluster using a special feature of Spark

framework called broadcast variable. Initially, the

set of frequent 1-itemset FL1 from phase 1 is

assigned to broadcast variable, which is shared

among all the nodes. Therefore, scanning the FL1

reduces the cost of I/O and required disk space.

Then we filter the Transactions RDD based on FL1

by applying a flatMap () function. For each

transaction, sort frequent item based on sequence of

FL1 and output the result as value. By applying a

flatMap () function. Finally, the reduceByKey ()

function constructs the compressed tree similarly

constructing FP-Tree. Post-order traversal the tree to

determine post-order and pre-order the tree to

determine pre-order, and then use a HasMap to

speed up the process of creating the N-lists

associated with 1-frequent items. The Pseudo-code

is shown in Figs. 5 and 6.

Algorithm of constructing PPC-Tree and corresponding

HashMap

lnput: shard of the transactional data and FL1: the set of

frequent l -itemsets by descending order

Output: PPC-Tree, H1 the HashMap of FL1

1. Create H1 the hash table of FL1

2. for each transaction t in D

3. flatMap(Id,t)

4. Select the frequent item in T and sort out them

according to the order of FL1, Let the sorted frequent

item list in T be a path[p|P] as the value to output<Id,

[p|P]> where is the first element and P is the remaining

list

5. End for

6. reducerByKey(Id, [p|P])

7. Create the root of a PPC-tree, R, and label it as null

8. for each [p|P])

9. Call insert_tree([p|P],T)

10. End for

11. Scan PPC tree to generate the postorder of each node

12. Return H1

Function insert_tree([p|P],T)

1.if T has a child N such that N.item-name = p.item-name

2.then increase N’s count by 1

3.else create a new node N, with its count initialized to 1,

and add it to T’s children-list

4.if P is nonempty then call insert tree(P,N) recursively.

5.end if

6.end if

Figure. 5 Pseudo code of constructing PPC-Tree

Phase 3: The N-lists of 1-frequents itemsets NL1

are stored in form of RDD and distributed over

cluster nodes as a group of lists for loading balance

on the cluster. For example, from PPC-tree of Fig. 2:

NLG1 = {b → {< (4,8): 4 >}, f → {< (2,1): 1 >, <

(8,4): 1 >, < (9,7): 1 >}}

NLG2 = {c → {< (1,2): 1 >, < (5,6): 3 >}, a → {<

(3,0): 1 >, < (7,3): 1 >}}

NLG3 = {e → {< (6,5): 3 >}.

We save thus the N-list of 1-frequent itemsets in

a distributed cache using the broadcast variable of

spark, which is shared among all the nodes. Each

node independently depth-first traversals every

frequent item in the group assigned, until all

frequent item sets with the current prefixes sub-tree

are located far. For b in group 1, the current prefix is

b, when c and e are added to the prefix sub-tree to

generate 2-frequent itemsets {bc, be} (bf and ba are

not frequent itemsets). To bc, be prefixed to

continue the operation, eventually get all the

frequent item sets on b.{b,bc,be,bce} In the prefix

Received: May 7, 2019 374

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

subtree merge process, normally when b and c are

combined, the original algorithm generates PPCode

<(b.pre-order, b.post-order): c.count> when the

condition is b.pre-order <c. pre-order && b.post-

order> c.post-order. But, this paper will generate

PPCode as "c.pre-order, c.post-order): c.count> in

the same condition.

As a result of the depth-first and prefix subtree

policy, we must promise the new added element and

the current prefix subtree on the same path,

necessary and sufficient condition is the new

element added and the last element of the current

prefix subtree are on the same path.This's the reason

why we generate PPCode as <(b.pre-order, b.post-

order): c.count>. Finally, reduce combines output.

The Pseudo-code of phase 3 is presented in Fig. 7.

Algorithm of generating N-List of 1-frequent itemsets

from the HasMap

Input: PPC-tree and FL1 the set of frequent 1-itemsets,

 H1 the HashMap of FL1

Output: NL1: the set of the N-lists of frequent 1-itemsets.

1. Procedure N-lists construction (R, H1)

2. Let C=(R.preorder,R.postorder,R.count)

3. Add C to H1 [R,name] count by C.count

4. Increase H1 [R.name].count by C.count

5. For each child in R.children do

6. N-lists construction(child)

7. End for

Figure. 6 Pseudo code of generating N-List of 1-frequent

itemsets

Algorithm of mining frequent itemsets

Input: shared the NL1: the set of the N-lists of frequent 1-

itemsets to be saved in distributed cache and NLG [i]:

group i of lists NL1.

Output: frequent k-itemsets F

1. for each mapper do

2. for each NL_l of NLG [i] do

3. call mining_fim_k(NL_l, FLk,NL1, minsup)

4. End for

5. End for

6. Function mining_fim_k(NL_k, NL1,minsup)

7. For i = 0 to NL1 do

8. if (NL_k.count >= |DBI|* minsup)

9. F=F U Lk

10. if (NL_kcount >= NL1[i].count)

11. Assume Lk= x1x2….xk , L[i].item = xk+1 , supp(xk) >

supp(xk+1)

12. FLk+1 = FLk+FL1[i] // FLk+1 = x1x2….xkxk+1

13. FLk= FLk+1

14. compare N-list of NL_k with N-list of NL1[i]

15. if (NL_k.preorder < NL1 [i].postorder && NL_k .

postorder > NL1[i].preorder)

16. NL_k+l.N-list.add (NL1[i].PrePost ,

NL1[i].postorder.count):NL1[i].count)

17. End if

18. End If.

19. End if

20. End for

Figure. 7 Pseudo code of mining frequent itemsets

5. Performance evaluation

In this section, the DisPrePost algorithm has

been compared to two advanced algorithms,

HPrePostPlus [26] and the well-known HFIM [29].

DisPrePost is the first implementation of the PrePost

algorithm in the Spark framework, HPrePostPlus is

a recent implementation of the Hadoop-based

PrePost parallel algorithm [26] with good results,

and HFIM is a typical implementation of the Spark-

based Apriori parallel algorithm [29] with good

performance. We evaluated speed performance by

analyzing runtime and scalability.

To implement the DisPrePost in distributed

environment, we set up a Spark cluster of 3 nodes

where each node contains Intel® Core ™ i5- 3230M

CPU@2.60GHz processing units and 12.00GB

RAM. Each node is installed with Hadoop version

2.6.0, Spark version 1.6.0 and Scala version 2.11.8.

Source of DisPrePost were written in Scala language.

HDFS was used for storage of input dataset and

output frequent itemsets. The datasets T10I4D100K

and T40l10D100K are used for experiments. These

two real datasets which have been commonly used

for many frequent itemset mining algorithms. Table

2 shows the information of these datasets, and all

of these can be found in [34].

The running time with different support degree

for dataset T10l4D100K and T40l10D100K is

shown in Figs. 8 and 9 separately. The x-axis

denotes the support degree and y-axis represents the

running time. The support degree grows from 0.1%

to 0.5%.

The purpose of the first comparisons is to

estimate the speed performance by analyzing the

operating time of DisPrePost, HPrePostPlus and

HFIM.

Table 3 The properties of datasets used in experiment

Dataset Size Transactions Items Average

length

T10I4D

100K

3.8MB 100.000 870 10

T40l10D

100K

14 MB 100.000 1000 40

Received: May 7, 2019 375

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

Figure. 8 The running time of T10I4D100K

Figure. 9 The running time of T10I4D100K

Figure. 10 The running time with different computer

nodes

We can see that the execution time of

DisPrePost is much lower than that of HPrePostPlus

for both datasets. The both algorithms tend to be

more efficient when the degree of support is set to a

higher level. The execution time of HPrePostPlus is

nearly three times that of DisPrePost. This is

because the HPrePostPlus algorithms needs to read

data from the HDFS in every MapReduce job, thus

causing huge IO overhead. In contrast, DisPrePost

load the input dataset from the HDFS into the RDDs

and then just read the data and intermediate results

from the RDDs later, thus reducing IO overhead.

We also notice that the execution time of

DisPrePost is apparently lower than that of HFIM

for the two datasets.

In Fig. 8, we observe that the value of the

execution time HFIM is always greater than the

same value for DisPrePost. Fig. 9 shows that the

superiority of DisPrePost in terms of remaining time

metrics becomes clearer when you use larger data

sets. It can be seen that the difference between the

two algorithms is greater than that observed in Fig. 8.

The results also reflect, whether on a large or

small dataset, runtime of DisPrePost is shorter than

HFIM, because of sharing large data with all the

executors of cluster using a special feature of Spark

framework called broadcast variable, when

DisPrePost conducts a depth-first strategy, which

reduces the communication. However, using a

HasMap to speed up the process of creating the N-

lists associated with frequent items from PPC tree is

very effective.

For a given size of input large data, dividing the

data into different numbers of partitions is crucial to

the performance. The execution time of DisPrePost

is also decreased through caching essential RDDs

appropriately. The reason lies in the fact that

essential intermediate RDDs are cached to avoid

recomputing them when the memory is not large

enough to hold all intermediate RDDs.

The following experiment in Fig. 10, evaluates

the scalability of DisPrePost, which is also measured

by the running time. The dataset T10I4D100K is

used here. The experiment is performed on

condition that the number of cluster computer nodes

ranges from 2 to 8 while the support degree remains

to be 0.5%.

In Fig. 10, the x-axis indicates the number of

computer nodes in the Spark cluster, and the y-axis

represents the runtime of the DisPrePost algorithm.

Fig. 10 illustrates the execution time with different

numbers of computer nodes. With more computer

nodes, DisPrePost requires less running time, and

the curve of DisPrePost has a nearly linear decline.

Received: May 7, 2019 376

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

DisPrePost shows a characteristic of near-linear

scalability.

6. Conclusion

This paper has suggested the DisPrePost

algorithm as an effective algorithm for mining

frequent itemsets using the N-list. First, we

proposed several ameliorations on the previously

published PrePost algorithm: (i) the use of a

HashMap to improve the process of creating the N-

lists associated with the frequent 1-itemsets from

PPC tree and (ii) the implementation of a scalable

Spark-based method for frequent itemset mining that

has no intermediate data and small network

communication (iii) the implementation an

algorithm which has small network communication

because we only broadcast frequent itemsets Fk by

using a special feature of Spark framework called

broadcast variable.

Through experiments, we compare the

performance of DisPrePost, HPrePostPlus and

HFIM. DisPrePost algorithm is the fastest of all

algorithms. The experimental results indicate that

the proposed algorithm shows better efficiency and

scalability.

For future work we will focus on applying our

approach for mining frequent over data streams,

mining erasable itemsets, mining frequent closed

itemsets and maximal itemsets.

References

[1] C.L. Philip and C.Y. Zhang, “ Data-intensive

applications, challenges, techniques and

technologies: a survey on big data,”

Information Sciences, Vol.275, pp. 314–347,

2014.

[2] C. Bhat and C.K. Bhendadia, “Mining Big Data

Using Modified Induction Tree Approach”,

International Journal of Intelligent Engineering

and Systems, Vol.9, No.2, pp.14-20, 2016.

[3] R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules”, In: Proc. of the 20th

Very Large Data Bases Conference, pp. 487–

499, 1994.

[4] C.-H. Chee, J. Jaafar, I.A. Aziz, M.H. Hasan,

and W. Yeoh, “Algorithms for frequent itemset

mining: a literature review”, Artificial

Intelligence Review, pp. 1-19, 2018.
[5] J. Han, J. Pei, and Y. Yin, “Mining frequent

patterns without candidate generation”, In:

Proc. of the International Conference on

Management of Data, Vol.29, No.2, pp. 1-12,

2000.

[6] Z.H. Deng, Z.H. Wang, and J.I. Jiang, “A new

algorithm for fast mining frequent itemsets

using N-lists”, Science China Information

Sciences, Vol.55, No.9, pp. 2008-2030, 2012.

[7] Z H. Deng, and S.L. Lv, “PrePost+: An

efficient N-lists-based algorithm for mining

frequent itemsets via Children–Parent

Equivalence pruning”, Expert Systems with

Applications, Vol.42, No.13, pp. 5424-5432,

2015.

[8] R. Myung, H. Yu, and D. Lee, “Optimizing

Parallelism of Big Data Analytics at Distributed

Computing System”, International Journal on

Advanced Science, Engineering and

Information Technology, Vol.7, No.5, pp.1716-

1721, 2017.

[9] R. Kessl, “Probabilistic static load-balancing of

parallel mining of frequent sequences”, IEEE

Transactions on Knowledge and Data

Engineering, Vol.28,No.5 pp. 1299–1311, 2016.

[10] S. Li, T. Hoefler, and C. Hu, “Improved MPI

collectives for MPI processes in shared address

spaces”, Cluster Computing, Vol. 17, No.4, pp.

1139– 1155, 2014.

[11] M.G. Kaosar, Z. Xu, and X. Yi, “Distributed

Association rule mining with minimum

communication overhead”, In: Proc. of the

Eighth Australasian Data Mining Conference,

Vol. 101, pp. 17–23, 2009.

[12] J. Dean and S. Ghemawat, “MapReduce:

simplified data processing on large clusters”, In:

Proc. of the 6th conference on Symposium on

Operating Systems Design & Implementation,

Vol. 6, pp. 10-10, 2004.

[13] Y. Rochd, I. Hafidi, and B. Ouartassi, “A

Review of Scalable Algorithms for Frequent

Itemset Mining for Big Data Using Hadoop and

Spark”, In: Proc. of the 2nd International

Conference on Real-Time Intelligent Systems,

Vol 2, pp .91-101, 2017.

[14] M. Zaharia, M. Chowdhury, M.J. Franklin, S.

Shenker, and I. Stoica, “Spark: cluster

computing with working sets”, In: Proc. of the

2Nd USENIX conference on hot topics in cloud

computing, HotCloud’10, pp. 10, 2010.
[15] D. Apilatti, E. Baralis, T. Cerquitelli, P. Garza,

Pulverenti, and L. Venturini, “Frequent itemset

mining for big data: A Comparative analysis”,

Big Data research, Vol.9, pp.67-83, 2017.

[16] M. Lin, P. Lee, and S. Hsueh, “Apriori-based

Frequent Itemset Mining Algorithms on

MapReduce”, In: Proc. of the 16th

International Conference on Ubiquitous

Information Management and Communication,

2012.

Received: May 7, 2019 377

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.34

[17] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel

Implementation of Apriori Algorithm Based on

MapReduce”, In: Proc. of the 13th ACIS

International Conference Software Engineering,

Artificial Intelligence Networking and

Parallel/Distributed Computing, pp.236–241,

2012.

[18] H. Li, Y. Wang, and D. Zhang, “Pfp: parallel

fp-growth for query recommendation”, In: Proc.

of the Conference on Recommender Systems,

pp. 107-114, 2008.

[19] Y. Xun, J. Zhang, X. Qin, and X. Zhao,

“Fidoop-dp: data partitioning in frequent

itemsetmining on hadoop clusters”, IEEE

Transactions on Parallel and Distributed

Systems Journal, Vol. 28, No.1, pp.101–114,

2017.

[20] S. Moens, E. Aksehirli, and B. Goethals,

“Frequent Itemset Mining for Big Data,” in

IEEE International Conference Big Data,

pp.111–118, 2013.

[21] M.J. Zaki, S. Parthasarathy, and M. Ogihara,

“Parallel algorithms for discovery of

association rules”, Data Mining and Knowledge

Discovery, Vol.1, No.4, pp.343-373, 1997.

[22] C. Zhang, P. Tian, X. Zhang, Q. Liao, Z.L.

Jiang and X. Wang, “HashEclat: an efficient

frequent itemset algorithm”, International

Journal of Machine Learning and Cybernetics,

Vol. 1, pp 1-14, 2019.

[23] J. Liao, Y. Zhao, and S. Long, “MRPrePost: A

parallel algorithm adapted for mining big data”,

In: Proc. of Electronics, Computer and

Applications IEEE Workshop, pp. 564 – 568,

2014.

[24] J. Liao, Y. Zhao, and S. Long, “MRPrePost-A

parallel algorithm adapted for mining big data”,

In: Proc. of Electronics, Computer and

Applications, IEEE Workshop, pp. 564-568,

2014.

[25] S. Thakare, S. Rathi S, and R.R. Sedamkar,

“An Improved PrePost Algorithm for Frequent

Pattern Mining with Hadoop on Cloud”,

Procedia Computer Science, Vol. 79, No. 9, pp.

207-214, 2016.

[26] Y. Rochd and I. Hafidi, “Performance

Improvement of PrePost Algorithm Based on

Hadoop for Big Data”, International Journal of

Intelligent Engineering and Systems, Vol.11,

No.5, pp.226-235, 2018.

[27] N. Arybarzan, B. Bidgoli, and M. Reshnehlab,

“negFIN: An efficient algorithm for fast mining

frequent itemsets”, Expert Systems with

Applications, Vol.105, pp.129-143, 2018.

[28] H. Qiu, R. Gu, C. Yuan, and Y. Huang,

“YAFIM: A parallel frequent itemset mining

algorithm with Spark”, In: Proc. of

International Parallel Distribution Process of

Symposium, pp.1664–1671, 2014.

[29] K.K. Sethi and D. Ramesh, “HFIM: a Spark-

based hybrid frequent itemset mining algorithm

for big data processing”, The Journal of

Supercomputing, Vol.73, No.8, pp.3652–3668,

2017.

[30] F. Zhang, M. Liu, F. Gui, W. Shen, A. Shami,

and Y. A. Ma, “distributed frequent itemset

mining algorithm using spark for big data

analytics”, Cluster Computing, Vol.18, No.4,

pp.1493–501, 2015.

[31] S. Rathee, M. Kaul, and A. Kashyap, “R-

Apriori: an efficient apriori based algorithm on

spark”, In: Proc. of the 8th Workshop on Ph.D.

Workshop in Information and Knowledge

Management, pp.27–34, 2015.

[32] S. Rathee and A. Kashyap, “Adaptive–Miner:

an efficient distributed association rule mining

algorithm on Spark”, Journal of Big Data, Vol

5, No.1, pp.1–17, 2018.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.

Ma, M. McCauley, M. Shenker, S. Franklin,

and I. Stoica, “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster

computing”, In: Proc. NSDI, 2012 of the 9th

USENIX Conference on Networked Systems

Design and Implementation, p. 2-2, 2012.

[34] Frequent Itemset Mining Dataset Repository,

Available at: http://fimi.ua.ac.be/data. Accessed

18 Dec 2018.

http://fimi.ua.ac.be/data.%20Accessed%2018%20Dec%202018
http://fimi.ua.ac.be/data.%20Accessed%2018%20Dec%202018

