
Received: April 11, 2019 358

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

Resource Allocation Using Democratic Grey Wolf Optimization in Cloud

Computing Environment

Alok Kumar Pani1* Bhawna Dixit1 Kailash Patidar1

1Department of Computer Science and Engineering,

Sri Satya Sai University of Technology and Medical Sciences, India

* Corresponding author’s Email: alok.kumar.pani@gmail.com

Abstract: Cloud computing is one of the growing environment that outlines an internet-based computing system

consisting of a large number of computers and other devices, where a number of things, such as computer infrastructure,

access to applications, software, processing power, etc. are shared over the Internet. The allocation of the cloud

resources to the user based on their request is a Non-deterministic Polynomial-time (NP) issue, which consumes more

time. Therefore, heuristic methods utilize for optimizing resource allocation. In this research work, the Democratic

Grey Wolf Optimization (DGWO) is proposed to overcome the limitations of the resource allocation in efficient way.

In this method, DGWO performs the following steps; initializing the request size, generating requests, and estimate

fitness value of DGWO, sorting, dividing and evaluating the requests of the user. The advantages of DGWO are higher

speed convergence, easier implementation, global optimization capacity. The DGWO has high performance in

unknown, challenging search spaces which has high local optima avoidance. The efficiency of DGWO is improved in

terms of searching optimum resource time where the searching behavior is obtained from GWO. The DGWO method

achieved 75% throughput, 96% allocation of resources compared to other meta-heuristic existing techniques.

Keywords: Cloud computing, Democratic grey wolf optimization, Hardware resources, Throughput, Virtual machines.

1. Introduction

According to virtualization of resources, cloud

computing becomes a trend methodology for

computing [1], which provides main services such as

Software as a Service (SaaS), Infrastructure as a

Service (IaaS) and Platform as a Service (PaaS) [2, 3].

Resource management has a significant effect on

Resource Allocation (RA) that is the Cloud

datacentres are usually deployed as private, public and

or hybrid. Cloud service provider tools are used for

service deployment and this can be achieved, when

appropriate datacentre resources are selected to run for

actual application requirement in IaaS [4]. In a cloud

environment the physical machines run multiple

Virtual Machines (VM) which are presented to the

clients as the computing resources. In cloud

environment the physical machines run multiple

virtual machines (VM) which are delivered to the

clients as the computing resources [5]. The optimal

number of servers obtain by resource allocation

techniques which is used to allocate resources based

on the user’s requirements. The cloud users can

activate and change the resource loads with

applications in minimum expenditure and rent the

resources from providers [6, 7].

Every user desires multiple resources intended for

a defined task that improves the performance and

finished on time [8]. Cloud computing is successfully

utilized by organizations as it offers extensive

solutions along with increasing flexibility, scalability,

agility, reduces costs and higher efficiencies [9]. In the

Cloud, Resource management consists of two stages

namely resource scheduling and resource provisioning

[10]. The cloud’s clients are interested to complete

their works in the shortest possible time and at

minimum cost, in addition to this, providers are

interested to increase the profit by maximizing the use

Received: April 11, 2019 359

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

of their resources with a lower overall cost [11]. These

two objectives are in conflict and often they are not

satisfied by using traditional resource allocation and

load balancing techniques [12]. Traditional methods

such as FIFO and Round-Robin is often trapped in

local optimum, inaccurate, inconclusive, time

consuming and also not effective for allocating the

resources in multi-objective scheduling [13-15]. The

meta-heuristic algorithms have a critical place in the

field of research in the last few years and various

meta-heuristics algorithms have some novel variations

and are suggested for the allocation of resources in

many fields [16].

There are many prominent meta-heuristic

algorithms which are prominent as well as remarkable

in cloud computing such as Ant Colony Optimization

(ACO), the Cuckoo Search (CS), the Firefly

Algorithm (FA), the Memetic Algorithm (MA) and so

on. The objective of the paper is to implement the

DGWO algorithm for resource allocation. The request

size are initialized, fitness value of DGWO are

calculated after the generation of requests. The

DGWO achieved global optimization capacity, higher

convergence speed and high performance in

challenging search spaces. The implementation of

DGWO is easier and have high local optima avoidance.

The performance of the proposed method is compared

with the existing methods which are explained in the

following sections.

The draft of the paper follows: Section 2 presented

a brief survey on the recent techniques of the resource

allocation, Section 3 presents the problem statement

of the research work, the proposed methodology is

presented in Section 4. The experimental results are

given in Section 5. The conclusion of the work done

with future work is given in Section 6.

2. Literature review

T. Jena, and J.R. Mohanty, [17] proposed Genetic

Algorithm (GA) based Customer-Conscious RA and

task scheduling (GACCRATS) to fill the gap between

frequently changing customer requirement and

available infrastructure for services. In order to attain

minimum makespan time and maximum customer

satisfaction, the GA method mapped the tasks to the

VM of a multi-cloud federation. The experimental

analysis stated that the GA-based RA provided better

performance compared to other existing heuristic

algorithms. The scalability of the simulated multi-

cloud environment was considerably high, so the

method was unable to consider the data locality cost,

energy consumption and running cost.

X. Liu, X. Zhang, W. Li, and X. Zhang [18]

implemented the optimization algorithms Discrete

Artificial Bee Colony (DABC), Discrete Artificial

Fish Swarm (DAFS), and Discrete Shuffled Frog

Leaping (DSFL) to solve the NP-hard problems. They

designed the self-adaptive parameter settings to

balance between the exploitation and exploration of

the algorithm. The experimental analysis showed that

these three optimization algorithms increased the

resource utilization and maximized the global

dominant share, which was highly adaptable to several

situations. With the grouping strategy, the results

proved that the DSFL effectively solved the local

optimal problem and found better solutions, but it took

more computation time.

H. Zheng, Y. Feng, and J. Tan [19] implemented

the hybrid energy-aware RA approach for helping

requestors to acquire energy efficient and satisfied

manufacturing services. To conduct the combinatorial

optimization process, Non-dominated Sorting Genetic

Algorithm (NSGA-II) and multi-objective

mathematical model was adopted. The method needs

to study fuzzy information processing and intelligent

algorithm for better performance of the NSGA-II

approach.

M.H. Malekloo, N. Kara, and M. El Barachi [20]

executed an energy-aware and QoS-aware Multi-

Objective Ant Colony Optimization (MACO)

approach for VM position and solidification. This

approach aimed to obtain a tradeoff among energy

proficiency, framework execution, and SLA-

consistence. The experimental results stated that the

MACO approach saved energy and reduced the

quality of VM relocations and SLA violations. The

bottleneck of this method was unpredictability of cost,

and a lapse in execution because of difficulties in

finding necessities.

F. Farahnakian, A. Ashraf, T. Pahikkala, P.

Liljeberg, J. Plosila, I. Porres, and H. Tenhunen [21]

implemented a dispersed framework design to

perform dynamic VM consolidation to diminish

energy utilization of cloud server centers while

maintaining the desired QoS. The proposed ACO-

based VM Consolidation (ACOVMC) approach found

a close optimal arrangement based on a predetermined

target work. The method outperformed existing VM

consolidation methodologies in terms of energy

utilization, a number of VM movements, and QoS

necessities concerning execution. The method

decreased the energy utilization of data centres by

consolidating VMs into the number of active Physical

Machines (PM) while preserving the quality of service

requirements.

P. Durgadevi, and S. Srinivasan, [22] proposed the

hybridized optimization algorithm which combined

Shuffled Frog Leaping Algorithm (SFLA) with CS for

allocating the resource effectively. The optimization

Received: April 11, 2019 360

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

issues were solved by using SFLA-CS with the help

of preceding steps that included initialization and

generation of requests. The SFLA-CS method

achieved higher convergence speed with the capacity

of having global optimization. The experiments were

conducted to evaluate the performance of SFLA-CS

with existing techniques such as Krill herd, CS. The

execution time was high in SFLA-CS method when

compared with other existing techniques such as ABC

and CS.

3. Allocation of resource

Resource allocation techniques help to attain an

optimal number of servers by allocating resources to

users based on their application demands. In cloud

computing, there are two major limitations for

allocating the resources. First, the capacity of the

machines is physically limited; second, priorities for

the implementation of the tasks should be in direction

with the efficiency of resources. Ultimately, the

waiting time and the completion time need to be

reduced, in order to decrease the cost of system

implementation. Traditional approaches solve the

optimization problem, but these approaches are often

trapped in a local optimum, time-consuming and

inaccurate.

4. Proposed methodology

The resources are allocated to users by using

DGWO method, which performs several operations

such as initialize the request size, generate the requests

and calculate the fitness values of DGWO. Then the

request of users is sorted, divided, modified the

position of a request and finally evaluate the new

solution for users. Then the resources are finally

assigned to the cloud computing server grounded on

the user requests. Finally, the DGWO algorithm

diminishes the waiting time of the user request. The

requests are then perfectly allocated on the cloud

server. The block diagram for the technique is

presented in Fig. 1.

4.1 User request

In the primary phase, the user requests are

transmitted to the cloud environment. Then the users’

requests are assigned using following Eq. (1),

𝑈𝑅𝑞(𝑥) = {𝑈𝑅𝑞1, 𝑈𝑅𝑞2, 𝑈𝑅𝑞3, … . , 𝑈𝑅𝑞𝑛} (1)

Received: April 11, 2019 361

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

Figure.1 Block Diagram of the proposed method

Where, 𝑈 𝑅𝑞(𝑥) is Number of requests, 𝑥 =

 {1, 2, 3, … , 𝑛} . The requests are gathered from the

users for every particular time interval by the real-time

request queue.

4.2 Analyze request

The requests of user are analysed one by one

according to the request speed, weight and energy in

the secondary phase. The optimization process starts

after analysing the user request, which are described

in following section.

4.3 Democratic grey wolf optimization

The natural inspiration of GWO technique is the

strategy of grey wolves which are belongs to family

Canidae. Grey wolfs have the nature of group living

and each group consists of 5-12 members, which

strictly organize to a social dominant hierarchal

system. Each member of the group plays a part in the

hunting process. The wolfs in the groups ranked as

alpha, beta, omega and remaining subordinate wolfs

classified as delta. The alpha wolfs are the leader of

the group and it is in top of the grey wolf’s hierarchy,

which takes the decision about the hunting and food.

Alpha wolves (i.e. Female Wolf) are the decision

makers of the group and controlling all the living

activities of the group including the hunting. Beta

wolves are the subordinate to the alpha wolves, they

support the decision made by the alpha wolves. The

Beta wolves are the potential candidate for supporting

the cause of the alpha. Omega wolves present in the

next rank in the group and they maintain the group

dominance hierarchal structure. The rest of the

member of the group are classified as delta and they

are sub ordinance to the Omega. GWO works on the

basis of the hunting process of the grey wolves. The

hunting process of wolf’s is mathematically

represented by the following phases:

1. Track and chase the prey

2. Purse, encircle and annoy the prey

3. Attach the prey.

GWO solution is divided into three-level based on

the fitness and optimality of the solution. Probably the

alpha’s decision is the fittest solution for the

optimizing problem. The beta and delta decision are

ranked as the next best two solutions and the

remaining solutions are by omega. The process of

encircling is given in Eq. (2).

�⃗�(𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ ⃗(𝑡) + 𝐴. �⃗⃗⃗� (2)

The �⃗� in the Eq. (2) gives the location of the prey

and 𝑡 represents the iteration number, 𝐴 and 𝐶 are the

coefficient vector. The value of �⃗⃗⃗� which is a

behaviour of encircling prey is given in Eq. (3).

�⃗⃗⃗� = |𝐶. 𝑋𝑝
⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| (3)

The 𝐴 and 𝐶 are manipulated in the Eq. (4) and

(5).

𝐴 = 2�⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗� (4)

𝐶 = 2𝑟2
⃗⃗⃗⃗⃗⃗⃗ (5)

The components of �⃗� are decreased from 2 to 0

over the number of iteration and 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗ are the

random vector in [0, 1].

Alpha always takes the lead for the hunting, beta

and delta knows the location of the prey, this gives the

best three solutions to update the location followed by

other agents based on the best search agent. The Eq.

for the position updating is given in the Eq. (6) to (8).

𝐷𝑎
⃗⃗ ⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗⃗. 𝑋𝑎
⃗⃗ ⃗⃗⃗ − �⃗�|, 𝐷𝛽

⃗⃗⃗⃗⃗⃗ = |𝐶2
⃗⃗⃗⃗⃗. 𝑋𝛽

⃗⃗ ⃗⃗⃗ − �⃗�|, 𝐷𝛿
⃗⃗⃗⃗⃗⃗ =

|𝐶3
⃗⃗⃗⃗⃗. 𝑋𝛿

⃗⃗ ⃗⃗ ⃗ − �⃗�| (6)

𝑋1
⃗⃗⃗⃗⃗ = |𝑋𝑎

⃗⃗ ⃗⃗⃗ − 𝐴𝑎
⃗⃗ ⃗⃗ ⃗𝐷𝛼

⃗⃗⃗⃗⃗⃗ |, 𝑋2
⃗⃗⃗⃗⃗ = |𝑋𝛽

⃗⃗ ⃗⃗ ⃗ − 𝐴2
⃗⃗ ⃗⃗ ⃗𝐷𝛽

⃗⃗⃗⃗⃗⃗ |, 𝑋3
⃗⃗⃗⃗⃗ =

|𝑋𝛿
⃗⃗ ⃗⃗⃗ − 𝐴3

⃗⃗ ⃗⃗ ⃗𝐷𝛿
⃗⃗⃗⃗⃗⃗ | (7)

 �⃗�(𝑡 + 1) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
 (8)

In GWO, the updation of �⃗� in every round [2, 0] is

used to control the tradeoff between the exploration

and exploitation which is given in Eq. (9).

�⃗� = 2 − 𝑡.
2

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (9)

Where 𝑡 is the number of the iteration and

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is the maximum number of iteration for

optimization. By using Eq. (9), the optimal values are

calculated with the help of request, and for every

request, the optimal value is calculated individually

and the whole values are summed to get the better

solution. Finally, DGWO method allocated the

resources by using entire user requests.

5. Experimental result

Received: April 11, 2019 362

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

The time for allocation of resources, processing

elements capacity and the knapsack issues in RA are

reduced by using proposed work. The proposed

DGWO method executed in JAVA with CloudSim

tool and the efficiency of DGWO method validated in

terms of execution time, allocation mechanism,

throughput and so on. CloudSim is a software tool

used for simulations in cloud environment based

experiments. The parameters which are used in

proposed DGWO is described in below Table 1.

5.1 Evaluation of parameter metrics

In this section, the performance of the proposed

method is calculated by evaluating the following

parameters such as execution time, throughput, time

based task execution, waiting time, energy

consumption, makespan and allocation mechanism.

The parameters of the proposed method compared

with existing methodologies such as Hybrid ABC-CS

algorithm (HABBCS), krill herd and Shuffled Frog

Leaping Algorithm (SFLA)- CS Algorithm. In

complex situations, these existing techniques possess

the request speed and sizes are increased. Those

evaluations are carried out in server-side only when

allocating the resources. While considering the pre-

specifie tolerance, the fitness function of SFLA-CS is

very less within the successive iterations. To

overcome this problem, DGWO is proposed with

better fitness function for allocating the resources to

the users.

5.1.1. Execution time

The execution time of DGWO is very less when

compared with other existing methods, and those

values are tabulated in Table 1. DGWO required 3800

𝑚𝑠 for executing the task, but Krill herd and SFLA-

CS required 8500 𝑚𝑠, 4500 𝑚𝑠 respectively. The

execution time is computed in Eq. (10),

𝐸𝑇 = 𝐸(𝑡) − 𝐹(𝑡) (10)

Where 𝐸𝑇 is the computational time, 𝐸(𝑡) is the

ending time of the process, 𝐹(𝑡) is the beginning time

of the process. Table 2 and Fig. 2 represents the

performance parameters such as execution time of the

proposed method with existing methodologies.

5.1.2. Throughput

Throughput refers to the quantity of information

transported as of one site to a dissimilar one in a

specified quantity of time. It is utilized to measure the

performances of hard drives, RAM, Internet and the

network connections. The throughput of the proposed

system should be higher than the existing system

throughput. The throughput is estimated in Eq. (11).

𝑇𝑡 =
𝐼𝑡

𝑡
 (11)

Where, 𝐼𝑡 is the transported information and 𝑡 is the

quantity of time. The throughput of different

algorithms is compared and exhibited in Table 3 and

Fig. 3.

Table 1. Parameter settings

Parameters Value of parameters

Number of Clouds 5, 10, 15, 30, 50

Number of tasks 15,50,60,100,150,200,250,300

Structure of

Datasets

(Number of tasks) * (number of

virtual machines)

Reserved

instances

i1, i2, i3, i4

Table 2. Performance of execution time

Methods Execution time (ms)

HABCCS [22] 15000

Krill herd [22] 8500

SFLA-CS [22] 4500

DGWO 3800

Table 3. Performance of Throughput

Methods Throughput (in sec)

HABCCS [22] 15

Krill herd [22] 45

SFLA-CS [22] 60

DGWO 75

Received: April 11, 2019 363

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

Figure.2 Performance of execution time

Figure.3 Performance of throughput

5.1.3. Time based task execution

The task is scheduled by time-based task

execution or else event-cantered triggers are set on a

task which starts its execution. The time-based task

execution of DGWO are compared with HABCCS,

SLFA-CS and Krill herd, and their results are

tabulated in Table 3. The performance of DGWO in

task-based execution is shown in Table 4.

5.1.4. Waiting time

Waiting time (Turnaround time) is defined as the

time taken for processing the request, and

consummation of the request which is computed using

Eq. (12).

𝑊(𝑡)𝐴𝑣𝑔 = 𝑇 (𝑡)𝐴𝑣𝑔 − 𝐵(𝑡) (12)

where 𝑊(𝑡)𝐴𝑣𝑔 is ‘average waiting time’,

𝑇 (𝑡)𝐴𝑣𝑔 is considered as ‘average turnaround time’,

then 𝐵(𝑡) is ‘burst time’. The comparison on the

waiting time is given in Table 5.

5.1.5. Allocation mechanism

In this section, the allocation mechanism of

DGWO are compared with other existing methods,

which is shown in Table 6. Overall, the DGWO

optimization algorithm is better in allocating

resources to users in the cloud environment. Fig. 4

presents the graphical representation of the proposed

method in terms of allocation mechanism.

The results show that the proposed DGWO

approach performs well by achieving 75% throughput

by the execution time of 4000 𝑚𝑠.

5.1.6. Makespan

The total execution of all task is defined as

Makespan, which is explained in Eq. (13)

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒(𝑇𝑎𝑠𝑘𝑖)𝑛
𝑖=0 (13)

In this section, makespan of proposed DGWO is

compared with existing method GACCRATS and

Teacher Learning Based Optimization (TLBO) [17]

for validating the performance of DGWO. Table 7

describes the makespan time of both existing methods

and DGWO. Fig. 5 describes the graphical

Received: April 11, 2019 364

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

representation of makespan of DGWO with existing

techniques.

Table 4. Performance of Time based Evaluations

Number

of Tasks

Time based Evaluations

HABCCS

[22]

Krill

herd

[22]

SLFA-

CS [22]

DGW

O

50 60 30 18 10

200 80 47 32 20

250 75 65 50 35

300 83 94 25 15

Table 5. Performance of Waiting Time

Waiting Time

Number

of

Tasks

HABCCS

[22]

Krill

herd

[22]

SLFA-

CS

[22]

DGWO

15 40 210 260 300

60 30 170 220 260

100 35 150 170 200

150 25 130 150 195

Table 6. Performance of Allocation Mechanism

Methods Allocation (%)

HABCCS [22] 54

Krill herd [22] 75

SFLA-CS [22] 93

DGWO 96

Figure.4 Performance of allocation mechanism

Table 7. Comparison of makespan of DGWO

Methods Makespan Time

TLBO 5.004

GACCRATS 3.378

DGWO 2.781

Figure.5 Makespan comparison of DGWO

From the above Table 6 and Fig. 5, the proposed

DGWO method consume less makespan than all the

existing methods such as TLBO and GACCRATS.

Makespan is required to have a lower value. TLBO

algorithm fails to achieve this goal as it takes longer

time to execute, when compared with GACCRATS.

5.1.7. Energy consumption

The application workloads are handled by

physical resources in a data center which consumes

energy a lot. According to memory, disk, network card

and utilization of CPU, the energy is consumed. Table

8 describes the consumption of energy of proposed

DGWO for different tasks with existing method

ACOVMC approach [21]. Fig. 6 describes the energy

consumption of DGWO with ACOVMC.

From the above Table 8, it clearly shows that the

proposed DGWO consumed less energy when

compared with ACOVMC. The DGWO achieved

89.4% energy whereas ACOVMC achieved 110%

energy for the 100th task. When the number of task

increases, the consumption of energy for both

methods increases. The ACOVMC achieved 129%

energy for 250th task, whereas the proposed DGWO

consumed nearly 20% less energy.

5.1.8. Overall performance of DGWO

In this section, the overall performance of DGWO

is evaluated by using parametric such as execution

time, throughput and allocation time, Time based

evaluation and waiting time. Table 9 describes the

Received: April 11, 2019 365

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

performance values of DGWO in terms of allocation

Table 8. Energy Consumption

Number of

task

ACOVMC Proposed

DGWO

50 96 86

100 110 89.4

150 121 92.6

200 125 96

250 129 99.5

Figure.6 Energy consumption of DGWO

Table 9. Overall performance of DGWO

Methodology Allocation

Mechanism

Through

put

Executio

n Time

HABCCS [22] 54 15 15000

SFLA-CS [22] 93 60 5000

DGWO 96 75 3800

Table 10. Performance of DGWO

Methodology Time based Evaluation Turnaround time

Number of Tasks Number of Tasks

50 200 250 300 15 60 100 150

Krill herd [22] 30 47 65 94 210 170 150 130

SFLA-CS [22] 18 32 50 25 260 220 170 150

DGWO 10 20 35 15 300 260 200 195

mechanism, throughput and execution time. The

values are compared with only two optimization

techniques such as SFLA-CS and HABCCS.

When compared with HABCCS and SFLA-CS,

the DGWO achieved higher allocation mechanism,

less execution time and throughput. The DGWO

achieved 96% allocation of resources whereas the

HABCSS achieved very less allocation of resources

(i.e.54%). The execution time of HABCSS was very

high when compared with all other optimization

techniques. The SFLA-CS achieved the execution of

results in 5000𝑚𝑠, whereas the proposed achieved the

results in 3800𝑚𝑠. The throughput of DGWO is high

(i.e. 75), when compared with other techniques. This

shows that the proposed DGWO achieved better

results in all parameters which is used to overcome the

issues of allocating the resources effectively.

The other parameters such as waiting time and

time based evaluation for different task are evaluated

in Table 10.

From the Table 7, the proposed method achieved

better results in both turnaround time and time based

evaluation when compared with existing techniques

such as Krill herd and SFLA-CS. When the number of

task increases, the turnaround time for proposed

method decreases. The time based evaluation is nearly

very less for proposed DGWO. For the task 300, the

DGWO achieved 15ms in time based evaluation,

whereas SFLA-CS and Krill herd achieved

25𝑚𝑠 𝑎𝑛𝑑 94𝑚𝑠.

6. Conclusion

The DGWO algorithm is formulated to reduce the

knapsack issue for RA mechanism on the CC

environment. The DWGO is compared with other

existing systems which are executed on the same

working platform of JAVA with CloudSim. The

execution time for the proposed work is observed as

4000 𝑚𝑠, the throughput is 75 𝑠, and the time required

for both turn-around and resource allocation also very

less. This research showed that the existing methods

such as HABCSS, SFLA-CS, krill herd require high

execution time, throughput, and the turn-around time

compared to the proposed DWGO method. In future

work, efficient energy efficient management can be

introduced to reduce the maintenance cost of the

system.

Received: April 11, 2019 366

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.33

Acknowledgments

I thank CHRIST (Deemed To Be University),

Bangalore for providing favourable environment to

carry out my research work.

References

[1] S.M. Mousavi and F. Gabor, “A novel algorithm

for Load Balancing using HBA and ACO in Cloud

Computing environment”, International Journal

of Computer Science and Information Security,

Vol.14, No.6, pp.48-55, 2016.

[2] M.J. Usman, A.S. Ismail, A.Y. Gital, A. Aliyu,

and T. Abubakar, “Energy-Efficient Resource

Allocation Technique Using Flower Pollination

Algorithm for Cloud Datacenters”, In: Proc. of

International Conference of Reliable Information

and Communication Technology, pp.15-29, 2018.

[3] A. Beloglazov, J. Abawajy, and R. Buyya,

“Energy-aware resource allocation heuristics for

efficient management of data centers for cloud

computing”, Future Generation Computer

Systems, Vol.28, No.5, pp.755-768, 2012.

[4] S. Kayalvili and M. Selvam, “Hybrid SFLA-GA

algorithm for an optimal resource allocation in

cloud”, Cluster Computing, pp.1-9, 2018.

[5] L. Liu, H. Mei, and B. Xie, “Towards a multi-QoS

human-centric cloud computing load balance

resource allocation method”, The Journal of

Supercomputing, Vol.72, No.7, pp.2488-2501,

2016.

[6] S.H.H. Madni, S.A.L. Muhammad, and Y.

Coulibaly, “Recent advancements in resource

allocation techniques for cloud computing

environment: a systematic review”, Cluster

Computing, Vol.20, No.3, pp.2489-2533, 2017.

[7] H. Ziafat and S.M. Babamir, “A hierarchical

structure for optimal resource allocation in

geographically distributed clouds”, Future

Generation Computer Systems, Vol.90, pp.539-

568.

[8] A. Singh, D. Juneja, and M. Malhotra, “A novel

agent based autonomous and service composition

framework for cost optimization of resource

provisioning in cloud computing”, Journal of

King Saud University-Computer and Information

Sciences, Vol.29, No.1, pp.19-28, 2017.

[9] Z. Zhong, K. Chen, X. Zhai, and S. Zhou, “Virtual

machine-based task scheduling algorithm in a

cloud computing environment”, Tsinghua Science

and Technology, Vol.210, No.6, pp.660-667, 2016.

[10] K. P. N. Jayasena, L. Li, and Q. Xie, “Multi-modal

multimedia big data analyzing architecture and

resource allocation on cloud platform”,

Neurocomputing, Vol.253, pp.135-143, 2017.

[11] F. Koch, M. D. Assunção, C. Cardonha, and M. A

Netto, “Optimising resource costs of cloud

computing for education”, Future Generation

Computer Systems, Vol.55, pp.473-479, 2016.

[12] B. Dhinesh and K. Venkata, “Honey bee behavior

inspired load balancing of tasks in cloud

computing environments”, Applied Soft

Computing, Vol.13, No.5, pp.2292-2303, 2013.

[13] A. Mosavi, “The large scale system of multiple

criteria decision making”, IFAC Proceedings,

Vol.43, No.8, pp.354-359, 2010.

[14] C. Selvaraj, R.S. Kumar, and M. Karnan, “A

survey on application of bio-inspired algorithms”,

International Journal of Computer Science and

Information Technologies, Vol.5, No.1, pp.366-

370, 2014.

[15] A. Mosavi and A. Varkonyi, “Learning in

robotics”, International Journal of Computer

Applications, Vol.157, No.1, pp.8-11, 2017.

[16] H. Izakian, B.T. Ladani, A. Abraham, and V.

Snasel, “A discrete particle swarm optimization

approach for Grid job scheduling”, International

Journal of Innovative Computing, Information

and Control, Vol.6, No.9, pp.1-15, 2010.

[17] T. Jena and J. R. Mohanty, “GA-based customer-

conscious resource allocation and task scheduling

in multi-cloud computing”, Arabian Journal for

Science and Engineering, pp. 1-16, 2017.

[18] X. Liu, X. Zhang, W. Li, and X. Zhang, “Swarm

optimization algorithms applied to multi-resource

fair allocation in heterogeneous cloud computing

systems”, Computing, Vol.99, No.12, pp.1231-

1255, 2017.

[19] H. Zheng, Y. Feng, and J. Tan, “A hybrid energy-

aware resource allocation approach in cloud

manufacturing environment”, IEEE Access, Vol.5,

pp. 12648-12656, 2017.

[20] M.H. Malekloo, N. Kara, and M. El Barachi, “An

energy efficient and SLA compliant approach for

resource allocation and consolidation in cloud

computing environments”, Sustainable

Computing: Informatics and Systems, Vol.17,

pp.9-24, 2018.

[21] F. Farahnakian, A. Ashraf, T. Pahikkala, P.

Liljeberg, J. Plosila, I. Porres, and H. Tenhunen,

“Using ant colony system to consolidate vms for

green cloud computing”, IEEE Transactions on

Services Computing, Vol.8, No.2, pp.187-198,

2015.

[22] P. Durgadevi and S. Srinivasan, “Resource

Allocation in Cloud Computing Using SFLA and

Cuckoo Search Hybridization”, International

Journal of Parallel Programming, pp.1-17, 2018.

