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Abstract: Cloud computing is one of the growing environment that outlines an internet-based computing system 

consisting of a large number of computers and other devices, where a number of things, such as computer infrastructure, 

access to applications, software, processing power, etc. are shared over the Internet. The allocation of the cloud 

resources to the user based on their request is a Non-deterministic Polynomial-time (NP) issue, which consumes more 

time. Therefore, heuristic methods utilize for optimizing resource allocation. In this research work, the Democratic 

Grey Wolf Optimization (DGWO) is proposed to overcome the limitations of the resource allocation in efficient way. 

In this method, DGWO performs the following steps; initializing the request size, generating requests, and estimate 

fitness value of DGWO, sorting, dividing and evaluating the requests of the user. The advantages of DGWO are higher 

speed convergence, easier implementation, global optimization capacity. The DGWO has high performance in 

unknown, challenging search spaces which has high local optima avoidance. The efficiency of DGWO is improved in 

terms of searching optimum resource time where the searching behavior is obtained from GWO. The DGWO method 

achieved 75% throughput, 96% allocation of resources compared to other meta-heuristic existing techniques. 

Keywords: Cloud computing, Democratic grey wolf optimization, Hardware resources, Throughput, Virtual machines. 

 

 

1. Introduction 

According to virtualization of resources, cloud 

computing becomes a trend methodology for 

computing [1], which provides main services such as 

Software as a Service (SaaS), Infrastructure as a 

Service (IaaS) and Platform as a Service (PaaS) [2, 3]. 

Resource management has a significant effect on 

Resource Allocation (RA) that is the Cloud 

datacentres are usually deployed as private, public and 

or hybrid. Cloud service provider tools are used for 

service deployment and this can be achieved, when 

appropriate datacentre resources are selected to run for 

actual application requirement in IaaS [4]. In a cloud 

environment the physical machines run multiple 

Virtual Machines (VM) which are presented to the 

clients as the computing resources. In cloud 

environment the physical machines run multiple 

virtual machines (VM) which are delivered to the 

clients as the computing resources [5]. The optimal 

number of servers obtain by resource allocation 

techniques which is used to allocate resources based 

on the user’s requirements. The cloud users can 

activate and change the resource loads with 

applications in minimum expenditure and rent the 

resources from providers [6, 7].  

Every user desires multiple resources intended for 

a defined task that improves the performance and 

finished on time [8]. Cloud computing is successfully 

utilized by organizations as it offers extensive 

solutions along with increasing flexibility, scalability, 

agility, reduces costs and higher efficiencies [9]. In the 

Cloud, Resource management consists of two stages 

namely resource scheduling and resource provisioning 

[10]. The cloud’s clients are interested to complete 

their works in the shortest possible time and at 

minimum cost, in addition to this, providers are 

interested to increase the profit by maximizing the use 
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of their resources with a lower overall cost [11]. These 

two objectives are in conflict and often they are not 

satisfied by using traditional resource allocation and 

load balancing techniques [12]. Traditional methods 

such as FIFO and Round-Robin is often trapped in 

local optimum, inaccurate, inconclusive, time 

consuming and also not effective for allocating the 

resources in multi-objective scheduling [13-15]. The 

meta-heuristic algorithms have a critical place in the 

field of research in the last few years and various 

meta-heuristics algorithms have some novel variations 

and are suggested for the allocation of resources in 

many fields [16]. 

There are many prominent meta-heuristic 

algorithms which are prominent as well as remarkable 

in cloud computing such as Ant Colony Optimization 

(ACO), the Cuckoo Search (CS), the Firefly 

Algorithm (FA), the Memetic Algorithm (MA) and so 

on. The objective of the paper is to implement the 

DGWO algorithm for resource allocation. The request 

size are initialized, fitness value of DGWO are 

calculated after the generation of requests. The 

DGWO achieved global optimization capacity, higher 

convergence speed and high performance in 

challenging search spaces. The implementation of 

DGWO is easier and have high local optima avoidance.  

The performance of the proposed method is compared 

with the existing methods which are explained in the 

following sections.  

The draft of the paper follows: Section 2 presented 

a brief survey on the recent techniques of the resource 

allocation, Section 3 presents the problem statement 

of the research work, the proposed methodology is 

presented in Section 4. The experimental results are 

given in Section 5. The conclusion of the work done 

with future work is given in Section 6.  

2. Literature review 

T. Jena, and J.R. Mohanty, [17] proposed Genetic 

Algorithm (GA) based Customer-Conscious RA and 

task scheduling (GACCRATS) to fill the gap between 

frequently changing customer requirement and 

available infrastructure for services. In order to attain 

minimum makespan time and maximum customer 

satisfaction, the GA method mapped the tasks to the 

VM of a multi-cloud federation. The experimental 

analysis stated that the GA-based RA provided better 

performance compared to other existing heuristic 

algorithms. The scalability of the simulated multi-

cloud environment was considerably high, so the 

method was unable to consider the data locality cost, 

energy consumption and running cost.  

X. Liu, X. Zhang, W. Li, and X. Zhang [18] 

implemented the optimization algorithms Discrete 

Artificial Bee Colony (DABC), Discrete Artificial 

Fish Swarm (DAFS), and Discrete Shuffled Frog 

Leaping (DSFL) to solve the NP-hard problems. They 

designed the self-adaptive parameter settings to 

balance between the exploitation and exploration of 

the algorithm. The experimental analysis showed that 

these three optimization algorithms increased the 

resource utilization and maximized the global 

dominant share, which was highly adaptable to several 

situations. With the grouping strategy, the results 

proved that the DSFL effectively solved the local 

optimal problem and found better solutions, but it took 

more computation time. 

H. Zheng, Y. Feng, and J. Tan [19] implemented 

the hybrid energy-aware RA approach for helping 

requestors to acquire energy efficient and satisfied 

manufacturing services. To conduct the combinatorial 

optimization process, Non-dominated Sorting Genetic 

Algorithm (NSGA-II) and multi-objective 

mathematical model was adopted. The method needs 

to study fuzzy information processing and intelligent 

algorithm for better performance of the NSGA-II 

approach. 

M.H. Malekloo, N. Kara, and M. El Barachi [20] 

executed an energy-aware and QoS-aware Multi-

Objective Ant Colony Optimization (MACO) 

approach for VM position and solidification. This 

approach aimed to obtain a tradeoff among energy 

proficiency, framework execution, and SLA-

consistence. The experimental results stated that the 

MACO approach saved energy and reduced the 

quality of VM relocations and SLA violations. The 

bottleneck of this method was unpredictability of cost, 

and a lapse in execution because of difficulties in 

finding necessities. 

F. Farahnakian, A. Ashraf, T. Pahikkala, P. 

Liljeberg, J. Plosila, I. Porres, and H. Tenhunen [21] 

implemented a dispersed framework design to 

perform dynamic VM consolidation to diminish 

energy utilization of cloud server centers while 

maintaining the desired QoS. The proposed ACO-

based VM Consolidation (ACOVMC) approach found 

a close optimal arrangement based on a predetermined 

target work. The method outperformed existing VM 

consolidation methodologies in terms of energy 

utilization, a number of VM movements, and QoS 

necessities concerning execution. The method 

decreased the energy utilization of data centres by 

consolidating VMs into the number of active Physical 

Machines (PM) while preserving the quality of service 

requirements. 

P. Durgadevi, and S. Srinivasan, [22] proposed the 

hybridized optimization algorithm which combined 

Shuffled Frog Leaping Algorithm (SFLA) with CS for 

allocating the resource effectively. The optimization 
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issues were solved by using SFLA-CS with the help 

of preceding steps that included initialization and 

generation of requests. The SFLA-CS method 

achieved higher convergence speed with the capacity 

of having global optimization. The experiments were 

conducted to evaluate the performance of SFLA-CS 

with existing techniques such as Krill herd, CS. The 

execution time was high in SFLA-CS method when 

compared with other existing techniques such as ABC 

and CS. 

3. Allocation of resource  

Resource allocation techniques help to attain an 

optimal number of servers by allocating resources to 

users based on their application demands. In cloud 

computing, there are two major limitations for 

allocating the resources. First, the capacity of the 

machines is physically limited; second, priorities for 

the implementation of the tasks should be in direction 

with the efficiency of resources. Ultimately, the 

waiting time and the completion time need to be 

reduced, in order to decrease the cost of system 

implementation. Traditional approaches solve the 

optimization problem, but these approaches are often 

trapped in a local optimum, time-consuming and 

inaccurate.  

4.  Proposed methodology 

The resources are allocated to users by using 

DGWO method, which performs several operations 

such as initialize the request size, generate the requests 

and calculate the fitness values of DGWO. Then the 

request of users is sorted, divided, modified the 

position of a request and finally evaluate the new 

solution for users. Then the resources are finally 

assigned to the cloud computing server grounded on 

the user requests. Finally, the DGWO algorithm 

diminishes the waiting time of the user request. The 

requests are then perfectly allocated on the cloud 

server. The block diagram for the technique is 

presented in Fig. 1.  

4.1 User request 

In the primary phase, the user requests are 

transmitted to the cloud environment. Then the users’ 

requests are assigned using following Eq. (1), 

 

𝑈𝑅𝑞(𝑥) = {𝑈𝑅𝑞1, 𝑈𝑅𝑞2, 𝑈𝑅𝑞3, … . , 𝑈𝑅𝑞𝑛}    (1) 
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Figure.1 Block Diagram of the proposed method 

 

Where, 𝑈 𝑅𝑞(𝑥)  is Number of requests, 𝑥 =

 {1, 2, 3, … , 𝑛} . The requests are gathered from the 

users for every particular time interval by the real-time 

request queue.  

4.2 Analyze request 

The requests of user are analysed one by one 

according to the request speed, weight and energy in 

the secondary phase. The optimization process starts 

after analysing the user request, which are described 

in following section.  

4.3 Democratic grey wolf optimization 

The natural inspiration of GWO technique is the 

strategy of grey wolves which are belongs to family 

Canidae. Grey wolfs have the nature of group living 

and each group consists of 5-12 members, which 

strictly organize to a social dominant hierarchal 

system. Each member of the group plays a part in the 

hunting process. The wolfs in the groups ranked as 

alpha, beta, omega and remaining subordinate wolfs 

classified as delta. The alpha wolfs are the leader of 

the group and it is in top of the grey wolf’s hierarchy, 

which takes the decision about the hunting and food. 

Alpha wolves (i.e. Female Wolf) are the decision 

makers of the group and controlling all the living 

activities of the group including the hunting. Beta 

wolves are the subordinate to the alpha wolves, they 

support the decision made by the alpha wolves. The 

Beta wolves are the potential candidate for supporting 

the cause of the alpha. Omega wolves present in the 

next rank in the group and they maintain the group 

dominance hierarchal structure. The rest of the 

member of the group are classified as delta and they 

are sub ordinance to the Omega. GWO works on the 

basis of the hunting process of the grey wolves. The 

hunting process of wolf’s is mathematically 

represented by the following phases: 

 

1. Track and chase the prey 

2. Purse, encircle and annoy the prey 

3. Attach the prey. 

 

GWO solution is divided into three-level based on 

the fitness and optimality of the solution. Probably the 

alpha’s decision is the fittest solution for the 

optimizing problem. The beta and delta decision are 

ranked as the next best two solutions and the 

remaining solutions are by omega. The process of 

encircling is given in Eq. (2).  

 

�⃗�(𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ ⃗(𝑡) + 𝐴. �⃗⃗⃗�     (2) 

 

The �⃗� in the Eq. (2) gives the location of the prey 

and 𝑡 represents the iteration number, 𝐴 and 𝐶 are the 

coefficient vector. The value of �⃗⃗⃗�  which is a 

behaviour of encircling prey is given in Eq. (3). 

 

�⃗⃗⃗� = |𝐶. 𝑋𝑝
⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)|                 (3) 

 

The 𝐴 and 𝐶  are manipulated in the Eq. (4) and  

(5). 

 

𝐴 = 2�⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗�      (4) 

 

𝐶 = 2𝑟2
⃗⃗⃗⃗⃗⃗⃗                   (5) 

 

The components of �⃗� are decreased from 2 to 0 

over the number of iteration and 𝑟1⃗⃗⃗ ⃗  and 𝑟2⃗⃗⃗⃗  are the 

random vector in [0, 1]. 

Alpha always takes the lead for the hunting, beta 

and delta knows the location of the prey, this gives the 

best three solutions to update the location followed by 

other agents based on the best search agent. The Eq. 

for the position updating is given in the Eq. (6) to (8). 

 

𝐷𝑎
⃗⃗ ⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗⃗. 𝑋𝑎
⃗⃗ ⃗⃗⃗ − �⃗�|, 𝐷𝛽

⃗⃗⃗⃗⃗⃗ = |𝐶2
⃗⃗⃗⃗⃗. 𝑋𝛽

⃗⃗ ⃗⃗⃗ − �⃗�|, 𝐷𝛿
⃗⃗⃗⃗⃗⃗ =

|𝐶3
⃗⃗⃗⃗⃗. 𝑋𝛿

⃗⃗ ⃗⃗ ⃗ − �⃗�|                   (6) 

 

𝑋1
⃗⃗⃗⃗⃗ = |𝑋𝑎

⃗⃗ ⃗⃗⃗ − 𝐴𝑎
⃗⃗ ⃗⃗ ⃗𝐷𝛼

⃗⃗⃗⃗⃗⃗ |, 𝑋2
⃗⃗⃗⃗⃗ = |𝑋𝛽

⃗⃗ ⃗⃗ ⃗ − 𝐴2
⃗⃗ ⃗⃗ ⃗𝐷𝛽

⃗⃗⃗⃗⃗⃗ |, 𝑋3
⃗⃗⃗⃗⃗ =

|𝑋𝛿
⃗⃗ ⃗⃗⃗ − 𝐴3

⃗⃗ ⃗⃗ ⃗𝐷𝛿
⃗⃗⃗⃗⃗⃗ |        (7) 

 

      �⃗�(𝑡 + 1) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
    (8) 

 

In GWO, the updation of �⃗� in every round [2, 0] is 

used to control the tradeoff between the exploration 

and exploitation which is given in Eq. (9). 

 

�⃗� = 2 − 𝑡.
2

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
                  (9) 

 

Where 𝑡  is the number of the iteration and 

𝑀𝑎𝑥𝑖𝑡𝑒𝑟  is the maximum number of iteration for 

optimization. By using Eq. (9), the optimal values are 

calculated with the help of request, and for every 

request, the optimal value is calculated individually 

and the whole values are summed to get the better 

solution. Finally, DGWO method allocated the 

resources by using entire user requests.  

5. Experimental result 
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The time for allocation of resources, processing 

elements capacity and the knapsack issues in RA are 

reduced by using proposed work. The proposed 

DGWO method executed in JAVA with CloudSim 

tool and the efficiency of DGWO method validated in 

terms of execution time, allocation mechanism, 

throughput and so on. CloudSim is a software tool 

used for simulations in cloud environment based 

experiments. The parameters which are used in 

proposed DGWO is described in below Table 1. 

5.1 Evaluation of parameter metrics 

In this section, the performance of the proposed 

method is calculated by evaluating the following 

parameters such as execution time, throughput, time 

based task execution, waiting time, energy 

consumption, makespan and allocation mechanism. 

The parameters of the proposed method compared 

with existing methodologies such as Hybrid ABC-CS 

algorithm (HABBCS), krill herd and Shuffled Frog 

Leaping Algorithm (SFLA)- CS Algorithm. In 

complex situations, these existing techniques possess 

the request speed and sizes are increased. Those 

evaluations are carried out in server-side only when 

allocating the resources. While considering the pre-

specifie tolerance, the fitness function of SFLA-CS is 

very less within the successive iterations. To 

overcome this problem, DGWO is proposed with 

better fitness function for allocating the resources to 

the users. 

5.1.1. Execution time 

The execution time of DGWO is very less when 

compared with other existing methods, and those 

values are tabulated in Table 1. DGWO required 3800 

𝑚𝑠 for executing the task, but Krill herd and SFLA-

CS required 8500 𝑚𝑠, 4500 𝑚𝑠  respectively. The 

execution time is computed in Eq. (10), 

 

𝐸𝑇 = 𝐸(𝑡) − 𝐹(𝑡)                 (10) 

Where 𝐸𝑇  is the computational time, 𝐸(𝑡) is the 

ending time of the process, 𝐹(𝑡) is the beginning time 

of the process. Table 2 and Fig. 2 represents the 

performance parameters such as execution time of the 

proposed method with existing methodologies. 

5.1.2. Throughput 

Throughput refers to the quantity of information 

transported as of one site to a dissimilar one in a 

specified quantity of time. It is utilized to measure the 

performances of hard drives, RAM, Internet and the 

network connections. The throughput of the proposed 

system should be higher than the existing system 

throughput. The throughput is estimated in Eq. (11). 

 

𝑇𝑡 =
𝐼𝑡

𝑡
       (11) 

 

Where, 𝐼𝑡 is the transported information and 𝑡 is the 

quantity of time. The throughput of different 

algorithms is compared and exhibited in Table 3 and 

Fig. 3.  
 

Table 1. Parameter settings 

Parameters Value of parameters 

Number of Clouds 5, 10, 15, 30, 50 

Number of tasks 15,50,60,100,150,200,250,300 

Structure of 

Datasets 

(Number of tasks) * (number of 

virtual machines) 

Reserved 

instances 

i1, i2, i3, i4 

 

Table 2. Performance of execution time 

Methods Execution time (ms) 

HABCCS [22] 15000 

Krill herd [22] 8500 

SFLA-CS [22] 4500 

DGWO 3800 

 

Table 3. Performance of Throughput 

Methods Throughput (in sec) 

HABCCS [22] 15 

Krill herd [22] 45 

SFLA-CS [22] 60 

DGWO 75 
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Figure.2 Performance of execution time 

 
Figure.3 Performance of throughput 

 

5.1.3. Time based task execution 

The task is scheduled by time-based task 

execution or else event-cantered triggers are set on a 

task which starts its execution. The time-based task 

execution of DGWO are compared with HABCCS, 

SLFA-CS and Krill herd, and their results are 

tabulated in Table 3. The performance of DGWO in 

task-based execution is shown in Table 4. 

5.1.4. Waiting time 

Waiting time (Turnaround time) is defined as the 

time taken for processing the request, and 

consummation of the request which is computed using 

Eq. (12). 

 

𝑊(𝑡)𝐴𝑣𝑔  = 𝑇 (𝑡)𝐴𝑣𝑔  −  𝐵(𝑡)    (12) 

 

where 𝑊(𝑡)𝐴𝑣𝑔  is ‘average waiting time’, 

𝑇 (𝑡)𝐴𝑣𝑔 is considered as ‘average turnaround time’, 

then 𝐵(𝑡)  is ‘burst time’. The comparison on the 

waiting time is given in Table 5. 

5.1.5. Allocation mechanism 

In this section, the allocation mechanism of 

DGWO are compared with other existing methods, 

which is shown in Table 6. Overall, the DGWO 

optimization algorithm is better in allocating 

resources to users in the cloud environment. Fig. 4 

presents the graphical representation of the proposed 

method in terms of allocation mechanism. 

The results show that the proposed DGWO 

approach performs well by achieving 75% throughput 

by the execution time of 4000 𝑚𝑠. 

5.1.6. Makespan 

The total execution of all task is defined as 

Makespan, which is explained in Eq. (13) 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒(𝑇𝑎𝑠𝑘𝑖)𝑛
𝑖=0  (13) 

 

In this section, makespan of proposed DGWO is 

compared with existing method GACCRATS and 

Teacher Learning Based Optimization (TLBO) [17] 

for validating the performance of DGWO. Table 7 

describes the makespan time of both existing methods 

and DGWO. Fig. 5 describes the graphical 
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representation of makespan of DGWO with existing 

techniques.  
 

Table 4. Performance of Time based Evaluations 

Number 

of Tasks 

Time based Evaluations 

HABCCS 

[22] 

Krill 

herd 

[22] 

SLFA-

CS [22] 

DGW

O 

50 60 30 18 10 

200 80 47 32 20 

250 75 65 50 35 

300 83 94 25 15 

 

Table 5. Performance of Waiting Time 

Waiting Time 

Number 

of 

Tasks 

HABCCS 

[22] 

Krill 

herd 

[22] 

SLFA-

CS 

[22] 

DGWO 

15 40 210 260 300 

60 30 170 220 260 

100 35 150 170 200 

150 25 130 150 195 

 

Table 6. Performance of Allocation Mechanism 

Methods Allocation (%) 

HABCCS [22] 54 

Krill herd [22] 75 

SFLA-CS [22] 93 

DGWO 96 

 

 
Figure.4 Performance of allocation mechanism 

 

Table 7. Comparison of makespan of DGWO 

Methods Makespan Time 

TLBO 5.004 

GACCRATS 3.378 

DGWO 2.781 

 

 
Figure.5 Makespan comparison of DGWO 

 

From the above Table 6 and Fig. 5, the proposed 

DGWO method consume less makespan than all the 

existing methods such as TLBO and GACCRATS. 

Makespan is required to have a lower value. TLBO 

algorithm fails to achieve this goal as it takes longer 

time to execute, when compared with GACCRATS. 

5.1.7. Energy consumption 

The application workloads are handled by 

physical resources in a data center which consumes 

energy a lot. According to memory, disk, network card 

and utilization of CPU, the energy is consumed. Table 

8 describes the consumption of energy of proposed 

DGWO for different tasks with existing method 

ACOVMC approach [21]. Fig. 6 describes the energy 

consumption of DGWO with ACOVMC. 

From the above Table 8, it clearly shows that the 

proposed DGWO consumed less energy when 

compared with ACOVMC. The DGWO achieved 

89.4% energy whereas ACOVMC achieved 110% 

energy for the 100th task. When the number of task 

increases, the consumption of energy for both 

methods increases. The ACOVMC achieved 129% 

energy for 250th task, whereas the proposed DGWO 

consumed nearly 20% less energy. 

5.1.8. Overall performance of DGWO 

In this section, the overall performance of DGWO 

is evaluated by using parametric such as execution 

time, throughput and allocation time, Time based 

evaluation and waiting time. Table 9 describes the 
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performance values of DGWO in terms of allocation 
 

Table 8. Energy Consumption 

Number of 

task 

ACOVMC Proposed 

DGWO 

50 96 86 

100 110 89.4 

150 121 92.6 

200 125 96 

250 129 99.5 

 
 

Figure.6 Energy consumption of DGWO 

 
Table 9. Overall performance of DGWO 

Methodology Allocation 

Mechanism 

Through

put 

Executio

n Time 

HABCCS [22] 54 15 15000 

SFLA-CS [22] 93 60 5000 

DGWO 96 75 3800 

 

 

Table 10. Performance of DGWO 

Methodology Time based Evaluation Turnaround time 

Number of Tasks Number of Tasks 

50 200 250 300 15 60 100 150 

Krill herd [22] 30 47 65 94 210 170 150 130 

SFLA-CS [22] 18 32 50 25 260 220 170 150 

DGWO 10 20 35 15 300 260 200 195 

 

mechanism, throughput and execution time. The 

values are compared with only two optimization 

techniques such as SFLA-CS and HABCCS.  

When compared with HABCCS and SFLA-CS, 

the DGWO achieved higher allocation mechanism, 

less execution time and throughput. The DGWO 

achieved 96% allocation of resources whereas the 

HABCSS achieved very less allocation of resources 

(i.e.54%). The execution time of HABCSS was very 

high when compared with all other optimization 

techniques. The SFLA-CS achieved the execution of 

results in 5000𝑚𝑠, whereas the proposed achieved the 

results in 3800𝑚𝑠. The throughput of DGWO is high 

(i.e. 75), when compared with other techniques. This 

shows that the proposed DGWO achieved better 

results in all parameters which is used to overcome the 

issues of allocating the resources effectively.  

The other parameters such as waiting time and 

time based evaluation for different task are evaluated 

in Table 10.  

From the Table 7, the proposed method achieved 

better results in both turnaround time and time based 

evaluation when compared with existing techniques 

such as Krill herd and SFLA-CS. When the number of 

task increases, the turnaround time for proposed 

method decreases. The time based evaluation is nearly 

very less for proposed DGWO. For the task 300, the 

DGWO achieved 15ms in time based evaluation, 

whereas SFLA-CS and Krill herd achieved 

25𝑚𝑠 𝑎𝑛𝑑 94𝑚𝑠. 

6. Conclusion 

The DGWO algorithm is formulated to reduce the 

knapsack issue for RA mechanism on the CC 

environment. The DWGO is compared with other 

existing systems which are executed on the same 

working platform of JAVA with CloudSim. The 

execution time for the proposed work is observed as 

4000 𝑚𝑠, the throughput is 75 𝑠, and the time required 

for both turn-around and resource allocation also very 

less. This research showed that the existing methods 

such as HABCSS, SFLA-CS, krill herd require high 

execution time, throughput, and the turn-around time 

compared to the proposed DWGO method. In future 

work, efficient energy efficient management can be 

introduced to reduce the maintenance cost of the 

system. 
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