
Received: February 28, 2019 255

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

An Advanced Mechanism for Software Size Estimation Using Combinational

Artificial Intelligence

Varinder Kaur Attri1* Jatinder Singh Bal2

1Department of Computer Science and Engineering,

Punjab Technical University Kapurthala, India
2Department of Computer Science and Engineering,

Universal Institute of Engineering and Technology Mohali, India

* Corresponding author’s Email: varinder2002@yahoo.com

Abstract: Software Size Estimation is the most essential and crucial calculations of the Software Development Life

Cycle (SDLC) process. If done wisely, it may accumulate a large amount and time and if done badly, it may cost a

lot of amounts. In this modern era of development, traditional methods of estimation do not stand a chance to

provide output precisely. Constructive Cost Model (COCOMO)-2 is one of finest calculation methods for size and

cost. This paper presents an automated early size estimation technique using Artificial Intelligence (AI). The

categorization of the size estimation is into three parts, that is, UML diagrams/code folder mapping via COCOMO-2,

COCOMO-2 metrics training, and the classification process to have an appropriate size. This paper focused on

regression based training of AI which makes the estimation model more precise. For the evaluation, Mean Square

Error (MSE) and Size estimation have been considered according to project samples. It has been seen that the

proposed mechanism has attained a minimum MSE of 0.0115 and the difference in sizes is also not high. The

comparison has also been done to depict the efficacy of the proposed work with A. B. Nassif et al. and S. Lohmor

with B.B. Sagar for True positive rate and Mean square error.

Keywords: Early size estimation, Artificial intelligence, COCOMO-2, Mean square error, True positive rate.

1. Introduction

The Early Size Estimation (ESE) leads to the

better success of a project1. A lot of previous studies

have proved its significance in the success and

failure of projects by ESE. Early estimation ensures

less effort and low-risk factor. The accurate

methodology of prediction generates sound

estimations. Regression analysis leads to better

efficiency in the size estimation. A detailed study is

presented by A.B. Nassif [1]. The estimation of a

project is a two-step process namely training and

compilation or classification. The brief of two-step

is given by Albrecht [2]. Function point analysis

(FPA) is an Object Oriented Analysis (OOA)

process which uses internal logical files and

transactional functions for the estimation of the

project size [3]. If the size is estimated in the early

stage of the development, a lot of effort and time

can be saved. An early estimation technique was

presented proposed in 2013 using the log-linear

model. The linear model is based on linear

propagation model supported by [4]:

 𝑍 = 𝑎𝑥 + 𝑏 (1)

As depicted in Eq. (1), Z is the predicted output

in terms of software size, a and b are subjective

constants and × is the software component. The

components of the software can be either Object

Oriented Programming System (OOPS) based or

regression based. The work done by Nassif was

extended by Kocaguneli 2015 [5]. The author has

also introduced a multilayer perception model using

Artificial Neural Network (ANN). The concept of

training and classification in size estimation was

Received: February 28, 2019 256

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

also introduced in the model. Sarno has presented a

comparison of different Neural Networks in cost

prediction in 2015 [6]. COCOMO was utilized as a

major component collector in this paper.COCOMO-

2 was already introduced in 2000 by Dillibabu but it

was just a case study [7]. Shalev-Shwartz has

introduced Support Vector Machine (SVM) to

reduce the training dependencies in 2008 [8]. This

paper focuses on extending the possibilities of

Neural Network by combining ANN (Artificial

Neural Network) with SVM (Support Vector

Machine). This research has utilized a hybridization

of ANN and SVM as an artificial intelligence

technique because in existing work several

researchers proposed different classifiers for early

size estimation but better performance has not been

achieved. The existing classifiers have their own

features and flow of an algorithm for the estimation

of the software size is considered as time-consuming

processes [9-10]. So, a hybrid classifier has been

designed to minimize the time complexity of the

system with the best true positive rate. The main

advantages of the proposed work are given as:

• Software estimators understanding can be

used to calculate a better-estimated cost.

• Based on the proposed research work, we

get to know the very small dissimilarity

between the preceding completed software

projects and current software projects and

this is also a very important way of

discovering their real impacts.

• The proposed would need estimators for

the discovery of attributes for the easy

description of the software.

Some of the works which are used in this

proposed architecture set are listed in the related

work in section 2. The problem according to which

the aims of the research are defined is in section 3.

Later in section 4, the proposed architecture

considering the dataset, the solution of the problem

with the description is defined. The parameters that

are taken for the implementation are also computed

in this section and in section, the outcome is defined

in the form of conclusion and scope of the work is

also mentioned.

2. Related work

The researchers have put their effort in the

software engineering area for the early estimation of

software size. [A.B.Nassif and L. F. Capret in 2013]

[1] have presented a multilayer perceptron model

which classifies the utilization of the hidden layer.

The proposed algorithm has used case point analysis

or model for effort prediction. Although this

research article was not directly for the execution of

early size prediction, though, the concept of

multilayer perception model helped us to understand

the concept of multilayer perceptron model and that

is why the proposed article has utilized multilayer

neural network. [Emin Borandag et al. in 2016] [3]

have computed the software project size via function

point technique with Mark II FPA technique.

Numbers of approaches are there for the estimation

of software size considering as function point

method like IFPUG FPA, MK IIFPA, and

COSMUC FFP. The work has already being done

for software projects. The obtained data have been

compared with traditional approaches. As the

researchers have not utilized the Artificial

Intelligence techniques that could be used to obtain

the desired results. [Ekrem Kocaguneli et al. in

2015] [5] has checked is it probable to discover the

transfer learners for the effort estimation of software.

The researchers have utilized data on 154 projects

from two sources for the investigation of transfer

learning among varied time intervals and 195

projects from 51 sources for the provision of

evidence on value for existing cross-company

learning issues of transfer learning. It has been

discovered the similar transfer learning technique

could be useful for transfer effort estimation

outcome for the problem of cross-company learning

and cross time learning issues. The research has

lacked in transferring the instances between time

intervals and domain intervals for the transfer of

data in the data. The instance-based transfer is

considered as the most challenging task to carry out

the data from varied projects using diverse

ontologies. [A.L.I. Oliveir. in 2006] [19] has

presented a regression model utilizing SVM for

component analysis. The research of this article has

inspired users to use SVM. The presented regression

model uses various kernels for the bifurcation of the

component class and attributes. The research has

utilized SVM as a classifier which is not that

efficient as compared to neural network

classification. [S.Lohmor and B.B.Sagar in 2017]

[22] have proposed an effective method for the

Software reliability growth model with

hybridization of dolphin echolocation optimization

artificial neural network via parallel computation.

Dolphin echolocation optimization has been utilized

for weight optimization with ANN structure for the

reduction of computational complexity. The

proposed mechanism has shown its effectiveness by

contrasting the work with traditional approaches and

the considered parameters are flexible and efficient

but lack in MSE decrement rate. [Forrest W.

Received: February 28, 2019 257

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

Crawford et al. in 2015] [25] has shown the method

of utilizing network data being analyzed by RDS

(Respondent-driven sampling) for the estimation of

hidden population size. The researchers have used

an effective Bayesian technique for the integration

of missing edges for employed subgraph individuals.

Validation of techniques is done by the simulated

data and the techniques are applied for the

estimation of a number of users who have taken

drugs in Russia. Better techniques of learning could

be utilized to capture the target population size.

3. Problem formulation

Software size estimation refers to the estimation

of project size before it is completely deployed [11].

Software design and development with size

estimation involves a range of practices with

varying levels of formalities [12]. Some of the

instances like test-driven development, formal

methods, design patterns, and coding styles. The

common goal of the proposed work is to produce

high-quality software to sort out the problems of

existing work. This process is done in order to attain

optimal cost for the project and the total amount of

expected cost so that the resources can be managed

in an efficient manner because it is the most

challenging factor of software estimation [13]. As

technology is leading towards a new era of

development, hence, traditional methods like

computing the object-oriented metrics’ and then

identifying the project total size that will not be very

effective here. There are several modern-day

algorithms which can be opted in this contrast but

the question is what will the selected architecture

sustains for long and can handle complex

architectures also? The problem of this research

work looks into the matter of estimating size with

advanced mechanisms and surfing through the

complex architectures of codes and UML diagrams

[14]. There are a lot of techniques for the software

size estimation but due to some drawback, they

cannot provide better efficiency in this filed. When

there is a utilization of SVM, then there is an

enhancement in the complexity because of its binary

nature. If the only the neural network is used then

the estimation time becomes more. So, this work has

put an effort to minimize this problem by using a

neural network with SVM [15]. The factors

motivating to execute the research in the domain of

artificial intelligence, metrics, and quality are:

• The complexity of the software is increasing

day by day so the estimation of size is quite

difficult.

• Human life is dependent upon the software and

its quality. Therefore, in the case of large size

software is the main concern and early

estimation of software size is a big requirement

of a human.

• To ensure software size in an early stage,

software metrics are required.

• To tackle with the time complexity, artificial

intelligence techniques are required with better

prediction rate.

Hence, the researchers were motivated to pursue

the research in the matter of metrics based

hybridization of artificial intelligence techniques in

the SDLC process.

4. Proposed architecture

4.1 Collection of Data

Dataset is a collection of UML diagrams which

has been drawn from different code architecture of

the JFree Chart. The Internet provides a lot of utility

tools for the conversion of code frame into diagram

frame. Gliffy is the best conversion utility tools

which are available online. Code architectures have

been changed here https://www.gliffy.com into

UML diagrams [16].

4.2 Proposed solution

The proposed solution for the size estimation is

divided into the following section:

i. Mapping of the UML diagrams / Code Folder

through COCOMO-2

ii. Training of COCOMO-2 metrics for the further

size estimation

iii. Classification for the appropriate size.

4.3 Mapping of UML Diagrams / Code Folder

through COCOMO2

COCOMO-2 is the advanced software

architectures for the cost, effort and size estimation

and it provides early mapping through complex

metric architecture. The following utility metrics fall

under COCOMO-2 [17]. Table 1 shows varied

COCOMO2 metrics and in graphical form is shown

in Fig. 1.

Table 1.COCOMO2 metrics

RELY CPLX RUSE STOR TIME

IN MS

LTEX

0.23 0.41 0.26 0.78 300 OO

0.26 0.56 0.28 0.87 323 OO

0.45 0.37 0.39 0.54 256 OO

0.74 0.12 0.59 0.41 263 OO

Received: February 28, 2019 258

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

 Figure.1 Metric comparison for different diagrams

RELY, CPLX, RUSE, and STOR is divided into

three segments as detailed below:

0 < 𝑥 < 0.33 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑠𝑒 1

0.33 < 𝑥 < 0.66 𝐻𝑖𝑔ℎ 𝐶𝑎𝑠𝑒 2
𝑥 > 0.66 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 𝐶𝑎𝑠𝑒 3

RELY (Product Reliability): It estimates the product

reliability and is calculated using the output to the

desired output ratio.

RUSE (The Reuse required): It computes the

estimated project reusability according to the total

number of classes used in the architecture. The

mathematical expression is shown in Eq. (2).

𝑅𝑈𝑆𝐸 =
∑ 𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑛

𝑖=1

∑ 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑑𝑒𝑛
𝑖=1

 (2)

As shown in Eq. (2), n is the total lines of codes.

STOR (Storage): It is the required space for the

storage of every data used in the diagram or code.

Mathematically, it can be demonstrated as Eq. (3):

𝑆𝑇𝑂𝑅 = ∑ 𝑀𝑒𝑚𝑆𝑝𝑎𝑐𝑒(𝐴𝑙𝑙𝑡𝑦𝑝𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)𝑛
𝑖=1 (3)

As shown in Eq. (3), 𝑛 is the Total line of codes

and 𝑛 is the Total lines of codes and 𝑀𝑒𝑚𝑆𝑝𝑎𝑐𝑒 is

the total memory space of software.

4.4 TIME (Total time frame)

It may refer to the total time of completion of a

code frame or total time frame for the creation of a

project. It relies on the uniqueness of the code, the

types of components getting used in the program. It

also depends upon how many code frames has to be

developed and how much code frame is already in

stock. It also considers the frames which have to be

borrowed or purchased through any third-party

vendor. In terms of execution, it depends upon how

many lines of codes have been written and what is

the complexity of the code [18].

4.5 CPLX (Complexity)

It relies on the design of the frame and the level

of experience of the developer. If the developer is

experienced then the complexity of the code or

architecture will be low as the developer will not

attempt to write the entire code on his own but he

would prefer to use the reusable components and

class diagrams which make the complexity of

architecture to a lower side [19].

4.6 LTEX (Language and Tools Experience)

It represents the type of programming style

opted in most of the cases, these metrics are divided

into the following categories [20].

• Nominal

• Average

• High

• Very High

• Results

A total of 100 diagrams including code diagrams

have been used and the metrics have been evaluated,

out of which, 4 is presented here [21]:

Before moving to the second part of the

proposed methodology, the following data is also

evaluated.

Estimated- Effort: It is the total effort which will

be applied in order to attain the goal of development.

The mathematical expression is depicted in Eq. (4).

𝐸 = {

𝐵+0.01×𝑇𝑜𝑡𝑎𝑙 (𝐷𝑖𝑎𝑔𝑟𝑎𝑚 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡)

𝐴×((𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠)𝐸)×𝐸𝑓𝑓𝑜𝑟𝑡
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

} (4)

Actual Lines of Code through COCOMO-2

𝐾𝐿𝑂𝐶 = {(log(𝐸 − 𝐴) − log (𝐵))𝐶} (5)

As depicted in Eq. (5), 𝐴, 𝐵 , and 𝐶 are arbitrary

constants used in the proposed work.

4.7 Training of COCOMO-2 Metrics for the

Further Size Estimation

The second phase is to make the classification

algorithm to understand the design of the desired

output. The idea is to classify in order to get the

presented diagram size and to compare with KLOC

to justify how accurate the proposed architecture is

[22].

Three types of training algorithm have been

presented namely Support Vector Machine,

FFBPNN (Feed Forward Back Propagation Neural

Network) and a combination of SVM and NN. SVM

Received: February 28, 2019 259

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

is a binary class classifier and if the classifier has to

be utilized for multiple classes, it works with turn by

turn concept.

Different in architecture from SVM, NN is a

multiple class classifier but it has been seen often

that it gets confused between two classes if they fall

almost in the same range. To remove the vagueness

of NN, a combination of SVM and NN is used as the

main proposal of this research work. The

architecture of training is represented in Fig. 2.

The presented architecture in Fig. 2 describes a

hybrid structure of NN and SVM. NN has three

layers in which the first layer contains the input

vector l1 and l2 which goes into the intermediate

layer of the NN. The classified vector is lx. If the

classified vector has more than or equal to two

classes then SVM would be called for the further

binary classification.

4.8 Classification for appropriate size

The classification process requires a training

mechanism which is mentioned in phase II of the

proposed solution. This architecture takes the

COCOMO 2 Cost drivers as the input and passes it

to the training layer of the NN. As explained in Fig.

2 that the training for SVM is required only when

the NN falls into any conflict between two classes

[23].

Algorithm: Neuro-SVM for Size Estimation

Trained Neural=Function TrainNeuraln (Cost

Drivers) // function for training using neural

1. Training_data=[]; // Initializing the training

vector as empty

2. VecCount=0; // to increment in array

3. for each vec in Cost_Drivers/Metrics

4. Training_data(VecCount,1)=Vec; // Input data

for training

5. VecCount=VecCount+1; // Increment in the array

position

6. End For

7. Net= newff(Training_data, Group,20)//

Initializing the Neural Network Training

Architecture, Group will be its related Kloc & 20 is

the no of the count of hidden neurons in the training

architecture

8. Net.trainparams.epochs=50 // Neural Network is

iterative and hence a total of 100 iterations is

supplied. It is not compulsory that total running

iteration equalizes to the total provided iterations. It

completely depends upon the input data and the

trajectory which the Neural Network performs in

order to get trained.

Figure.2 Proposed training and classification architecture

9. Net=train (net, Training_data); // Training of

system using train command

10. End Function

The algorithms of Neuro-SVM are utilized for

the training of the proposed system and return a

trained structure of the system. The algorithm of

SVM training is given below section. The above

architecture produces the outcome represented in fig.

3 and 4.

4.9 Training of COCOMO2 metrics for the

further size estimation

The training of NN is done in two phases that

are defined below and are shown in Figs. 3, 4, 5 and

6 [24].

1. Mean Square Error (MSE) justification

𝑀𝑆𝐸 =
∑ 𝑂𝑢𝑡𝑐𝑜𝑚𝑒−∑ 𝐼𝑛𝑝𝑢𝑡

𝐿𝑒𝑛𝑔𝑡ℎ
𝑜𝑓 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 (6)

As shown in Eq. (6), 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 is the output of the

neural network during the training and Input is input

data of the neural network.

2. Regression analysis

It has been done in order to make sure each and

every segment of data is understandable by the

Neural Architecture.

The outcome of the regression analysis is

represented in Figs. 5 and 6.

If classified
vector has
more than
or 2 classes

Train SVM for
conflicted classes and

classify

Hidden
Layer

Processing

lx

l2

l1

Received: February 28, 2019 260

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

Figure.3 Training architecture of neural network

Figure.4 MSE validation for training

Figure.5 Regression stage1

Figure.6 Regression Stage 2

This trained architecture aims to classify the data

for an expected size and then it would be compared

to the size calculated by COCOMO2 but when the

SVM return multiple sizes then the proposed

architecture utilizes SVM for the conflicted classes

[25].

Algorithm Train Classify SVM (Input –

Conflicted Sizes from Neural)

1. Train DataSVM=[]; // Empty variable to store

training structure

2. Train count=0

3. for each conflict in Input For each conflict in

Input

4.TrainDataSVM(Traincount,1)=Conflict

Output Neural(conflict) // Input set will be conflicted

output

5. GroupSVM(Train Count)=KLOCoutput

Groups(Train Count)=KLOCoutput // Total target

of training because it is supervised technique

6. Train Count=TrainCount+1;

7. End For

8.SVMStruct=TrainSvm (TrainDataSVM,

GroupSVM);

9. TestDataSVM=TrainDataSVM; // As SVM is a

supervised learning method, hence the test data will

be equal to the traindata

10.SvmClass=ClassifySVM(SVMStruct,TestDataSV

M)

11. Publish SvmClass

12. End Function

The following architecture diagram represented

in Fig. 7 is attained after the training of SVM.

Received: February 28, 2019 261

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

Figure.7 Training architecture of SVM

Table 2.Size difference and MSE of the proposed

architecture

Proj

ect

samp

les

Real

Size

COCO

MO 2

size

Pro-

posed

Size

MSE

in

size

estim

ation

Validatio

n with

Diverse

Neurons

1 890 900 879 0.023 10

2 900 934 869 0.069 12

3 899 945 872 0.084 14

4 920 963 899 0.066 16

5 910 978 865 0.012 18

Results represented in table 2 have been

evaluated as per the proposed framework.

Table 2 represents the numeral value analysis of

the proposed architecture with a varying number of

neuron validations. Varying neurons will result in a

change in the regression model and its regression

analysis. An increasing number of neurons rapidly

do not assure the true desired result. Hence, an

incremental two neuron set has been applied and, on

an average, for that data set used, 18 neurons have

been evaluated to provide optimal results.

Graphical representation represented in Figs. 8 and 9

is developed according to Table 2.

Results shown in Figs. 8 and 9 have

demonstrated that the proposed framework that

sustains minimum MSE of 0.0115 and the difference

in sizes is also not high.

The average difference between proposed

architecture and COCOMO2 size is 30% which are

appreciable. The proposed architecture has utilized

the features of both Neural Network and Support

Vector Machines very wisely and as a result, the

estimation error is very low.

Figure.8 Size comparison

Figure.9 MSE representation

Table 3. Comparison of True Positive Rate (TPR) for

COCOMO-2 and Proposed

Iteration True positive rate by

A. B. Nassif et al.

(2013) [1]

True positive

rate-

Proposed

1 0.561 0.695

2 0.589 0.6935

3 0.5796 0.6993

4 0.556 0.7012

5 0.5896 0.7011

Figure.10 Comparison of true positive rate of existing and

proposed work

Received: February 28, 2019 262

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

Table 4.Comparison of MSE for COCOMO-2 and

Proposed

MSE by

S. Lohmor and B.B.

Sagar (2017) [22]

MSE-

Proposed

0.87 0.0115

Figure.11 Comparison of MSE of existing and proposed

work

Fig. 10 and Table 3 represents the True Positive

Rate (TPR) of the proposed architecture and existing

work by A. B. Nassif et al. (2013) [1]. TPR is the

proportion of the total number of accurate prediction

to the total number of predictions as shown in Eq.

(7).

𝑇𝑃𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (7)

The proposed model remains consistent for all the

project samples undertaken. The maximum TPR

attained by the proposed model is 0.71 whereas the

COCOMO2 model exhibits a total TPR of 0.58. In

this paper, we have compared the proposed work

with work by A. B. Nassif in which the researcher

has used COCOMO-2. The proposed work has used

the combination of COCOMO-2 along with Neuro-

SVM technique to overcome the problem of

COCOMO-2 and the improvement is shown in the

above figures.

Fig. 11 and Table 4 depicts the comparison of

MSE for proposed work and existing work by S.

Lohmor and B.B. Sagar (2017) [22]. MSE is the

mean of the squares of the difference among the

observed value and the estimated value of the

software errors being detected. Mathematically, it

could be represented as:

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑛𝑖 − 𝑛(𝑞𝑖))2𝑚

𝑖=1 (8)

In Eq. (8), ni is the estimated real failures and n(qi)

is the observed failures. It can be seen from the

contrast that the proposed work has less MSE value

as compared with the existing work by Lohmor and

B.B. Sagar.

5. Conclusion and future scope

The proposed architecture has utilized the

effectiveness of COCOMO-2 and has combined it

with NN and SVM architecture to make the

estimation more precise. The result section

demonstrates that the proposed mechanism is more

precise as compared to COCOMO-2. The evaluation

is done as per size estimation and MSE computation.

The MSE improvement of the proposed model

stands 30% more efficient than COCOMO-2. A

comparison is conducted between conventional

works with the proposed work. It has been seen that

the proposed work has a TPR of 0.71 whereas

existing work has achieved a TPR of 0.58 and the

MSE with proposed work is less that is 0.0115 and

the MSE with existing is 0.87.

The current research work has a wide scope of

advancement. Different neurons could be used to

check the difference in the MSE. Other than that,

instead of SVM, Linear Discriminant Analysis can

also be utilized.

Acknowledgments

We would like to thank the Punjab Technical

University, Jalandhar for extending amazing support

to us. Further, we wish to thank all who helped us

for finishing this work.

References

[1] A.B. Nassif and L. F. Capret, “Towards an

early software estimation using log-linear

regression BMI and a multilayer perceptron

model”, Journal of Systems and Software, Vol.

86, No. 1, pp.144-160, 2013.

[2] A.J. Albrecht and J.E. Gaffney, “Software

function, source lines of code, and development

effort prediction: a software science validation”,

IEEE Transactions on Software Engineering,

Vol. 9, No.6, pp. 639-648, 1983.

[3] E. Borandag, F. Yucalar, and S. Z. Erdogan, “A

case study for the software size estimation

through MK II FPA and FP

methods”, International Journal of Computer

Applications in Technology, Vol.53, No.4, pp.

309-314, 2016.

[4] P. Achimugu, A. Selamat, R. Ibrahim, and M.

Naz’riMahrin, “A systematic literature review

Received: February 28, 2019 263

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.24

of software requirements prioritization

research”, Information and software

technology, Vol. 56, No.6, pp.568-585, 2014.

[5] E. Kocaguneli, T. Menzies, and E. Mendes,

“Transfer learning in effort estimation”,

Empirical Software Engineering, Vol.20, No.3,

pp .813-843, 2015.

[6] R. Sarno, J. Sidabutar, and Sarwosri,

“Comparison of different Neural Network

architectures for software cost estimation”, In:

Proc. of the International Conference on

Computer, Control, Informatics and its

Applications, pp. 68-73, 2015.

[7] R. Dillibabu and K. Krishnaiah, “Cost

estimation of a software product using

COCOMO II. 2000 model–a case study”,

International Journal of Project Management,

Vol.23, No.4, pp.297-307, 2005.

[8] S.S. Shwartz and N. Srebro, “SVM

optimization: inverse dependence on training

set size”, In: Proc. of the 25th international

conference on Machine learning, pp.928-935,

2008.

[9] J. Joanna F. DeFranco and P. A. Laplante,

“Review and Analysis of Software

Development Team Communication Research”,

IEEE Transactions on Professional

Communication, Vol. 60, No.2, pp.165-182,

2017.

[10] M. Shahin, M.A. Babar, and L. Zhu,

“Continuous Integration, Delivery and

Deployment”, A Systematic Review on

Approaches, Tools, Challenges and Practices,

IEEE Access, Vol. 5, pp. 3909-3943, 2017.

[11] I. Bate, A. Burns, and R. I. Davis, “An

enhanced bailout protocol for mixed criticality

embedded software”, IEEE Transactions on

Software Engineering, Vol.43, No.4, pp.298-

320, 2017.

[12] O. Pedreira, F.Garcia, N. Brisaboa, and M.

Piattin, “Gamification in software engineering–

A systematic mapping”, Information and

Software Technology, Vol.57, pp 157-168,

2015.

[13] L. G. Wallace and S. D.Sheetz, “The adoption

of software measures: A technology acceptance

model (TAM) perspective”, Information &

Management, Vol.51, No.2, pp.249-259, 2014.

[14] A. Sharma and D.S. Kushwaha, “Estimation of

Software Development Effort from

Requirements Based Complexity”, Procedia

Technology, No. 4, pp.716-722, 2012.

[15] K. Pandey and N.K. Goyal,

“Introduction. Early Software Reliability

Prediction”, Springer, India, pp. 1-16, 2013.

[16] S. M. Satapathy, M. Kumar, and S. K. Rath,

“Fuzzy-class point approach for software effort

estimation using various adaptive regression

methods”, CSI Transactions on ICT, Vol.1,

No.4, pp.367-380, 2013.

[17] M.J Basavaraj and K.C Shet, “Software

Estimation using Function Point Analysis:

Difficulties and Research Challenges”,

Innovations and Advanced Techniques in

Computer and Information Sciences and

Engineering, pp.111-116, 2007.

[18] J. J. Dolado, “A validation of the component-

based method for software size

estimation”, IEEE Transactions on Software

Engineering, Vol.26, No.10, pp.1006-1021,

2000.

[19] A.L.I. Oliveir, “Estimation of software project

effort with support vector regression”, Neuro

computing, Vol.69, No. 13-15, pp.1749-1753,

2006.

[20] Heiat, “Comparison of artificial neural network

and regression models for estimating software

development effort”, Information and software

Technology, Vol.44, No.15, pp.911-922, 2002

[21] G.R. Finnie, G.E. Wittig, and J-M. Desharnais,

“A comparison of software effort estimation

techniques: using function points with neural

networks, case-based reasoning and regression

models”, Journal of Systems and

Software, Vol.39, No.3, pp. 281-289, 1997.

[22] S. Lohmor and B.B. Sagar, “Estimating the

parameters of software reliability growth

models using hybrid DEO-ANN

algorithm”, International Journal of Enterprise

Network Management, Vol.8, No.3, pp.247-269,

2017.

[23] J. Razmi, R. Ghodsi, and M. Jokar, “Cost

estimation of software development: improving

the COCOMO model using a genetic algorithm

approach”, International Journal of

Management Practice, Vol. 3, No. 4, pp.346-

368, 2009.

[24] A. Kaushik, A. K. Soni and R. Soni, “A hybrid

approach for software cost estimation using

polynomial neural networks and intuitionistic

fuzzy sets”, International Journal of Computer

Applications in Technology, Vol. 52, No. 4, pp.

292-304, 2015.

[25] F. W. Crawford, J. Wu, and R. Heimer,

“Hidden population size estimation from

respondent-driven sampling: a network

approach”, Journal of the American Statistical

Association, pp. 1-12, 2018.

