
Received: February 22, 2019 111

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

An Adaptive Autonomic Framework for Optimizing Energy Consumption in the

Cloud Data Centers

Sara Diouani1* Hicham Medromi1

1Research Foundation for Development and Innovation in Science and Engineering

Engineering Research Laboratory (LRI), System Architecture Team (EAS),
National and High School of Electricity and Mechanic (ENSEM), HASSAN II University of Casablanca, Morocco

* Corresponding author’s Email: diouanisara19@gmail.com

Abstract: Given the development of the Cloud Computing recently, clients and customers using the Cloud for both

individual and business needs have expanded to an uncommon scale. This has normally prompted the expanded

deployments of Cloud data centers over the globe. As a result, Cloud data centers are seen to be monstrous energy

consumers and natural polluters. They require an extraordinary measure of regular energy which has made an effect

on the energy supply and natural conditions of the environment. This is the reason why the vulnerability of persistent

energy supply, later on, is being referred to. In this way, there is a need of an energy-aware cloud-based system

which automatically and efficiently manages and optimize cloud computing data center resources by considering

energy consumption as an essential Quality of Service (QoS) parameter. This paper, focus on the energy utilization

of the data centers and how this can be limited so as to make the cloud computing greener. Thus, a new autonomic

resource optimization manager has been proposed to avail the most optimum level of resources with reduced server

energy consumption. The proposed framework has been verified theoretically and tested experimentally. The

experimental analysis has demonstrated that the effectiveness of the proposed solution is greater than the state-of-

the-art methods in terms of the achieved results related to reducing energy consumption and response time in cloud

computing data centers.

Keywords: Cloud computing, Data center, Green cloud, Energy efficiency, Resource efficiency, Optimization,

Autonomic management, MAPE-K, SLA, QoS.

1. Introduction

Energy effectiveness has turned into an

increasingly important worry in the cloud computing

data centers because of the issues related to energy

consumption, including capital costs, working costs

expenses, and ecological negative effects. Data

centers at the center of Internet-scale applications

expend about 1.3% of the overall power supply and

this part is anticipated to be 8% by 2020 [1]. Google,

for instance, expended 1.9 BkWh in 2010 which

represent 0.8% of world data centers [2]. Also, in

November 2008, carbon outflows from data centers

were 0.6% of the worldwide total and are

anticipated to be 2.6% by 2020, which is more than

the total carbon emission of Germany [3].

This energy loss is engendered due to

suboptimal use of facilities and equipment, and

according to these statistics, reducing the energy

consumption of data centers and making them work

in energy-aware ways is a central aim in research

related to data center management. So as to

appropriate resources scheduling, the mapping of

cloud workloads is obligatory to enhance QoS

parameters like time, cost, energy consumption and

so on. This is why many IT experts have built up

multiple technologies aiming to reduce energy

wastage and which still requires the design and

implementation of an efficient energy-aware

resource management system.

In fact, there is a wide scope of research efforts

examining systems and approaches to reduce energy

consumption. Comprehensively, research in the field

Received: February 22, 2019 112

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

related to energy data center optimization could be

classified as follows [4]:

1) Server level energy management: Taking

preferred standpoint of several power/performance

states characterized in components, such as CPU

and memory. 2) Cluster level management: Using

optimization and control techniques to reduce the

number of required compute nodes in an executed

application. 3) Virtualization: Reducing the quantity

of active physical servers by multiplexing them as

virtual machines (VM) so as to use less physical

servers and exploiting turning off underutilized

servers. Another side of virtualization is considering

VM migration and consolidation based on thermal

output. 4) Scheduling: Job scheduling that can take

into consideration energy consumption criteria, for

example, the temperature of servers, power costs

and CO2 discharge in the case of a geographically

distributed data center. 5) Using renewable energy

and power sources. Research in each of these

classifications is trying to address a section of the

energy management of a complex distributed system,

i.e., a data center. To date, little research includes

all-encompassing methodologies that optimize data

center energy consumption based on overall

administering procedures.

Also, the complexity of recent data centers has

driven specialists and researchers to explore

manners by which autonomic strategies can be used

for data center management. Autonomic

supervisors monitor and manage resources so as to

guarantee that the components they manage are self-

configuring, self-optimizing, self-healing, and self-

protecting (so-called “self-” properties).

Specifically, in this research, we propose an

improved version of autonomic management

framework for cloud computing data centers with a

specific spotlight on making data centers

environment more energy- aware and self-

optimizing. Our emphasis is on characterizing the

establishments of the core concepts, entities, and

elements, connections, and algorithms for

autonomic management systems which supports a

scope of management configurations. The ultimate

objective is to develop a management framework

that would permit the data center administrator to a)

define managed objects and parameters, b) and

depend on the system to maintain itself

automatically and optimally managed. Different

management scenarios are implemented so as to

evaluate and simulate the proposed energy-aware

framework.

The motivation of this paper is to design an

autonomic energy efficient framework for effective

scheduling of resources which considers energy

consumption as a QoS parameter. The main

contributions of this paper are the following: (i) to

propose an autonomic resource management

approach for execution of heterogeneous workloads

by considering the generic property of self-

management, using the MAPE-K loop (ii) to reduce

the energy consumption and response time (iii) to

implement and perform the evaluation in a

simulated cloud environment for clustered

heterogeneous workloads. Experiments show that

our proposed Framework outperforms the state-of-

the-art solutions in terms of energy consumption and

response time.

The rest of this paper is organized as follows:

Section 2 provides a review of related works in the

areas of data center energy consumption and

autonomic computing. Section 3 gives an outline of

the background in the field. Section 4 presents the

architecture of our energy-aware autonomic

framework by detailing its components. In section 5,

the trial assessments of the management framework

are outlined using distinctive illustration scenarios

which are executed and assessed using our data

center simulator to exhibit the effectiveness of the

proposed system according to the obtained results.

To conclude, the paper in the last section gives an

outline of our commitments and their future aspiring

expansions.

2. Related works

In light of the targets of our research, related

works can be classified into two major classes. First

of all, we review some previous research related to

approaches for data center energy reduction.

Afterward, we give a general view of research

efforts in autonomic computing aimed to reduce

energy consumption in cloud data centers. In fact,

there are few studies which deal with monitoring in

the cloud computing environment.

2.1 Review of research efforts in cloud computing

data center energy reduction

There are three classifications of energy-

efficient optimization techniques for cloud

computing:

(1) Infrastructure-based optimization which

manages infrastructural changes like making green

structures utilizing energy-efficient equipment; data

centers use raised floors and brought down ceilings

for cooling air dissemination, with the processing

hardware sorted out in rows of racks, regularly

finished with cold corridors and hot passageways.

Server racks may have chiller entryways that

Received: February 22, 2019 113

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

function as radiators to cool down hot air coming

out of servers. The cooling of the data center room

is regularly done through computer room air

conditioning units. In this situation, cool air comes

into the data center through raised floor vents. Later

plans have racks of computers cooled by fluids that

are pumped through the racks, servers and even

chips. Yet, these proposed solutions are costly to

implement and give a limited reduction in energy

consumption [5-7].

 (2) The hardware-based optimization includes

managing dynamic changes in hardware settings in

servers to developing management structures for

entire clusters of servers and whole data centers.

These solutions involve Dynamic voltage–frequency

scaling (DVFS) practices which are utilized on

processing components for assisting the dynamic

change of their performance to power consumption

[8, 9]. However, multiple studies demonstrated that

DVFS engender significant performance

degradation at high utilization levels and higher

response time [10].

Also, data center provisioning algorithms

attempt to give the number of servers that guarantee

the response time indicated in the Service Level

Agreement (SLA), which frequently determines the

maximum load. In practice, most of the times, data

centers are worked far less than their maximum load,

e.g. 30-70% of their maximum load which

consumes power. In some research, they consolidate

all the workload in a number of servers at a given

time [11-13] and power off unused servers or at

least make them work in low power mode. And

consolidation can be performed at various levels: (a)

VM consolidation, (b) server consolidation, and (c)

task consolidation. And the consolidation involves

the use of migration algorithms. In fact, by moving

services to VMs, the CPU utilization of that physical

machine (PM) is increased. Then, the number of

running PMs can be reduced and this decreases

energy consumption [14].

For energy saving, Han et al. [15] have proposed

a VM placement algorithm, and an algorithm to find

underloaded PMs to switch them to sleep mode.

These researchers have applied the mix of these two

algorithms in cloud data centers to complete the

process of VM consolidation. In addition, VM

placement algorithm can manage variable workload

to prevent PMs from overloading after VM

placement and to minimize the SLA violations.

Actually, most of the proposed methods and

strategies focusing on energy efficiency

improvement in cloud data centers and especially in

Infrastructure as a Service (IaaS) principally focalize

on managing computing resources. Those solutions

are based on server consolidation techniques [16]

and by switching the mode of idle resources to a

power saving or to an operating mode.

In fact, in [17], the researchers select VMs to

consolidate from the overloaded or underloaded host

for migrating them to another suitable host and by

considering CPU and RAM as primary energy

parameters. And the idle hosts are turned into

energy saving mode. Furthermore, researchers in

[18], proposed an algorithm to select VMs to be

migrated from overloaded hosts by considering CPU,

RAM, and Bandwidth. After, the empty hosts are

changed to the sleep mode.

Karakoyunlu et al. [19] proposed a method for

allocation of resources based on metadata

heterogeneity for cloud storage. In this solution, the

inactive resources are changed to low energy mode

so as to reduce energy consumption.

Researchers in [20] defined two algorithms

which are Dynamic Resources Allocation (DRA)

method and Energy Saving method. By the DRA

algorithm, the waste of the idle resources on the

VMs can be diminished. Furthermore, the Energy

saving method diminishes the energy consumption

of the cloud cluster. More precisely, 39.89% of total

energy consumption is decreased (also for memory

and VCPUs).

(3) Software-based optimizations include

employing job scheduling algorithms in the

application level of the data center, which have been

broadly utilized for reducing energy consumption.

Some researchers used heuristics as a base of a

scheduling algorithm to map the task on the

heterogeneous system while minimizing energy

consumption [5].

Multiple methods for load balancing have been

proposed, among them we cite [21]; In this

technique, a Fruit fly optimization approach (EFOA-

LB) in the cloud is used so as to balances the load

among VMs, to reduce energy and response time in

the data center, while adopting the Dynamic

Threshold value along and the sleeping strategies.

The results obtained after simulation uncover that

this proposed methodology accomplishes more

performance contrasted with some current

techniques such as PSO algorithm. These

researchers plan to extend the work with other QOS

factors such as network traffic in the cloud.

Additionally, in this paper [22], a job scheduling

algorithm is presented to assign a job to a VM of the

current active hosts itself by considering job

classification and preemption. Which restrains the

number of hosts utilized in the allocation and reduce

the energy consumption in the cloud datacenter. In

Received: February 22, 2019 114

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

this mechanism, each job is characterized into three

different types and assigned based on preemption

policy with the earliest accessible time of the VM

which is related to a host. Along these lines, less

number of hosts in the dynamic state is made and

the utilization of active host is increased and thus

the energy consumption is reduced. Except that this

solution focused on job scheduling field more than

resource allocation.

In [23], the authors proposed an energy-aware

task scheduling algorithm for high-performance

computational tasks. This algorithm control

dynamic energy consumption by the adoption of

DVFS and it concentrate on working in multi-cloud

systems and where the data centers are decentralized.

The energy efficiency research study to address

the issue of VM placement and optimization in the

cloud computing data center has demonstrated that

appropriate planning and management of VMs and

PMs in the cloud data centers reduce the total

energy consumption; Consequently, we

concentrated on green computing efforts to save

energy at the infrastructure level in data centers and

more precisely at server and VM levels.

2.2 Review of research efforts in autonomic

computing aimed to reduce energy

consumption

Autonomic Computing (AC) refers to the ability

of a computing system or application to be self-

managing, which means that the system can manage

itself and can be adaptable to any changes and

adjustments in its environment [24].

In AC, a management module which controls

the conduct of a Managed Object (MO) is called an

autonomic manager (AM). IBM at first introduced

the idea of autonomic management and

recommended that an AM consistently goes through

a cycle of monitoring, analysis, planning, and

execution steps [25]. The idea in AC is that

distinctive AMs control diverse resources in a

distributed way. This management could be done

individually, i.e., each AM is in charge of its own

MOs. More generally, in computing systems, it is

fundamental that AMs interoperate and which could

be heterogeneous sorts of them with various goals.

The research introduced in [26] demonstrates the

coordination between two autonomous AMs. In this

work, the first AM manages SLA administration

and resource allocation to reduce SLA violations.

The second AM manages minimizing power

consumption by turning off unused servers. This

work demonstrated that without a connection

between the managers there may be a failure to

accomplish their objectives.

Also, other recent works such as [27], proposed

an autonomic cloud computing solution which

offers dynamic allocation and monitoring of

resources dependent on VM migration. This system

is SLA complaint and automates the user

experience by respecting the conditions referenced

in the SLA.

3. Background

In this section, we present the principal

parameters for energy in cloud computing and we

introduce the Autonomic Computing paradigm and

maturity computing levels.

3.1 Important managed objects and

monitoring parameters for energy in cloud

computing

In this part, we aim at finding an initial set of

managed objects and its set of possible monitoring

parameters for energy in cloud computing. Also, we

define the possible related actions to execute. As

shown in Table 1, the majority of objects are

described. In [28] and [29], we have defined all

major energy parameters that influence the

efficiency of the cloud data center energy, and

specified some major distinct Service Level

Agreement constraints of the VM placement.

3.2 The autonomic computing paradigm and

maturity levels

Manual management of energy is a complex

task, especially when the administrator has to

consider the environmental changes and dynamic

resources deployment. The Autonomic Computing

[30] is a key paradigm which takes into account this

dynamicity in an autonomous way.

1) The loop called MAPE-K of the Autonomic

Computing paradigm: To incorporate self-

optimization in our framework, a further extended

Energy-aware Autonomic Resource Scheduling

Technique is integrated in our solution, in which

IBM’s autonomic computing concept has been

utilized to plan the resources automatically by

optimizing energy consumption where the user

using available interface, can easily interact with the

system.

Received: February 22, 2019 115

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Table 1. Illustration of manageable objects and related monitoring parameters and actions

Object Possible monitoring parameters Type d'actions possibles

VM
-Throughput
-CPU utilization

-Migration
-Blocking

Server

-CPU utilization

-CPU power state
-Server queue job length

-Changing power state

-Shutting server down; bringing it up
-Invoking admission control

Cluster
-Node utilization
-Number of waiting job

-Shutting down nodes
-Workload manipulation

Rack

-Number of available nodes

-Number of running applications
-Number of running system

-Shutting down some nodes

-Changing node CPU frequency is

applicable

Application

-SLA violations

-Number of active allocated servers

-Percentage of idle servers

-Number of jobs/requests in the application queue

-Make a number of serves idle

-Activating a number of servers

-Blocking application (stop running and

just queueing workload)
-Change frequency of allocated servers

Data center

-Current power consumption

-Current electricity rate

-Current temperature
-Data center utilization

-Shutting down racks

-Activate racks

-Turning on racks

The Autonomic Computing paradigm depends

on four fundamental segments distinguishing the

MAPE-K loop to ensure the above properties of the

framework. Ordinarily, control circles are actualized

following MAPE (Monitoring, Analysis, Planning,

and Execution) steps. Fig. 1 demonstrates these

parts, which are presented as following:

-The M-onitoring of the managed resources and its

current performances associated with its current

configuration or QoS satisfaction based on SLA,

with side effects detection in view of characterized

rules;

-The A-nalysis of the produced indications with the

intent to distinguish the possible causes of them, in

view of stored data in the knowledge base, if

changes are required, a demand for change is sent to

the plan function;

-The P-lanning of the actions should have been set

up with the objective to coordinate the targeted

goals; it creates or select methodology /plans to

institute on the managed entity;

-The E-xecution of the elaborated plans to change

the conduct of the monitored element through the

effectors.

The control cycle with its four segments and the

Knowledge database allows the autonomic director

to be self-manageable. The managed resources can

be software or hardware resources including

operating systems, wired or wireless network, CPU,

database, servers, switches, routers, application

modules, Web services or VMs, etc. [24].

Figure. 1 The MAPE-K cycle of the AC paradigm

2) The maturity levels of the Autonomic Computing

paradigm: Implementing an autonomic framework

which can incorporate the MAPE-K loop is

additionally a complex task since you have to go

through five Maturity Levels (MLs) [30] for

example, Fig. 2:

Level 1 – Basic ML: the administration and

setting of the framework’s components are done

independently by the administrator. Human abilities

are then needed to monitor the system, to examine

the observed measurements and metrics and

ultimately to execute actions relying upon on the

detected anomalies;

Received: February 22, 2019 116

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 2 Maturity levels towards autonomic system

Level 2 – Managed ML: so as to reduce energy,

the monitoring tools and technologies can be used to

collect metrics and synthesize information from the

system. Human attitudes are needed to analyze the

collected data and suitable actions;

Level 3 – Predictive ML: examination and

analysis abilities are acquainted in the system to

analyze the situations and give possible actions.

Here the administrator is responsible for giving the

final decision as well as the actuation of the actions;

Level 4 – Adaptive ML: the administrator must

simply to characterize approaches in light of the

correlation between side effects and mechanisms

without the need to approve the corrective actions

and to activate them. And consequently, the

adaptive environment will automatically choose the

adequate action in view of the accessible data and

the knowledge of what is occurring in the

environment system;

Level 5 – Autonomic ML: at the autonomic

level, business approaches and objectives govern the

autonomic manager with the consideration of

applications requirements. The administrator

collaborates with the autonomic manager to monitor

business processes and modifies the targets if

needed. Finally, the system becomes autonomic.

4. Autonomic and adaptive energy-aware

resource manager framework

4.1 General presentation

In this part, we describe the design and the

structure of our proposed Autonomic Energy-aware

Monitoring framework in the cloud computing

environment at the infrastructure level (IaaS). We

depict its components in more profundity, and how

they interact with each other.

The framework design depends on the IBM

autonomic manager architecture [25]. It is composed

into four fundamental modules which are Monitor,

Analyzer, Planner, and Executer. These modules

share the same knowledge and learning database and

dynamically manage entities using sensors and

effectors.

Also, the proposed Framework consists of actors

and allocation techniques. These actors are users and

IaaS providers. The system efficiently distributes

cloud resources. This manager consists of a number

of PM, which allocates VM.

For our situation, clients make a demand to

allocate a VM in the framework. And when the

client chooses to make this demand, the framework

will allocate this VM to the corresponding PM,

making the general framework as efficient as

possible.

Fig. 3, presents the principal functional

components of our framework and which are

identified with the dynamic service monitoring. The

monitoring module is in charge of managing and

monitoring at runtime the energy consumption of

the cloud data center by collecting data from all the

available resources. It has likewise a knowledge

database that stores this data which is required by

the other components in the framework. Dynamic

energy monitoring is actually an instance of an

autonomic control cycle: monitoring, analysis,

planning, execution whereby frameworks can

monitor themselves and keep up an objective

behavior.

4.2 Autonomic energy-aware resource manager

In this part, we detail the components of the

Autonomic Energy-Aware Resource Manager

Framework and how they collaborate with each

other. Also, we describe the design and the

implementation of this manager.

The monitor: receives as input, the events

gathered from managed resource sensors and creates

symptoms occurrences or reports as a response. The

gathered monitored data include details about the

actual resource utilization by the workflow

applications and return a set of defined energy

utilization states (Normal, warning, etc.).

The analyzer: processes the monitored data and

gives the mechanism that correlates and model

complex situation. These components allow the

autonomic manager to learn about the environment

and help predict circumstances. It provides an

interface for receiving as input the monitored

information as symptom occurrences from the

monitoring phase. It checks if a demand for change

should be created as a reaction by analyzing the

Received: February 22, 2019 117

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 3 Adaptive autonomic energy-aware resource manager framework

received information to determine the difference

between the exact actual energy consumption and

the threshold defined, and then decides on the exact

reactive action (such as resource allocation, resource

deallocation, and VM migration) to carry out in

order to optimize resource utilization and reduce

consumed energy.

The planner: provides the mechanisms that

develop the action needed to accomplish goals. It

exploits policies based on objective and

environmental awareness to control its work. It

receives as input requests for change and creates

actions plans as a reaction.

The executor: By adopting managed effectors,

this element takes as input a sequence of actions and

performs it considering the dynamic updates.

 1) Monitoring Energy Consumption

Component: As shown in Fig. 3, the Monitoring

module includes three sub-modules which are the

Energy consumption monitoring, Energy Estimation

model, and Knowledge Database.

Initially, as exhibited in Fig. 4, the sensors get

the information about energy consumption of all the

systems working under the cloud and update the

information in real time, and after, this module is

adopted to gather these data for checking

persistently the value of resource utilization as

shown in Algorithm 1.

After, the collected data will be transferred to

the next module for further analysis (analysis

component).

Where:

Ru: Set of information about resources utilization in

defined time interval t;

ST: Set of Energy utilization states (Normal,

warning, etc.).

These monitors may be in various format,

depending on the type of usage metrics they are

intended to gather and the way in which usage data

should be gathered. Thereafter, we present an agent-

based implementation format which is assigned to

forward the collected data use to a log database for

post-processing and reporting aims.

Received: February 22, 2019 118

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 4 The cloud administrator sends a request

message to a cloud service (1). The monitoring agent

intercepts the message (2) to collect relevant usage data

before allowing it to continue to the cloud service (3b).

While the monitoring agent stores the collected usage

data in the log database (3a). The cloud service replies

with a response message intercepted by the agent (4), it is

sent back to the cloud administrator.

The Monitoring Agent is an event-driven

program intermediate that works as a service agent

and resides along existing communication paths to

transparently monitor data-flows as shown in Fig. 4

where the agent plays the role of a sensor. So as to

measure network traffic and message metrics, this

type of cloud usage monitor is generally adopted.

The Monitoring Agent could monitor at various

levels in the framework Cloud on each Compute

Node:

Host OS/Hypervisor. Here the Monitoring Agent

could catch all customary working framework

measurements at the equipment level, such as

percentage CPU time per VM, memory usage, disk

I/0, and so forth.

Guest OS. Observing in this level enables the

Agent to gather the particular data to one VM in a

working framework.

Application Level. Instead of the past two levels,

this necessitates the change in the application to give

a monitoring interface whereby application- level

execution measurements can be gotten.

The captured data are filed in a database that can

be sent at runtime to the monitoring engine (ME)

and may be utilized at various times. This ME may

periodically apply a rule set from the resource

information, given by the knowledge database, to

verify if the resource usage is being abused, or

requires any action.

The Monitoring Engine observes and analyze the

runtime execution and performance of cloud

services to guarantee that they are satisfying the

optimal resource use. This system can pro-actively

repair or fail-over cloud services when exception

conditions happen, for example, when the MA

reports that a resource usage of a hypervisor is bad.

An UML description of the functional

Received: February 22, 2019 119

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 5 Functional architecture of the monitoring energy consumption component

architecture of this monitoring engine is presented in

Fig. 5, making evident the high-level functional

components permitting the targeted maturity level.

The primary components of our Monitoring

Energy Consumption Component are: The Global

Monitoring Manager ensures the interface with the

administrator, also, is in charge of the configuration

and deployment of the different parts and the

collaboration between them.

As Fig. 6 shows, the global monitoring Manager

exposes four external interfaces. A simplified form

of the web subsystem gives a web interface for the

administrator, enabling them to interact and

cooperate with the system (e.g. include new patterns,

get alerts, and so on.). This created event patterns

expression and EPL statements incoming from the

administrative interface (at runtime configurations)

are received by the REST interface which is exposed

by the receiver service (API). Thus, these rules are

transferred to the persistence service which stores

them in the Knowledge database. Communication

with receiver service and database utilizes the Java

Database Connectivity (JDBC) interface overlaid by

the Hibernate technology;

Figure. 6 Defined rules by administrator

The QoSConfigurator mechanism is intended to

interact with the knowledge database (KB) for the

retrieval of the agreed SLAs between cloud service

providers and consumers, also contain the

description of the appropriate sensors; After that, it

collaborates with the Energy Events Collector for

the specification of the metrics to gather depending

on the agreed SLA;

The Energy EventsCollector is responsible for

the collection of metrics at runtime of cloud services

through interaction with the corresponding sensors.

The description of this interaction is specified by

the QoSConfigurator that asks the KB.

Received: February 22, 2019 120

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

The interaction between Energy EventsCollector

and sensors integrated into the managed entity can

be done through periodic request/response way or

through a listening way with notifications from

sensors when a change. After data is initially

collected, it can be used at different times. All of the

monitored data is archived in a KB that can be

queried by the Global Monitoring Manager;

The EventsProcessor it processes arriving events

by applying defined patterns stored in the KB; it can

be filtering (EventsFilter), correlation

(EventsCorrelator) or aggregation

(EventsAggregator) events. Additionally, the

correlation means (link between the metrics),

aggregation (group different level metrics) and

filtering (selection of specific patterns) of collected

data are needed to identify or predict more complex

patterns that can be modal, temporal, etc. such as a

sequence of response time values exceeding a

defined threshold and following an increasing

tendency. As soon as a pattern is detected, it notifies

the Global Monitoring Manager.

The Workload Resource Analyzer

(ViolationGenerator) component is invoked by the

Global MonitoringManager when one or several

events match a defined pattern. It then generates

adequate violation correlated to non-satisfaction of

QoS requirements via the catalog of violation

included in the Knowledge Base. In our case

research, we consider six sort types of states related

to the considered resources utilization:

1) TOEMPTY: the state of the resource

utilization is identified as TOEMPTY when the

resource utilization is lower than a defined Minimal-

threshold (to facilitate the task for the cloud

administrator, we consider it equal to the value 10);

2) NORMAL: the state of the resource

utilization is identified as NORMAL when the

resource utilization is between a defined Minimal-

threshold and a defined Medium- threshold (to

facilitate the task for the cloud administrator, we

consider it equal to the value 10 and 50

respectively);

3) NOTIFY: the state of the resource utilization

is identified as NOTIFICATION when the resource

utilization is equal to a defined Medium-threshold

(to facilitate the task for the cloud administrator, we

consider it equal to the value 50);

4) WARNING: the state of the resource

utilization is identified as WARNING when the

resource utilization is between a defined Medium-

threshold and a defined High-threshold (to facilitate

the task for the cloud administrator, we consider it

equal to the value 50 and 70 respectively);

5) CRITICAL: the state of the resource

utilization is identified as CRITICAL when the

resource utilization is between a defined High-

threshold and a defined Maximum-threshold (to

facilitate the task for the cloud administrator, we

consider it equal to the value 70 and 95

respectively);

6) FAILURE: the state of the resource utilization

is identified as FAILURE when the resource

utilization is higher than a defined Maximum-

threshold (to facilitate the task for the cloud

administrator, we consider it equal to the value 95).

Thereafter, the Monitoring Energy Consumption

Component sends then the state of the energy

utilization to the analysis component.

2) Analysis Energy Consumption Component:

The fundamental objective of the Analyze step is to

process and analyses the information about energy

consumption of cloud system received from the

Monitoring Energy Consumption Component and to

relate this information in accordance with the

knowledge base policies (QoS requirements of

workload(s), and so forth.) so as to produce an

analytical diagnosis (resources are provisioned,

scheduled and executed).

Also, notification messages and alerts are

dispatched to the customers/providers to alert about

the situation, as shown in Algorithm 2.

In fact, the analysis component consistently checks

the status of energy utilization. Three Reaction (3R)

strategies are defined based on the received state:

-In the case of a state type failure, it dispatches

the notification messages to the customers/providers

to alert about the situation (not possible to add other

resources. . .) and mark the host as “saturated” and

define the action (move to another host).

-In the case of a state type Toempty, it

dispatches the notification messages to the

customers/providers to alert about the situation

(resources must be moved to another host. . .) and

mark the host as “empty” and define the action

(move the resources to another host).

-In the case of the other states types: the analysis

component consistently checks the workloads

queued and energy consumption.

The aim is to provide the resources for the

execution of heterogeneous cloud workloads by

reducing the energy consumption. In other words,

the workloads submitted should be executed with

minimum energy consumption. Indeed, the

workload submitted by the client to resource

provider is stored into a crowd of workloads for

their execution.

Received: February 22, 2019 121

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

The workloads are analyzed based on their QoS

requirements and estimated value of energy

consumption stocked in the KDB based on their

previous statistics of execution. If the value of

energy consumption of workloads executes within a

defined range (less than the threshold value of

energy consumption), then resources will be

provisioned, on the other hand, an alert will be

generated in order to notify for trigger another

Received: February 22, 2019 122

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 7 Functional architecture of the analysis energy consumption component

analyses of the workload after reallocation of

resources by the autonomic manager. Also, the

system calculates the resource requirements to check

whether the resources are sufficient for the

execution of workloads is provided or not. If the

sufficient resources are given, then the scheduling of

resources for workload execution is started

otherwise add new resources from the pool of

reserved resources. Resources are another time

assigned for further execution after finding the

minimum value of energy consumption, as shown

in Algorithm 2. The analysis component collects the

information of available resources from the KDB

which contains details of all the resources available

in the resource pool and reserve resource pool. And

based on cloud consumer details, it assigns

resources and executes heterogeneous cloud

workloads.

The Autonomic Energy Aware Scheduler engine

processes the received resource utilization states. It

provides an interface for receiving the monitored

information from the monitoring phase. It analyzes

and classifies resource utilization states depending

on the priority and criticality (normal, warning, etc.).

This mechanism presents the backbone of the

Analyze component.

Also, the Autonomic Energy Aware Scheduler

engine contains two subcomponents: The Migration

Module, as illustrated in Fig. 7, and Allocation

Module, where:

-Rr: represents the resource requirements;

-Pr: represents the resource provided;

-ACT: represents the actions initiated to be executed

(Migration, Allocation, Consolidation, Switch

on/off).

The Energy Efficient Resource Allocation is

invoked by the Global Analysis Manager component.

The goal of this engine is to automatically allocate

resources either in a static or in a dynamic manner;

On the basis of roles, policies on the KDB,

resources will be allocated in a static way. And in a

dynamic way by adopting our algorithm.

The Plan notification component it is invoked by

the Global Analysis Manager to define and structure

the set of actions to be executed when a request for

change has been produced by the Analysis Energy

consumption component in order to provide

adequate scalability and QoS level. The actions are

chosen in the Analysis phase in correspondence with

the knowledge base. The next steps are planning the

order and timing of the actions (Plan phase) and

Received: February 22, 2019 123

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 8 Planning energy consumption component

finally executing them (Execution phase) with the

help of actuators communicating with the self-

management interface of the responsible services.

3) Planning Energy Consumption Component:

plans the execution of the recommended actions and

prevents changing impacts (i.e., allocating and

deallocating the same resource reciprocally) in the

tasks. This stage is divided into two steps: the

mapping planner and the scheduling planner as Fig.

8 shows.

The first planner is in charge of mapping actions

into PMs and VMs in data centers cloud computing

and managing those machines. The scheduling

planner is responsible for planning and arranging the

order and timing of the execution of the actions.

4) Executing Energy Consumption Component:

The execution phase is the final one. The executor

executes the plan considering the dynamic updates.

By adopting managed software effectors, this

element takes as input a recommended sequence of

actions (new workload submission, resource

addition, alert generation, etc.) on the computational

devices and execute it by using various sort of

technologies (Web services, script file, Restful

services, and so on.). Also, Effector is used to

transferring the new policies, rules, and alerts to

other nodes with refreshed data.

5) Knowledge Database: The term Knowledge

Management (KM) in our context and following the

approach means intelligent usage of measured data,

obtained by monitoring, for the decision making

process to satisfy application performance goal

defined in SLA agreements while optimizing the

computational resource usage and thus reducing

cloud data center energy consumption. The core of

the KM is a knowledge database (KDB) that

interacts with these phases in the management

process. This KDB integrates various policies (QoS

parameter violation, failure, thresholds, algorithms

for best cloud resource selection, SLA violation,

Figure. 9 Customized autonomic loop

etc..). Also contain the catalog of violations that will

be used to guide the autonomic behavior (e.g.

diagnostic models, the association of issues and

specific corrective actions, etc.). The planning and

executing steps of the MAPE-K loop will have to be

explored in details in our remains future work,

particularly when several adaptation mechanisms

will have to be considered.

5. Evaluation

The goal of this evaluation is to validate the

functional architecture of our Autonomic Energy-

aware Monitoring framework by monitoring at

runtime the energy consumption of the cloud data

center and the proposed mechanism for an adaptive

remedy rectification, to self-optimize a Cloud

infrastructure to maximize power efficiency and

performance while maintaining predictable and

reliable behavior.

This experimental validation is based on the

implementation of the autonomic energy

consumption saving engine. We use a set of sensors

to measure the real energy consumption and the set

of agents to follow CPU, memory, disk usage per

VM and per server as Fig. 9 shows.

Fundamentally, every compute node possess a

software agent installed next to the hypervisor. This

software is a customized OpenStack Ceilometer

compute agent. It is a metrics collector, installed on

each compute node of the datacenter [31]. This

component polls metering data and instances

statistics from the compute node through libvirt.

Additionally, it monitors the host system, gathering

various metrics on the node (e.g. CPU utilization,

RAM usage, disk use). The compute agent forwards

all the measurements to the central agent,

Received: February 22, 2019 124

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 10 Testbed

Table 2. Resource capacities of physical and virtual machines

Instance Type System CPU Memory Storage Network

Host

Linux/Ubuntu

12-core 6-CPU 3.6 GHz Intel Xeon

E5420
QC

64 GO

2 TO

Infiniband 20G
Ethernet

Virtual machine

Linux/Ubuntu

4 VCPU 3.6 GHz Intel Xeon X3440

10 GO

500 GO

Infiniband 20G
Ethernet

Cluster

Linux/Ubuntu

2-core 1-CPU 3.6 GHz Intel Xeon

X5025

16 GO

700 GO

Infiniband 20G
Ethernet

responsible for aggregating them. Continuously,

this software agent feeds our autonomic energy

consumption saving engine with the collected data.

These sensors allow us to associate an energy

consumption value for a given physical server

utilization (in terms of CPU utilization, RAM usage,

disk I/O, network activity).

The dynamic detection of energy consumption

related to the response time (Rt) and workload

(wkd), the autonomic activation of our proposed

mechanism, and then the observation of the induced

benefits of this action. We first describe the

experimental setup we have used in evaluating our

approach, then we depict the test scenario of saving

energy consumption, and we briefly describe the

cloud services we have used in the experiments. At

last, we talk about the results got from the

execution of this test scenario.

5.1 Experimental testbed

In order to validate our proposed framework, we

need to perform its experimental testing in a cloud

environment as realistically as possible. In this

section, we describe the testbed used in the

experiment, as it is depicted in Fig. 10, we use

Cloud OpenStack.

OpenStack is a distributed collection of open

source cloud computing software projects that

enterprises or cloud providers can adopt for creating,

managing, and deploying infrastructure cloud

services [32]. Table 2 shows the resource capacities

of the physical and virtual machines being used in

the proposed Cloud OpenStack testbed.

1) Infrastructure: We installed the KVM

hypervisor on the server and created a large ubuntu-

Received: February 22, 2019 125

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Table 3. Energy savings

Approach Energy consumed Energy Saved (%) Number of
migrations

Response Time

AECS-F 461.13 Wh 50% 10

ESM 579.37 Wh 9.24% 1 average(122 S)

DRA 518.53 Wh 21.83% 3

4.04.5-server VM with a flavor occupying total

server CPU and RAM available. Moreover, we

installed libvirt-bin to ease the deployment and

management of the VMs on the server. Then, we

stress the virtual machine CPU for a range of given

utilization level (from 0 to 100, with a step of 10).

Note that, for some workloads, the CPU load starts

at 10% due to the intensive disk write or memory

filling.

During the evaluation, we consider four kinds

of VMs: The first one, called vm-autonomic-

controllers, hosts the autonomic manager of the

system providing interfaces to monitor the energy

consumption of the cloud data center and act on the

system. The second one, named vm-load, is used for

load injection purposes. It contains stress-ng [33]

that is used to generate some variable load (first in

terms of CPU and then, coupled with RAM and disk

operations) and to analyze overall performance

under different types of workload. The third one,

named vm-app contains our developed bookstore

web application, where an Apache server

responding to the incoming HTTP requests is

installed. The last one, called vm-KB is an instance

for the database which back-up all transactions.

2) Prototype: This paragraph aims at presenting

the prototype including autonomic manager of the

system which provides interfaces to monitor energy

consumption about the system state, analyze them

and act on the system at runtime (as shown in Fig.

10). In order to evaluate system behavior under high

load, we used a customized stress-ng [33] by

introducing bean shell code adapted to our scenario

for load injection to generate concurrent/

simultaneous requests towards our implemented

VMs to simulate a load variation and to analyze

overall performance under different types of

workload, and report the measurements values.

5.2 Evaluation scenario

In our experiment, we compare our optimization

autonomic energy consumption Framework with

two greedy approaches Dynamic Resource

Allocation (DRA) [34, 35] method and Energy

Saving Method (ESM) [36] based on response time

and energy consumption. Also, we simulated the

proposed solution with four overloaded hosts

detection algorithms and VM selection policy and

which were described in [37].

These overloaded host algorithms are median

absolute deviation (MAD), and interquartile range

(IQR) with maximum correlation (MC), minimum

migration time (MMT), and minimum utilization

(MU) of VM selection policy.

How to effectively save and use the idled

resources on low loading VMs, and save energy

consumption on servers are the two issues we have

to face and solve. There are two cases with/without

our proposed Autonomic Energy Consumption

Saving Framework (AECS-F).

Furthermore, every 4 minutes were considered

as an hour, thus we calculated the energy

consumption of 24 hours, impacted by each

controller, which is presented in Table 3. Each

experiment was run several times and we found the

energy consumption difference between each run

was 1& 2 watts. We have studied a scenario that

consists of a single peak of workload: 5 threads are

started and maintained for 15 min, whereupon we

simulate a peak of workload passing from 5 to 20

threads. The observation interval and evaluation

window were fixed in 4 seconds and 30 minutes,

respectively. The threads sent measurements

periodically. Such a high frequency of requests

enabled evaluation of system behavior during peak

load times.

5.3 Results and discussion

This section presents the results obtained from

these experiments. The first part of the analysis for

the simulation results brings into play the version of

the approach that optimizes the two metrics named

response time and energy. Fig. 11 shows energy

consumption and response time results obtained for

each simulation.

Overall we can notice that ESM gets results

intermediaries with respect to AECS-F and DRA, in

particular regarding consumption energy.

Received: February 22, 2019 126

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Figure. 11 Final value of energy consumption and response time during simulations of the different approaches

Figure. 12 Comparison of the number of migrations at each re-allocation moment generated by the three approaches

Indeed, the AECS-F is very effective in terms of

VM consolidation minimizes very well the number

of PMs used as described in Fig. 12. This allows

him to obtain a very good energy consumption value

of 461.13 Wh. Its response time result is also pretty

good with a result of 116.12 s. Concerning these two

metrics, the AECS-F allows for obtaining good

results compared to other algorithms. ESM displays

a substantially equivalent response time in 122.56 s

but suffers from its inevitable tendency to use a

large number of PMs which gives it the worst

energy result with 579.37 Wh. DRA simulation with

reallocations retains a fairly good response time of

120.54 s and intermediate power

Received: February 22, 2019 127

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

(a) (b)

(c)

Figure. 13 The results obtained from the experiments with/without implementations: (a) average consumption on

weekdays, (b) measured consumption on one day, and (c) Energy saving

consumption of 518.53 Wh. Thus, this result is

worse than that of our AECS-F approach in terms of

energy consumption.

According to the results obtained concerning

energy consumption and response time after the

simulation, we can see that the four algorithms

IqrMmt, MadMc, MadMmt and MadMu have

approximate results of 470 Wh, so we will focus on

the following comparison of the algorithms on

MadMc which represents the lowest values with

ESM, DRA and our AECS-F solution.

All the measurements related to the energy

consumption were sent to the Backend which was

hosted in a Cloud environment built with VMs in a

remote data center. In addition, we implemented a

web-based Front end that provides the user with

statistics over the collected sensor data.

Examples of charts reported are shown in Figs.

13 (a) and (b). Specifically, Fig. 13 (a) shows the

average energy consumption during days of a week

during simulations of the three approaches over a

four-week period and Fig. 13 (b) drills down these

approaches consumption for a more detailed

analysis. After these comments, it appears that the

optimization of this metric time response to a lot of

impact on other metrics, see Fig. 13 (c): in a positive

way for robustness and dynamism, but in a very

negative way for energy. Such an optimization

configuration is therefore only conceivable for a

very low-load system, which will still limit the total

consumption of the data center.

In summary, the results of executing the above

scenarios evaluated some key features of our

proposed autonomic SLA monitoring scheme,

which are: its ability to monitor energy consumption

in an efficient way and the ability to save energy.

6. Conclusion and perspectives

This paper has suggested the AECS-F as a new

adaptive autonomic resource optimization manager

framework to avail the most optimum level of

resources with reduced server energy consumption.

This manager considers major energy parameters

and major possible constraints of VMs distribution

in PMs. The primary target is to guarantee energy

Received: February 22, 2019 128

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

efficiency by keeping energy-performance trade-off

in concern while respecting the defined SLA. First,

we a) defined managed objects and parameters, b)

designed the system architecture by the adoption of

the MAPE-K loop c) developed the scheduler

algorithms d) implemented the proposed framework

and performed the evaluation in a simulated cloud

environment for clustered heterogeneous workloads.

Also, the experimental results indicated that the

autonomic framework shows better energy

efficiency and reduced response time.

For future work, we intend to enhance the

autonomic framework in terms of proposals of

different scenarios.

References

[1] J. Koomey, “Growth in data center electricity

use 2005 to 2010”, A report by Analytical Press,

completed at the request of The New York

Times, Vol. 9, 2011.

[2] Q. Hardy, “Google says it will run entirely on

renewable energy in 2017”, The New York

Times, Vol. 6, 2016.

[3] W. Forrest, J. M. Kaplan, and N. Kindler, “Data

centers: How to cut carbon emissions and

costs”, McKinsey on Business Technology, Vol.

14, No. 6, pp. 4-13, 2008.

[4] F. Norouzi, “Coordinated autonomic managers

for energy efficient date centers”, Electronic

Thesis and Dissertation Repository, 3761, 2016.

[5] N. Khattar, J. Sidhu, and J. Singh, "Toward

energy-efficient cloud computing: a survey of

dynamic power management and heuristics-

based optimization techniques", The Journal of

Supercomputing, Vol. 1, No. 61, 2019.

[6] K. Lampka, B. Forsberg, and V. Spiliopoulos,

"Keep it cool and in time: With runtime

monitoring to thermal-aware execution speeds

for deadline constrained systems", Journal of

Parallel and Distributed Computing, Vol. 95,

pp. 79-91, 2016.

[7] W. Zhang, Y. Wen, Y.W. Wong, K.C. Toh, and

C.H. Chen, "Towards joint optimization over

ICT and cooling systems in data centre: A

survey", IEEE Communications Surveys &

Tutorials, Vol. 18, No. 3, pp. 1596-1616, 2016.

[8] J. Liu and J. Guo, "Energy efficient scheduling

of real-time tasks on multi-core processors with

voltage islands", Future Generation Computer

Systems, Vol. 56, pp. 202-210, 2016.

[9] Z. Lai, K. T. Lam, C. L. Wang, and J. Su,

"Latency-aware DVFS for efficient power state

transitions on many-core architectures", The

Journal of Supercomputing, Vol. 71, No. 7, pp.

2720-2747, 2015.

[10] K. Choi, R. Soma, and M. Pedram, "Fine-

grained dynamic voltage and frequency scaling

for precise energy and performance tradeoff

based on the ratio of off-chip access to on-chip

computation times", IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, Vol. 24, No. 1, pp. 18-28, 2005.

[11] H. Hallawi, J. Mehnen, and H. He, "Multi-

Capacity Combinatorial Ordering GA in

Application to Cloud resources allocation and

efficient virtual machines consolidation",

Future Generation Computer Systems, Vol. 69,

pp. 1-10, 2017.

[12] F. Teng, L. Yu, T. Li, D. Deng, and F.

Magoulès, "Energy efficiency of VM

consolidation in IaaS clouds", The Journal of

Supercomputing, Vol. 73, No. 2, pp. 782-809,

2017.

[13] E. Arianyan, H. Taheri, and S. Sharifian,

"Novel heuristics for consolidation of virtual

machines in cloud data centers using multi-

criteria resource management solutions", J.

Supercomput., Vol. 72, No. 2, pp. 688-717,

2016.

[14] Y. Dong, L. Zhou, Y. Jin, and Y. Wen,

“Improving energy efficiency for mobile media

cloud via virtual machine consolidation”,

Mobile Networks and Applications, Vol. 20, No.

3, pp. 370-379, 2015.

[15] G. Han, W. Que, G. Jia, and L. Shu, "An

efficient virtual machine consolidation scheme

for multimedia cloud computing", Sensors, Vol.

16, No. 2, pp. 246, 2016.

[16] V. R. Reguri, S. Kogatam, and M. Moh,

"Energy Efficient Traffic-Aware Virtual

Machine Migration in Green Cloud Data

Centers", In: Proc. of IEEE 2nd International

Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE International

Conference on High Performance and Smart

Computing (HPSC), and IEEE International

Conference on Intelligent Data and Security

(IDS), pp. 268-273, 2016.

[17] R. Yadav, W. Zhang, H. Chen, and T. Guo,

"MuMs: Energy-Aware VM Selection Scheme

for Cloud Data Center", In: Proc. of the 28th

International Workshop on Database and

Expert Systems Applications, pp. 132-136, 2017.

[18] M. A. Khoshkholghi, M. N. Derahman, A.

Abdullah, S. Subramaniam, and M. Othman,

"Energy-Efficient Algorithms for Dynamic

Virtual Machine Consolidation in Cloud Data

Received: February 22, 2019 129

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.12

Centers", IEEE Access, Vol. 5, pp. 10709-

10722, 2017.

[19] C. Karakoyunlu and J. A. Chandy, "Exploiting

user metadata for energy-aware node allocation

in a cloud storage system", J. Comput. Syst. Sci.,

Vol. 82, No. 2, pp. 282-309, 2016.

[20] C. Chen, P. Sun, C. Yang, J. Liu, S. Chen, and

Z. Wan, "Implementation of a Cloud Energy

Saving System with Virtual Machine Dynamic

Resource Allocation Method Based on

OpenStack", In: Proc. of the Seventh

International Symposium on Parallel

Architectures Algorithms and Programming,

pp.190‑196, 2015.

[21] M. LawanyaShri, S. Subha, and B. Balusamy,

“Energy-Aware Fruitfly Optimisation

Algorithm for Load Balancing in Cloud

Computing Environments”, International

Journal of Intelligent Engineering and Systems,

Vol. 10, No. 1, pp. 75-85, 2017.

[22] S. Loganathan, R. D. Saravanan, and S.

Mukherjee, “Energy Aware Resource

Management and Job Scheduling in Cloud

Datacenter”, International Journal of

Intelligent Engineering and Systems, Vol. 10,

No. 4, pp. 175-184, 2017.

[23] A. Alsughayyir and T. Erlebach, "Energy aware

scheduling of hpc tasks in decentralised cloud

systems", In: Proc. of the 24th Euromicro

International Conference on Parallel,

Distributed, and Network-Based Processing,

pp.617-621, 2016.

[24] A. Maarouf, Y. Mifrah, A. Marzouk, and A.

Haqiq, “An autonomic sla monitoring

framework managed by trusted third party in

the cloud computing”, International Journal of

Cloud Applications and Computing, Vol. 8, No.

2, pp. 66–95, 2018.

[25] R. Kettimuthu, Z. Liu, I. T. Foster, P. H.

Beckman, A. Sim, K. Wu, and A. N.

Choudhary, "Towards Autonomic Science

Infrastructure: Architecture, Limitations, and

Open Issues", In: AI-Science@ HPDC, pp.2:1-

2:9, 2018.

[26] K. Indira and M. Thangavel, "Green cloud

computing", Cloud Computing Technologies

for Green Enterprises, IGI Global, pp.114–136,

2018.

[27] R. Tomar, A. Khanna, A. Bansal, and V. Fore,

"An architectural view towards autonomic

cloud computing", Data Engineering and

Intelligent Computing, pp. 573–582, 2018.

[28] S. Diouani and H. Medromi, “Towards an

optimized energy consumption of resources in

cloud data centers”, In: Proc. of the

International Symposium on Ubiquitous

Networking, pp. 179-185, 2018.

[29] S. Diouani and H. Medromi, “Green cloud

computing: Efficient energy-aware and

dynamic resources management in data

centers”, International Journal of A dvanced

Computer Science and Applications, Vol. 9, No.

7, pp. 124-127, 2018.

[30] R. Sterritt, M. Parashar, H. Tianfield, and R.

Unland, “A concise introduction to autonomic

computing”, Advanced Engineering Informatics,

Vol. 19, No. 3, pp. 181-187, 2005.

[31] V. Cima, B. Grazioli, S. Murphy, and T. M.

Bohnert, “Adding energy efficiency to

openstack”, Sustainable Internet and ICT for

Sustainability, pp.1-8, 2015.

[32] T. Pflanzner, R. Tornyai, B. Gibizer, A.

Schmidt, and A. Kertesz, "Performance

analysis of an openstack private cloud", In:

Proc. of the 6th International Conference on

Cloud Computing and Services Science,

pp.282-289, 2016.

[33] “stress-ng,” http://kernel.ubuntu.com/

cking/stress-ng/, 2018.

[34] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, and M.

Bichler, “More than bin packing: Dynamic

resource allocation strategies in cloud data

centers”, Information Systems, Vol.52, pp.83-

95, 2015.

[35] M. B. Nagpure, P. Dahiwale, and P. Marbate,

“An efficient dynamic resource allocation

strategy for vm environment in cloud,” In: Proc.

of the International Conference on Pervasive

Computing, pp.1-5, 2015.

[36] C. T. Yang, J. C. Liu, K. L. Huang, and F. C.

Jiang, "A method for managing green power of

a virtual machine cluster in cloud", Future

Generation Computer Systems, Vol. 37, pp. 26-

36, 2014.

[37] A. Beloglazov and R. Buyya, “Optimal online

deterministic algorithms and adaptive heuristics

for energy and performance efficient dynamic

consolidation of virtual machines in cloud data

centers”, Concurrency and Computation:

Practice and Experience, Vol. 24, No. 13, pp.

1397-1420, 2012.

http://kernel.ubuntu.com/

