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Abstract: Given the development of the Cloud Computing recently, clients and customers using the Cloud for both 

individual and business needs have expanded to an uncommon scale. This has normally prompted the expanded 

deployments of Cloud data centers over the globe. As a result, Cloud data centers are seen to be monstrous energy 

consumers and natural polluters. They require an extraordinary measure of regular energy which has made an effect 

on the energy supply and natural conditions of the environment. This is the reason why the vulnerability of persistent 

energy supply, later on, is being referred to. In this way, there is a need of an energy-aware cloud-based system 

which automatically and efficiently manages and optimize cloud computing data center resources by considering 

energy consumption as an essential Quality of Service (QoS) parameter. This paper, focus on the energy utilization 

of the data centers and how this can be limited so as to make the cloud computing greener. Thus, a new autonomic 

resource optimization manager has been proposed to avail the most optimum level of resources with reduced server 

energy consumption. The proposed framework has been verified theoretically and tested experimentally. The 

experimental analysis has demonstrated that the effectiveness of the proposed solution is greater than the state-of-

the-art methods in terms of the achieved results related to reducing energy consumption and response time in cloud 

computing data centers. 

Keywords: Cloud computing, Data center, Green cloud, Energy efficiency, Resource efficiency, Optimization, 

Autonomic management, MAPE-K, SLA, QoS. 

 

 

1. Introduction 

Energy effectiveness has turned into an 

increasingly important worry in the cloud computing 

data centers because of the issues related to energy 

consumption, including capital costs, working costs 

expenses, and ecological negative effects. Data 

centers at the center of Internet-scale applications 

expend about 1.3% of the overall power supply and 

this part is anticipated to be 8% by 2020 [1]. Google, 

for instance, expended 1.9 BkWh in 2010 which 

represent 0.8% of world data centers [2]. Also, in 

November 2008, carbon outflows from data centers 

were 0.6% of the worldwide total and are 

anticipated to be 2.6% by 2020, which is more than 

the total carbon emission of Germany [3]. 

This energy loss is engendered due to 

suboptimal use of facilities and equipment, and 

according to these statistics, reducing the energy 

consumption of data centers and making them work 

in energy-aware ways is a central aim in research 

related to data center management. So as to 

appropriate resources scheduling, the mapping of 

cloud workloads is obligatory to enhance QoS 

parameters like time, cost, energy consumption and 

so on. This is why many IT experts have built up 

multiple technologies aiming to reduce energy 

wastage and which still requires the design and 

implementation of an efficient energy-aware 

resource management system. 

In fact, there is a wide scope of research efforts 

examining systems and approaches to reduce energy 

consumption. Comprehensively, research in the field 
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related to energy data center optimization could be 

classified as follows [4]: 

1) Server level energy management: Taking 

preferred standpoint of several power/performance 

states characterized in components, such as CPU 

and memory. 2) Cluster level management: Using 

optimization and control techniques to reduce the 

number of required compute nodes in an executed 

application. 3) Virtualization: Reducing the quantity 

of active physical servers by multiplexing them as 

virtual machines (VM) so as to use less physical 

servers and exploiting turning off underutilized 

servers. Another side of virtualization is considering 

VM migration and consolidation based on thermal 

output. 4) Scheduling: Job scheduling that can take 

into consideration energy consumption criteria, for 

example, the temperature of servers, power costs 

and CO2 discharge in the case of a geographically 

distributed data center. 5) Using renewable energy 

and power sources. Research in each of these 

classifications is trying to address a section of the 

energy management of a complex distributed system, 

i.e., a data center. To date, little research includes 

all-encompassing methodologies that optimize data 

center energy consumption based on overall 

administering procedures. 

Also, the complexity of recent data centers has 

driven specialists and researchers to explore 

manners by which autonomic strategies can be used 

for data center management.  Autonomic 

supervisors monitor and manage resources so as to 

guarantee that the components they manage are self-

configuring, self-optimizing, self-healing, and self-

protecting (so-called “self-” properties).  

Specifically, in this research, we propose an 

improved version of autonomic management 

framework for cloud computing data centers with a 

specific spotlight on making data centers 

environment more energy- aware and self-

optimizing. Our emphasis is on characterizing the 

establishments of the core concepts, entities, and 

elements, connections, and algorithms for 

autonomic management systems which supports a 

scope of management configurations. The ultimate 

objective is to develop a management framework 

that would permit the data center administrator to a) 

define managed objects and parameters, b) and 

depend on the system to maintain itself 

automatically and optimally managed. Different 

management scenarios are implemented so as to 

evaluate and simulate the proposed energy-aware 

framework. 

The motivation of this paper is to design an 

autonomic energy efficient framework for effective 

scheduling of resources which considers energy 

consumption as a QoS parameter. The main 

contributions of this paper are the following: (i) to 

propose an autonomic resource management 

approach for execution of heterogeneous workloads 

by considering the generic property of self-

management, using the MAPE-K loop (ii) to reduce 

the energy consumption and response time (iii) to 

implement and perform the evaluation in a 

simulated cloud environment for clustered 

heterogeneous workloads. Experiments show that 

our proposed Framework outperforms the state-of-

the-art solutions in terms of energy consumption and 

response time.  

The rest of this paper is organized as follows: 

Section 2 provides a review of related works in the 

areas of data center energy consumption and 

autonomic computing. Section 3 gives an outline of 

the background in the field. Section 4 presents the 

architecture of our energy-aware autonomic 

framework by detailing its components. In section 5, 

the trial assessments of the management framework 

are outlined using distinctive illustration scenarios 

which are executed and assessed using our data 

center simulator to exhibit the effectiveness of the 

proposed system according to the obtained results. 

To conclude, the paper in the last section gives an 

outline of our commitments and their future aspiring 

expansions. 

2. Related works 

In light of the targets of our research, related 

works can be classified into two major classes. First 

of all, we review some previous research related to 

approaches for data center energy reduction. 

Afterward, we give a general view of research 

efforts in autonomic computing aimed to reduce 

energy consumption in cloud data centers. In fact, 

there are few studies which deal with monitoring in 

the cloud computing environment. 

2.1 Review of research efforts in cloud computing 

data center energy reduction 

There are three classifications of energy-

efficient optimization techniques for cloud 

computing: 

(1) Infrastructure-based optimization which 

manages infrastructural changes like making green 

structures utilizing energy-efficient equipment; data 

centers use raised floors and brought down ceilings 

for cooling air dissemination, with the processing 

hardware sorted out in rows of racks, regularly 

finished with cold corridors and hot passageways. 

Server racks may have chiller entryways that 
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function as radiators to cool down hot air coming 

out of servers. The cooling of the data center room 

is regularly done through computer room air 

conditioning units. In this situation, cool air comes 

into the data center through raised floor vents. Later 

plans have racks of computers cooled by fluids that 

are pumped through the racks, servers and even 

chips. Yet, these proposed solutions are costly to 

implement and give a limited reduction in energy 

consumption [5-7]. 

 (2) The hardware-based optimization includes 

managing dynamic changes in hardware settings in 

servers to developing management structures for 

entire clusters of servers and whole data centers. 

These solutions involve Dynamic voltage–frequency 

scaling (DVFS) practices which are utilized on 

processing components for assisting the dynamic 

change of their performance to power consumption 

[8, 9]. However, multiple studies demonstrated that 

DVFS engender significant performance 

degradation at high utilization levels and higher 

response time [10]. 

Also, data center provisioning algorithms 

attempt to give the number of servers that guarantee 

the response time indicated in the Service Level 

Agreement (SLA), which frequently determines the 

maximum load. In practice, most of the times, data 

centers are worked far less than their maximum load, 

e.g. 30-70% of their maximum load which 

consumes power. In some research, they consolidate 

all the workload in a number of servers at a given 

time [11-13] and power off unused servers or at 

least make them work in low power mode. And 

consolidation can be performed at various levels: (a) 

VM consolidation, (b) server consolidation, and (c) 

task consolidation. And the consolidation involves 

the use of migration algorithms. In fact, by moving 

services to VMs, the CPU utilization of that physical 

machine (PM) is increased. Then, the number of 

running PMs can be reduced and this decreases 

energy consumption [14].  

For energy saving, Han et al. [15] have proposed 

a VM placement algorithm, and an algorithm to find 

underloaded PMs to switch them to sleep mode. 

These researchers have applied the mix of these two 

algorithms in cloud data centers to complete the 

process of VM consolidation. In addition, VM 

placement algorithm can manage variable workload 

to prevent PMs from overloading after VM 

placement and to minimize the SLA violations. 

Actually, most of the proposed methods and 

strategies focusing on energy efficiency 

improvement in cloud data centers and especially in 

Infrastructure as a Service (IaaS) principally focalize 

on managing computing resources. Those solutions 

are based on server consolidation techniques [16] 

and by switching the mode of idle resources to a 

power saving or to an operating mode. 

In fact, in [17], the researchers select VMs to 

consolidate from the overloaded or underloaded host 

for migrating them to another suitable host and by 

considering CPU and RAM as primary energy 

parameters. And the idle hosts are turned into 

energy saving mode. Furthermore, researchers in 

[18], proposed an algorithm to select VMs to be 

migrated from overloaded hosts by considering CPU, 

RAM, and Bandwidth. After, the empty hosts are 

changed to the sleep mode. 

Karakoyunlu et al. [19] proposed a method for 

allocation of resources based on metadata 

heterogeneity for cloud storage. In this solution, the 

inactive resources are changed to low energy mode 

so as to reduce energy consumption. 

Researchers in [20] defined two algorithms 

which are Dynamic Resources Allocation (DRA) 

method and Energy Saving method. By the DRA 

algorithm, the waste of the idle resources on the 

VMs can be diminished. Furthermore, the Energy 

saving method diminishes the energy consumption 

of the cloud cluster. More precisely, 39.89% of total 

energy consumption is decreased (also for memory 

and VCPUs). 

(3) Software-based optimizations include 

employing job scheduling algorithms in the 

application level of the data center, which have been 

broadly utilized for reducing energy consumption. 

Some researchers used heuristics as a base of a 

scheduling algorithm to map the task on the 

heterogeneous system while minimizing energy 

consumption [5]. 

Multiple methods for load balancing have been 

proposed, among them we cite [21]; In this 

technique, a Fruit fly optimization approach (EFOA-

LB) in the cloud is used so as to balances the load 

among VMs, to reduce energy and response time in 

the data center, while adopting the Dynamic 

Threshold value along and the sleeping strategies. 

The results obtained after simulation uncover that 

this proposed methodology accomplishes more 

performance contrasted with some current 

techniques such as PSO algorithm. These 

researchers plan to extend the work with other QOS 

factors such as network traffic in the cloud. 

Additionally, in this paper [22], a job scheduling 

algorithm is presented to assign a job to a VM of the 

current active hosts itself by considering job 

classification and preemption. Which restrains the 

number of hosts utilized in the allocation and reduce 

the energy consumption in the cloud datacenter. In 
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this mechanism, each job is characterized into three 

different types and assigned based on preemption 

policy with the earliest accessible time of the VM 

which is related to a host. Along these lines, less 

number of hosts in the dynamic state is made and 

the utilization of active host is increased and thus 

the energy consumption is reduced. Except that this 

solution focused on job scheduling field more than 

resource allocation. 

In [23], the authors proposed an energy-aware 

task scheduling algorithm for high-performance 

computational tasks. This algorithm control 

dynamic energy consumption by the adoption of 

DVFS and it concentrate on working in multi-cloud 

systems and where the data centers are decentralized.  

The energy efficiency research study to address 

the issue of VM placement and optimization in the 

cloud computing data center has demonstrated that 

appropriate planning and management of VMs and 

PMs in the cloud data centers reduce the total 

energy consumption; Consequently, we 

concentrated on green computing efforts to save 

energy at the infrastructure level in data centers and 

more precisely at server and VM levels. 

2.2 Review of research efforts in autonomic 

computing aimed to reduce energy 

consumption 

Autonomic Computing (AC) refers to the ability 

of a computing system or application to be self- 

managing, which means that the system can manage 

itself and can be adaptable to any changes and 

adjustments in its environment [24]. 

In AC, a management module which controls 

the conduct of a Managed Object (MO) is called an 

autonomic manager (AM). IBM at first introduced 

the idea of autonomic management and 

recommended that an AM consistently goes through 

a cycle of monitoring, analysis, planning, and 

execution steps [25]. The idea in AC is that 

distinctive AMs control diverse resources in a 

distributed way. This management could be done 

individually, i.e., each AM is in charge of its own 

MOs. More generally, in computing systems, it is 

fundamental that AMs interoperate and which could 

be heterogeneous sorts of them with various goals. 

The research introduced in [26] demonstrates the 

coordination between two autonomous AMs. In this 

work, the first AM manages SLA administration 

and resource allocation to reduce SLA violations. 

The second AM manages minimizing power 

consumption by turning off unused servers. This 

work demonstrated that without a connection 

between the managers there may be a failure to 

accomplish their objectives. 

Also, other recent works such as [27], proposed 

an autonomic cloud computing solution which 

offers dynamic allocation and monitoring of 

resources dependent on VM migration. This system 

is SLA complaint and automates the user 

experience by respecting the conditions referenced 

in the SLA. 

3. Background 

In this section, we present the principal 

parameters for energy in cloud computing and we 

introduce the Autonomic Computing paradigm and 

maturity computing levels. 

3.1 Important managed objects and 

monitoring parameters for energy in cloud 

computing 

In this part, we aim at finding an initial set of 

managed objects and its set of possible monitoring 

parameters for energy in cloud computing. Also, we 

define the possible related actions to execute. As 

shown in Table 1, the majority of objects are 

described. In [28] and [29], we have defined all 

major energy parameters that influence the 

efficiency of the cloud data center energy, and 

specified some major distinct Service Level 

Agreement constraints of the VM placement. 

3.2 The autonomic computing paradigm and 

maturity levels 

Manual management of energy is a complex 

task, especially when the administrator has to 

consider the environmental changes and dynamic 

resources deployment. The Autonomic Computing 

[30] is a key paradigm which takes into account this 

dynamicity in an autonomous way. 

1) The loop called MAPE-K of the Autonomic 

Computing paradigm: To incorporate self- 

optimization in our framework, a further extended 

Energy-aware Autonomic Resource Scheduling 

Technique is integrated in our solution, in which 

IBM’s autonomic computing concept has been 

utilized to plan the resources automatically by 

optimizing energy consumption where the user 

using available interface, can easily interact with the 

system. 
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Table 1. Illustration of manageable objects and related monitoring parameters and actions 

Object Possible monitoring parameters Type d'actions possibles 

VM 
-Throughput 
-CPU utilization 

-Migration 
-Blocking 

 

Server 

-CPU utilization 

-CPU power state 
-Server queue job length 

-Changing power state 

-Shutting server down; bringing it up 
-Invoking admission control 

Cluster 
-Node utilization 
-Number of waiting job 

-Shutting down nodes 
-Workload manipulation 

 

Rack 

-Number of available nodes 

-Number of running applications 
-Number of running system 

-Shutting down some nodes 

-Changing node CPU frequency is 

applicable 

 
Application 

-SLA violations 

-Number of active allocated servers 

-Percentage of idle servers 

-Number of jobs/requests in the application queue 

-Make a number of serves idle 

-Activating a number of servers 

-Blocking application (stop running and 

just queueing workload) 
-Change frequency of allocated servers 

 
 

Data center 

-Current power consumption 

-Current electricity rate 

-Current temperature 
-Data center utilization 

-Shutting down racks 

-Activate racks 

-Turning on racks 

 

 

The Autonomic Computing paradigm depends 

on four fundamental segments distinguishing the 

MAPE-K loop to ensure the above properties of the 

framework. Ordinarily, control circles are actualized 

following MAPE (Monitoring, Analysis, Planning, 

and Execution) steps. Fig. 1 demonstrates these 

parts, which are presented as following: 

-The M-onitoring of the managed resources and its 

current performances associated with its current 

configuration or QoS satisfaction based on SLA, 

with side effects detection in view of characterized 

rules; 

-The A-nalysis of the produced indications with the 

intent to distinguish the possible causes of them, in 

view of stored data in the knowledge base, if 

changes are required, a demand for change is sent to 

the plan function; 

-The P-lanning of the actions should have been set 

up with the objective to coordinate the targeted 

goals; it creates or select methodology /plans to 

institute on the managed entity; 

-The E-xecution of the elaborated plans to change 

the conduct of the monitored element through the 

effectors. 

The control cycle with its four segments and the 

Knowledge database allows the autonomic director 

to be self-manageable. The managed resources can 

be software or hardware resources including 

operating systems, wired or wireless network, CPU, 

database, servers, switches, routers, application 

modules, Web services or VMs, etc. [24]. 

 

 
Figure. 1 The MAPE-K cycle of the AC paradigm 

  

2) The maturity levels of the Autonomic Computing 

paradigm: Implementing an autonomic framework 

which can incorporate the MAPE-K loop is 

additionally a complex task since you have to go 

through five Maturity Levels (MLs) [30] for 

example, Fig. 2: 

Level 1 – Basic ML: the administration and 

setting of the framework’s components are done 

independently by the administrator. Human abilities 

are then needed to monitor the system, to examine 

the observed measurements and metrics and 

ultimately to execute actions relying upon on the 

detected anomalies; 
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Figure. 2 Maturity levels towards autonomic system 

 

Level 2 – Managed ML: so as to reduce energy, 

the monitoring tools and technologies can be used to 

collect metrics and synthesize information from the 

system. Human attitudes are needed to analyze the 

collected data and suitable actions; 

Level 3 – Predictive ML: examination and 

analysis abilities are acquainted in the system to 

analyze the situations and give possible actions. 

Here the administrator is responsible for giving the 

final decision as well as the actuation of the actions; 

Level 4 – Adaptive ML: the administrator must 

simply to characterize approaches in light of the 

correlation between side effects and mechanisms 

without the need to approve the corrective actions 

and to activate them. And consequently, the 

adaptive environment will automatically choose the 

adequate action in view of the accessible data and 

the knowledge of what is occurring in the 

environment system; 

Level 5 – Autonomic ML: at the autonomic 

level, business approaches and objectives govern the 

autonomic manager with the consideration of 

applications requirements. The administrator 

collaborates with the autonomic manager to monitor 

business processes and modifies the targets if 

needed. Finally, the system becomes autonomic. 

4. Autonomic and adaptive energy-aware 

resource manager framework 

4.1 General presentation 

In this part, we describe the design and the 

structure of our proposed Autonomic Energy-aware 

Monitoring framework in the cloud computing 

environment at the infrastructure level (IaaS). We 

depict its components in more profundity, and how 

they interact with each other. 

The framework design depends on the IBM 

autonomic manager architecture [25]. It is composed 

into four fundamental modules which are Monitor, 

Analyzer, Planner, and Executer. These modules 

share the same knowledge and learning database and 

dynamically manage entities using sensors and 

effectors. 

Also, the proposed Framework consists of actors 

and allocation techniques. These actors are users and 

IaaS providers. The system efficiently distributes 

cloud resources. This manager consists of a number 

of PM, which allocates VM. 

For our situation, clients make a demand to 

allocate a VM in the framework. And when the 

client chooses to make this demand, the framework 

will allocate this VM to the corresponding PM, 

making the general framework as efficient as 

possible. 

Fig. 3, presents the principal functional 

components of our framework and which are 

identified with the dynamic service monitoring. The 

monitoring module is in charge of managing and 

monitoring at runtime the energy consumption of 

the cloud data center by collecting data from all the 

available resources. It has likewise a knowledge 

database that stores this data which is required by 

the other components in the framework. Dynamic 

energy monitoring is actually an instance of an 

autonomic control cycle: monitoring, analysis, 

planning, execution whereby frameworks can 

monitor themselves and keep up an objective 

behavior. 

4.2 Autonomic energy-aware resource manager 

In this part, we detail the components of the 

Autonomic Energy-Aware Resource Manager 

Framework and how they collaborate with each 

other. Also, we describe the design and the 

implementation of this manager. 

The monitor: receives as input, the events 

gathered from managed resource sensors and creates 

symptoms occurrences or reports as a response. The 

gathered monitored data include details about the 

actual resource utilization by the workflow 

applications and return a set of defined energy 

utilization states (Normal, warning, etc.). 

The analyzer: processes the monitored data and 

gives the mechanism that correlates and model 

complex situation. These components allow the 

autonomic manager to learn about the environment 

and help predict circumstances. It provides an 

interface for receiving as input the monitored 

information as symptom occurrences from the 

monitoring phase. It checks if a demand for change 

should be created as a reaction by analyzing the 

 



Received:  February 22, 2019                                                                                                                                            117 

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019           DOI: 10.22266/ijies2019.0831.12 

 

 
Figure. 3 Adaptive autonomic energy-aware resource manager framework 

 

 

received information to determine the difference 

between the exact actual energy consumption and 

the threshold defined, and then decides on the exact 

reactive action (such as resource allocation, resource 

deallocation, and VM migration) to carry out in 

order to optimize resource utilization and reduce 

consumed energy. 

The planner: provides the mechanisms that 

develop the action needed to accomplish goals. It 

exploits policies based on objective and 

environmental awareness to control its work. It 

receives as input requests for change and creates 

actions plans as a reaction. 

The executor: By adopting managed effectors, 

this element takes as input a sequence of actions and 

performs it considering the dynamic updates. 

 1) Monitoring Energy Consumption 

Component: As shown in Fig. 3, the Monitoring 

module includes three sub-modules which are the 

Energy consumption monitoring, Energy Estimation 

model, and Knowledge Database. 

Initially, as exhibited in Fig. 4, the sensors get 

the information about energy consumption of all the 

systems working under the cloud and update the 

information in real time, and after, this module is 

adopted to gather these data for checking 

persistently the value of resource utilization as 

shown in Algorithm 1. 

After, the collected data will be transferred to 

the next module for further analysis (analysis 

component). 

Where: 

Ru: Set of information about resources utilization in 

defined time interval t; 

ST: Set of Energy utilization states (Normal, 

warning, etc.). 

These monitors may be in various format, 

depending on the type of usage metrics they are 

intended to gather and the way in which usage data 

should be gathered. Thereafter, we present an agent-

based implementation format which is assigned to 

forward the collected data use to a log database for 

post-processing and reporting aims. 
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Figure. 4 The cloud administrator sends a request 

message to a cloud service (1). The monitoring agent 

intercepts the message (2) to collect relevant usage data 

before allowing it to continue to the cloud service (3b). 

While the monitoring agent stores the collected usage 

data in the log database (3a). The cloud service replies 

with a response message intercepted by the agent (4), it is 

sent back to the cloud administrator. 

 

The Monitoring Agent is an event-driven 

program intermediate that works as a service agent 

and resides along existing communication paths to 

transparently monitor data-flows as shown in Fig. 4 

where the agent plays the role of a sensor. So as to 

measure network traffic and message metrics, this 

type of cloud usage monitor is generally adopted. 

The Monitoring Agent could monitor at various 

levels in the framework Cloud on each Compute 

Node: 

Host OS/Hypervisor. Here the Monitoring Agent 

could catch all customary working framework 

measurements at the equipment level, such as 

percentage CPU time per VM, memory usage, disk 

I/0, and so forth. 

Guest OS. Observing in this level enables the 

Agent to gather the particular data to one VM in a 

working framework. 

Application Level. Instead of the past two levels, 

this necessitates the change in the application to give 

a monitoring interface whereby application- level 

execution measurements can be gotten. 

The captured data are filed in a database that can 

be sent at runtime to the monitoring engine (ME) 

and may be utilized at various times. This ME may 

periodically apply a rule set from the resource 

information, given by the knowledge database, to 

verify if the resource usage is being abused, or 

requires any action. 

The Monitoring Engine observes and analyze the 

runtime execution and performance of cloud 

services to guarantee that they are satisfying the 

optimal resource use. This system can pro-actively 

repair or fail-over cloud services when exception 

conditions happen, for example, when the MA 

reports that a resource usage of a hypervisor is bad. 

An UML description of the functional 
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Figure. 5 Functional architecture of the monitoring energy consumption component 

 

 

architecture of this monitoring engine is presented in 

Fig. 5, making evident the high-level functional 

components permitting the targeted maturity level. 

The primary components of our Monitoring 

Energy Consumption Component are: The Global 

Monitoring Manager ensures the interface with the 

administrator, also, is in charge of the configuration 

and deployment of the different parts and the 

collaboration between them. 

As Fig. 6 shows, the global monitoring Manager 

exposes four external interfaces. A simplified form 

of the web subsystem gives a web interface for the 

administrator, enabling them to interact and 

cooperate with the system (e.g. include new patterns, 

get alerts, and so on.). This created event patterns 

expression and EPL statements incoming from the 

administrative interface (at runtime configurations) 

are received by the REST interface which is exposed 

by the receiver service (API). Thus, these rules are 

transferred to the persistence service which stores 

them in the Knowledge database. Communication 

with receiver service and database utilizes the Java 

Database Connectivity (JDBC) interface overlaid by 

the Hibernate technology; 

Figure. 6 Defined rules by administrator 
 

The QoSConfigurator mechanism is intended to 

interact with the knowledge database (KB) for the 

retrieval of the agreed SLAs between cloud service 

providers and consumers, also contain the 

description of the appropriate sensors; After that, it 

collaborates with the Energy Events Collector for 

the specification of the metrics to gather depending 

on the agreed SLA; 

The Energy EventsCollector is responsible for 

the collection of metrics at runtime of cloud services 

through interaction with the corresponding sensors. 

The description of this interaction is specified by 

the QoSConfigurator that asks the KB.  
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The interaction between Energy EventsCollector 

and sensors integrated into the managed entity can 

be done through periodic request/response way or 

through a listening way with notifications from 

sensors when a change. After data is initially 

collected, it can be used at different times. All of the 

monitored data is archived in a KB that can be 

queried by the Global Monitoring Manager; 

The EventsProcessor it processes arriving events 

by applying defined patterns stored in the KB; it can 

be filtering (EventsFilter), correlation 

(EventsCorrelator) or aggregation 

(EventsAggregator) events. Additionally, the 

correlation means (link between the metrics), 

aggregation (group different level metrics) and 

filtering (selection of specific patterns) of collected 

data are needed to identify or predict more complex 

patterns that can be modal, temporal, etc. such as a 

sequence of response time values exceeding a 

defined threshold and following an increasing 

tendency. As soon as a pattern is detected, it notifies 

the Global Monitoring Manager. 

The Workload Resource Analyzer 

(ViolationGenerator) component is invoked by the 

Global MonitoringManager when one or several 

events match a defined pattern. It then generates 

adequate violation correlated to non-satisfaction of 

QoS requirements via the catalog of violation 

included in the Knowledge Base. In our case 

research, we consider six sort types of states related 

to the considered resources utilization: 

1) TOEMPTY: the state of the resource 

utilization is identified as TOEMPTY when the 

resource utilization is lower than a defined Minimal- 

threshold (to facilitate the task for the cloud 

administrator, we consider it equal to the value 10); 

2) NORMAL: the state of the resource 

utilization is identified as NORMAL when the 

resource utilization is between a defined Minimal-

threshold and a defined Medium- threshold (to 

facilitate the task for the cloud administrator, we 

consider it equal to the value 10 and 50 

respectively); 

3) NOTIFY: the state of the resource utilization 

is identified as NOTIFICATION when the resource 

utilization is equal to a defined Medium-threshold 

(to facilitate the task for the cloud administrator, we 

consider it equal to the value 50); 

4) WARNING: the state of the resource 

utilization is identified as WARNING when the 

resource utilization is between a defined Medium-

threshold and a defined High-threshold (to facilitate 

the task for the cloud administrator, we consider it 

equal to the value 50 and 70 respectively); 

5) CRITICAL: the state of the resource 

utilization is identified as CRITICAL when the 

resource utilization is between a defined High-

threshold and a defined Maximum-threshold (to 

facilitate the task for the cloud administrator, we 

consider it equal to the value 70 and 95 

respectively); 

6) FAILURE: the state of the resource utilization 

is identified as FAILURE when the resource 

utilization is higher than a defined Maximum- 

threshold (to facilitate the task for the cloud 

administrator, we consider it equal to the value 95). 

Thereafter, the Monitoring Energy Consumption 

Component sends then the state of the energy 

utilization to the analysis component. 

2) Analysis Energy Consumption Component: 

The fundamental objective of the Analyze step is to 

process and analyses the information about energy 

consumption of cloud system received from the 

Monitoring Energy Consumption Component and to 

relate this information in accordance with the 

knowledge base policies (QoS requirements of 

workload(s), and so forth.) so as to produce an 

analytical diagnosis (resources are provisioned, 

scheduled and executed). 

Also, notification messages and alerts are 

dispatched to the customers/providers to alert about 

the situation, as shown in Algorithm 2. 

In fact, the analysis component consistently checks 

the status of energy utilization. Three Reaction (3R) 

strategies are defined based on the received state: 

-In the case of a state type failure, it dispatches 

the notification messages to the customers/providers 

to alert about the situation (not possible to add other 

resources. . .) and mark the host as “saturated” and 

define the action (move to another host). 

-In the case of a state type Toempty, it 

dispatches the notification messages to the 

customers/providers to alert about the situation 

(resources must be moved to another host. . .) and 

mark the host as “empty” and define the action 

(move the resources to another host). 

-In the case of the other states types: the analysis 

component consistently checks the workloads 

queued and energy consumption. 

The aim is to provide the resources for the 

execution of heterogeneous cloud workloads by 

reducing the energy consumption. In other words, 

the workloads submitted should be executed with 

minimum energy consumption. Indeed, the 

workload submitted by the client to resource 

provider is stored into a crowd of workloads for 

their execution. 
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The workloads are analyzed based on their QoS 

requirements and estimated value of energy 

consumption stocked in the KDB based on their 

previous statistics of execution. If the value of 

energy consumption of workloads executes within a 

defined range (less than the threshold value of 

energy consumption), then resources will be 

provisioned, on the other hand, an alert will be 

generated in order to notify for trigger another 
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Figure. 7 Functional architecture of the analysis energy consumption component 

 
 

analyses of the workload after reallocation of 

resources by the autonomic manager. Also, the 

system calculates the resource requirements to check 

whether the resources are sufficient for the 

execution of workloads is provided or not. If the 

sufficient resources are given, then the scheduling of 

resources for workload execution is started 

otherwise add new resources from the pool of 

reserved resources. Resources are another time 

assigned for further execution after finding the 

minimum value of energy consumption, as shown 

in Algorithm 2. The analysis component collects the 

information of available resources from the KDB 

which contains details of all the resources available 

in the resource pool and reserve resource pool. And 

based on cloud consumer details, it assigns 

resources and executes heterogeneous cloud 

workloads. 

The Autonomic Energy Aware Scheduler engine 

processes the received resource utilization states. It 

provides an interface for receiving the monitored 

information from the monitoring phase. It analyzes 

and classifies resource utilization states depending 

on the priority and criticality (normal, warning, etc.). 

This mechanism presents the backbone of the 

Analyze component. 

Also, the Autonomic Energy Aware Scheduler 

engine contains two subcomponents: The Migration 

Module, as illustrated in Fig. 7, and Allocation 

Module, where: 

-Rr: represents the resource requirements; 

-Pr: represents the resource provided; 

-ACT: represents the actions initiated to be executed 

(Migration, Allocation, Consolidation, Switch 

on/off). 

The Energy Efficient Resource Allocation is 

invoked by the Global Analysis Manager component. 

The goal of this engine is to automatically allocate 

resources either in a static or in a dynamic manner; 

On the basis of roles, policies on the KDB, 

resources will be allocated in a static way. And in a 

dynamic way by adopting our algorithm. 

The Plan notification component it is invoked by 

the Global Analysis Manager to define and structure 

the set of actions to be executed when a request for 

change has been produced by the Analysis Energy 

consumption component in order to provide 

adequate scalability and QoS level. The actions are 

chosen in the Analysis phase in correspondence with 

the knowledge base. The next steps are planning the 

order and timing of the actions (Plan phase) and 
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Figure. 8 Planning energy consumption component 

 
finally executing them (Execution phase) with the 

help of actuators communicating with the self-

management interface of the responsible services. 

3) Planning Energy Consumption Component: 

plans the execution of the recommended actions and 

prevents changing impacts (i.e., allocating and 

deallocating the same resource reciprocally) in the 

tasks. This stage is divided into two steps: the 

mapping planner and the scheduling planner as Fig. 

8 shows. 

The first planner is in charge of mapping actions 

into PMs and VMs in data centers cloud computing 

and managing those machines. The scheduling 

planner is responsible for planning and arranging the 

order and timing of the execution of the actions. 

4) Executing Energy Consumption Component: 

The execution phase is the final one. The executor 

executes the plan considering the dynamic updates. 

By adopting managed software effectors, this 

element takes as input a recommended sequence of 

actions (new workload submission, resource 

addition, alert generation, etc.) on the computational 

devices and execute it by using various sort of 

technologies (Web services, script file, Restful 

services, and so on.). Also, Effector is used to 

transferring the new policies, rules, and alerts to 

other nodes with refreshed data. 

5) Knowledge Database: The term Knowledge 

Management (KM) in our context and following the 

approach means intelligent usage of measured data, 

obtained by monitoring, for the decision making 

process to satisfy application performance goal 

defined in SLA agreements while optimizing the 

computational resource usage and thus reducing 

cloud data center energy consumption. The core of 

the KM is a knowledge database (KDB) that 

interacts with these phases in the management 

process. This KDB integrates various policies (QoS 

parameter violation, failure, thresholds, algorithms 

for best cloud resource selection, SLA violation, 

 

Figure. 9 Customized autonomic loop 

 

etc..). Also contain the catalog of violations that will 

be used to guide the autonomic behavior (e.g. 

diagnostic models, the association of issues and 

specific corrective actions, etc.). The planning and 

executing steps of the MAPE-K loop will have to be 

explored in details in our remains future work, 

particularly when several adaptation mechanisms 

will have to be considered. 

5. Evaluation 

The goal of this evaluation is to validate the 

functional architecture of our Autonomic Energy-

aware Monitoring framework by monitoring at 

runtime the energy consumption of the cloud data 

center and the proposed mechanism for an adaptive 

remedy rectification, to self-optimize a Cloud 

infrastructure to maximize power efficiency and 

performance while maintaining predictable and 

reliable behavior. 

This experimental validation is based on the 

implementation of the autonomic energy 

consumption saving engine. We use a set of sensors 

to measure the real energy consumption and the set 

of agents to follow CPU, memory, disk usage per 

VM and per server as Fig. 9 shows. 

Fundamentally, every compute node possess a 

software agent installed next to the hypervisor. This 

software is a customized OpenStack Ceilometer 

compute agent. It is a metrics collector, installed on 

each compute node of the datacenter [31]. This 

component polls metering data and instances 

statistics from the compute node through libvirt. 

Additionally, it monitors the host system, gathering 

various metrics on the node (e.g. CPU utilization, 

RAM usage, disk use). The compute agent forwards 

all the measurements to the central agent, 
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Figure. 10 Testbed 

 
Table 2. Resource capacities of physical and virtual machines 

Instance Type System CPU Memory Storage Network 

 
Host 

 
Linux/Ubuntu 

12-core 6-CPU 3.6 GHz Intel Xeon 

E5420 
QC 

 
64 GO 

 
2 TO 

Infiniband 20G 
Ethernet 

 
Virtual machine 

 
Linux/Ubuntu 

 
4 VCPU 3.6 GHz Intel Xeon X3440 

 
10 GO 

 
500 GO 

Infiniband 20G 
Ethernet 

 
Cluster 

 
Linux/Ubuntu 

 
2-core 1-CPU 3.6 GHz Intel Xeon 

X5025 

 
16 GO 

 
700 GO 

Infiniband 20G 
Ethernet 

 

 

responsible for aggregating them.  Continuously, 

this software agent feeds our autonomic energy 

consumption saving engine with the collected data. 

These sensors allow us to associate an energy 

consumption value for a given physical server 

utilization (in terms of CPU utilization, RAM usage, 

disk I/O, network activity). 

The dynamic detection of energy consumption 

related to the response time (Rt) and workload 

(wkd), the autonomic activation of our proposed 

mechanism, and then the observation of the induced 

benefits of this action. We first describe the 

experimental setup we have used in evaluating our 

approach, then we depict the test scenario of saving 

energy consumption, and we briefly describe the 

cloud services we have used in the experiments. At 

last, we talk about the results got from the 

execution of this test scenario. 

5.1 Experimental testbed 

In order to validate our proposed framework, we 

need to perform its experimental testing in a cloud 

environment as realistically as possible. In this 

section, we describe the testbed used in the 

experiment, as it is depicted in Fig. 10, we use 

Cloud OpenStack. 

OpenStack is a distributed collection of open 

source cloud computing software projects that 

enterprises or cloud providers can adopt for creating, 

managing, and deploying infrastructure cloud 

services [32]. Table 2 shows the resource capacities 

of the physical and virtual machines being used in 

the proposed Cloud OpenStack testbed. 

1) Infrastructure: We installed the KVM 

hypervisor on the server and created a large ubuntu- 
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Table 3.  Energy savings 

Approach Energy consumed Energy Saved (%) Number of 
migrations 

Response Time 

AECS-F 461.13 Wh 50% 10  

ESM 579.37 Wh 9.24% 1 average(122 S) 

DRA 518.53 Wh 21.83% 3  

 

 

4.04.5-server VM with a flavor occupying total 

server CPU and RAM available. Moreover, we 

installed libvirt-bin to ease the deployment and 

management of the VMs on the server. Then, we 

stress the virtual machine CPU for a range of given 

utilization level (from 0 to 100, with a step of 10). 

Note that, for some workloads, the CPU load starts 

at 10% due to the intensive disk write or memory 

filling. 

During the evaluation, we consider four kinds 

of VMs: The first one, called vm-autonomic- 

controllers, hosts the autonomic manager of the 

system providing interfaces to monitor the energy 

consumption of the cloud data center and act on the 

system. The second one, named vm-load, is used for 

load injection purposes.  It contains stress-ng [33] 

that is used to generate some variable load (first in 

terms of CPU and then, coupled with RAM and disk 

operations) and to analyze overall performance 

under different types of workload. The third one, 

named vm-app contains our developed bookstore 

web application, where an Apache server 

responding to the incoming HTTP requests is 

installed. The last one, called vm-KB is an instance 

for the database which back-up all transactions. 

2) Prototype: This paragraph aims at presenting 

the prototype including autonomic manager of the 

system which provides interfaces to monitor energy 

consumption about the system state, analyze them 

and act on the system at runtime (as shown in Fig. 

10). In order to evaluate system behavior under high 

load, we used a customized stress-ng [33] by 

introducing bean shell code adapted to our scenario 

for load injection to generate concurrent/ 

simultaneous requests towards our implemented 

VMs to simulate a load variation and to analyze 

overall performance under different types of 

workload, and report the measurements values. 

5.2 Evaluation scenario 

In our experiment, we compare our optimization 

autonomic energy consumption Framework with 

two greedy approaches Dynamic Resource 

Allocation (DRA) [34, 35] method and Energy 

Saving Method (ESM) [36] based on response time 

and energy consumption. Also, we simulated the 

proposed solution with four overloaded hosts 

detection algorithms and VM selection policy and 

which were described in [37]. 

These overloaded host algorithms are median 

absolute deviation (MAD), and interquartile range 

(IQR) with maximum correlation (MC), minimum 

migration time (MMT), and minimum utilization 

(MU) of VM selection policy.  

How to effectively save and use the idled 

resources on low loading VMs, and save energy 

consumption on servers are the two issues we have 

to face and solve. There are two cases with/without 

our proposed Autonomic Energy Consumption 

Saving Framework (AECS-F). 

Furthermore, every 4 minutes were considered 

as an hour, thus we calculated the energy 

consumption of 24 hours, impacted by each 

controller, which is presented in Table 3. Each 

experiment was run several times and we found the 

energy consumption difference between each run 

was 1& 2 watts. We have studied a scenario that 

consists of a single peak of workload: 5 threads are 

started and maintained for 15 min, whereupon we 

simulate a peak of workload passing from 5 to 20 

threads. The observation interval and evaluation 

window were fixed in 4 seconds and 30 minutes, 

respectively. The threads sent measurements 

periodically. Such a high frequency of requests 

enabled evaluation of system behavior during peak 

load times. 

5.3 Results and discussion 

This section presents the results obtained from 

these experiments. The first part of the analysis for 

the simulation results brings into play the version of 

the approach that optimizes the two metrics named 

response time and energy. Fig. 11 shows energy 

consumption and response time results obtained for 

each simulation. 

Overall we can notice that ESM gets results 

intermediaries with respect to AECS-F and DRA, in 

particular regarding consumption energy. 
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Figure. 11 Final value of energy consumption and response time during simulations of the different approaches 

 

Figure. 12 Comparison of the number of migrations at each re-allocation moment generated by the three approaches 

 

Indeed, the AECS-F is very effective in terms of 

VM consolidation minimizes very well the number 

of PMs used as described in Fig. 12. This allows 

him to obtain a very good energy consumption value 

of 461.13 Wh. Its response time result is also pretty 

good with a result of 116.12 s. Concerning these two 

metrics, the AECS-F allows for obtaining good 

results compared to other algorithms. ESM displays 

a substantially equivalent response time in 122.56 s 

but suffers from its inevitable tendency to use a 

large number of PMs which gives it the worst 

energy result with 579.37 Wh. DRA simulation with 

reallocations retains a fairly good response time    of    

120.54    s    and    intermediate    power 
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(a)                                                                          (b) 

 
(c) 

Figure. 13 The results obtained from the experiments with/without implementations: (a) average consumption on 

weekdays, (b) measured consumption on one day, and (c) Energy saving 

 

 

consumption of 518.53 Wh. Thus, this result is 

worse than that of our AECS-F approach in terms of 

energy consumption.  

According to the results obtained concerning 

energy consumption and response time after the 

simulation, we can see that the four algorithms 

IqrMmt, MadMc, MadMmt and MadMu have 

approximate results of 470 Wh, so we will focus on 

the following comparison of the algorithms on 

MadMc which represents the lowest values with 

ESM, DRA and our AECS-F solution. 

All the measurements related to the energy 

consumption were sent to the Backend which was 

hosted in a Cloud environment built with VMs in a 

remote data center. In addition, we implemented a 

web-based Front end that provides the user with 

statistics over the collected sensor data. 

Examples of charts reported are shown in Figs. 

13 (a) and (b). Specifically, Fig. 13 (a) shows the 

average energy consumption during days of a week 

during simulations of the three approaches over a 

four-week period and Fig. 13 (b) drills down these 

approaches consumption for a more detailed 

analysis. After these comments, it appears that the 

optimization of this metric time response to a lot of 

impact on other metrics, see Fig. 13 (c): in a positive 

way for robustness and dynamism, but in a very 

negative way for energy. Such an optimization 

configuration is therefore only conceivable for a 

very low-load system, which will still limit the total 

consumption of the data center. 

In summary, the results of executing the above 

scenarios evaluated some key features of our 

proposed autonomic SLA monitoring scheme, 

which are: its ability to monitor energy consumption 

in an efficient way and the ability to save energy. 

6. Conclusion and perspectives 

This paper has suggested the AECS-F as a new 

adaptive autonomic resource optimization manager 

framework to avail the most optimum level of 

resources with reduced server energy consumption. 

This manager considers major energy parameters 

and major possible constraints of VMs distribution 

in PMs. The primary target is to guarantee energy 
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efficiency by keeping energy-performance trade-off 

in concern while respecting the defined SLA. First, 

we a) defined managed objects and parameters, b) 

designed the system architecture by the adoption of 

the MAPE-K loop c) developed the scheduler 

algorithms d) implemented the proposed framework 

and performed the evaluation in a simulated cloud 

environment for clustered heterogeneous workloads.  

Also, the experimental results indicated that the 

autonomic framework shows better energy 

efficiency and reduced response time.  

For future work, we intend to enhance the 

autonomic framework in terms of proposals of 

different scenarios. 
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