
Received: January 7, 2019 31

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Heuristic Linear Temporal Logic Pattern Algorithm in Business Process Model

Kelly Rossa Sungkono1 Ulva Erida Nur Rochmah1 Riyanarto Sarno1*

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Indonesia

* Corresponding author’s Email: riyanarto@if.its.ac.id

Abstract: Process discovery obtains a process model of activity records. There are two representations of process

model, i.e. a probabilistic model and a deterministic model. A deterministic model takes all of activity records to

depict a process model, however, the probabilistic model chooses several activity records that satisfy a threshold.

Determination of the right threshold leads the emergence of many discovery algorithms of probabilistic models, such

as Heuristic Miner, Fodina, Modified Heuristic Miner, and Modified Time-Based Heuristic Miners. Those

algorithms determine a threshold based on users or an average of probabilities of activity records, so the quality of

the model depends on user proficiency or frequent activities. This paper proposes a new algorithm of probabilistic

model discovery, i.e. Heuristic Linear Temporal Logic (HLTL), which determines the threshold based on four

quality aspects, i.e. Fitness, Precision, Generalization, and Simplicity. HLTL utilizes Linear Temporal Logic to

create a formal representation of process model and store the weight of relationships used for the threshold formation.

The result shows that the process model constructing by HLTL has better quality aspects than the process model

constructing by Modified Heuristic Miners and Modified Time-Based Heuristic Miners. The generalization value of

HLTL is 0.8422 and the generalization value of Modified Heuristic Miner and Modified Time-Based Heuristic

Miners are 0.8421.

Keywords: Linear temporal logic, Heuristic miner, Process discovery.

1. Introduction

Process discovery [1, 2], as a study of process

mining, discovers process model automatically

based on activity records. Several algorithms of

process discovery produce different representations

of the process model. All representations are divided

into two types, i.e. deterministic process model and

probabilistic process model.

The deterministic model depicts all activity

records. There are several deterministic process

models, such as Data Flow Diagram (DFD) [3],

Business Process Modeling Notation (BPMN) [4, 5],

Activity Diagram [6, 7], and Linear Temporal Logic

(LTL) [8, 9]. The probabilistic model removes

relationships of activity that have small occurrences

in its model. The example of the probabilistic model

is Heuristic Net [10].

A reason for the probabilistic model formation is

avoiding a spaghetti model as a weakness of the

deterministic model. The spaghetti model occurs

when a large activity record with a lot of

relationships among those activities is modeled in a

deterministic model. The deterministic model shows

all activities relationships, so the model is

complicated, like a bowl of spaghetti. The effect of

the spaghetti model is users had difficulty to analyze

it. Spaghetti model is found in various fields, such

as product development, production, logistics,

resource management, and functional area finance

or accounting deals [11]. The probabilistic model

wants to model a lasagna model, a non-complex

model that provides enough information for users.

The pioneer algorithm of the probabilistic model is

Heuristic Miner [12, 13]. This algorithm provides a

threshold that can be regulated by the user to

determine which activities are depicted in the

probabilistic model. The threshold is a lower limit of

the probability of activities relationships to be

modeled. The best threshold for creating a lasagna

Received: January 7, 2019 32

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

model is a topic that should be considered by

researchers.

Heuristic Miner continues to be developed by

other researchers. The development of Heuristic

Miner is Modified Heuristic Miner [14], Modified

Time-based Heuristic Miner [14], and Fodina [15].

Fodina focused on reducing duplicate tasks in the

result of Heuristic Miner and left it entirely on users

to determine the thresholds. Both of Modified Time-

based Heuristic Miner and Modified Heuristic Miner

uses an average of probabilistic of activities as the

threshold. Those algorithms depend on user

proficiency or frequent activities to determine the

threshold.

This research proposed a new algorithm, namely

HLTL, which determines the threshold based on

four quality aspects, i.e. Fitness, Precision,

Generalization, and Simplicity. HLTL utilizes

Linear Temporal Logic [16, 17] to create a formal

representation of process model and store the weight

of relationships for the threshold formation. Then,

HLTL set the threshold to produce the process

model. HLTL will uses the threshold that provides a

model with the highest averages of those four

qualities. In the evaluation, Modified Heuristic

Miner is chosen because this algorithm also

proposes the automatic threshold (without user

proficiency).

To sum up, this research proposes HLTL which has

several advantages, which are:

a) providing an automatic threshold considering

four quality aspects, i.e. Fitness, Precision,

Generalization, and Simplicity,

b) providing formal representations of process

model by utilizing Linear Temporal Logic.

2. Preliminary study

2.1 Linear temporal logic (LTL)

LTL is a formal representation that describes

some temporal logic referring to time consisting of

constants, a group of proportional variable

prepositions, logical operator, such as ¬ and ∨, and

temporal operators, such as ○, ◊, □, U [16]. LTL use

logical operators, such as ∨, ∧, →, ↔, true and

false. Logical operators show the relationship

between points.

To show the sequence of the process model,

LTL uses temporal operator. Sungkono and Sarno

[16] describes the temporal operator in LTL in Table

1. ○ is used to described activities happened

sequentially. It means if there is activity U →○(K),

Activity U must be executed before the process can

Table 1. Operator of Linear Temporal Logic

Symbol Explanation

○s s has to hold at the next stage

◊s s has to hold on the entire sequence path

□s s has to hold somewhere on the path

sUI s has to hold until some position I hold

proceed to activity K. Another temporal operator

that is used is □. If there is □((K)), it means that U

and K can be executed in the first, middle, or the last

processes. Another operator is ◊. If there is U→◊(K),

it means that after executing activity X, other

activities can be executed before executing activity

K. The last temporal operator is U. U U K means

that U will continue to be executed until K is ready

to use.

2.2 Heuristic miner algorithm

Heuristic Miner deletes the unnecessary activity

by considering the frequency and sequence of events

in the process model constructing [18]. The first step

in the Heuristic Miner is obtaining the dependency

model. The step goal is constructing dependency

model which provides the activity records [19].

There are several steps that are used to determine

the dependency model, such as calculating the

Dependency Threshold [14].

2.2.1. Dependency measure

Dependency measure is calculated by using the

frequency-based metrics of each relations.

Frequency-based metric is used to indicate the

dependency between two event U and V (U =>W V).

For example, if there are 4 activity U to activity V in

the activity records, then the frequency of U→V is

equal to 4. The obtained frequency will be used as

the value of Dependency Measure (DM). The

equation to calculate the DM is explained in the Eq.

(1). The DM is calculated by reducing frequency of

U→V with frequency of V→U, and then the result

will be divided using the sum of frequency of U→V,

frequency of V→U, and 1.

𝑈 => 𝑉𝑤

= (
|𝑈 > 𝑉𝑤 | − |𝑉 > 𝑈𝑤 |

|𝑈 > 𝑉𝑤 | + |𝑉 > 𝑈𝑤 | + 1
)

(1)

where:

U=>wV is value of Dependency Measure from U to

V,

|U=>wV| is frequency of activity U that follows

activity V directly,

Received: January 7, 2019 33

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

|V=>wU| is frequency of activity V that follows

activity V directly.

2.2.2. Relative-to-best threshold (RBT)

RBT is used to measures the average of positive

Dependency Measure. The equation to calculate the

Relative-to-best Threshold is explained in Eq. (2).

RBT value is calculated by reducing the average of

Positive Dependency Measure (PDM Average) with

Standard Deviation of Positive Dependency

Measure (SD PDM) that has been divided by 2.

𝑅𝐵𝑇 = 𝑃𝐷𝑀 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − (
𝑆𝐷 𝑃𝐷𝑀

2
) (2)

where:

PDM Average is the average of positive

Dependency Measure,

SD PDM is Standard Deviation of positive

Dependency Measure.

2.3 Dependency threshold

Dependency threshold is used to determine the

value of Dependency Measure that is below the

threshold. If the value of the Dependency Measure

is below the Dependency Threshold, the activity will

not be used. The equation to calculate the

Dependency Measure is explained in the Eq. (3).

Dependency Threshold is the result of Average of

Positive Dependency Measure that is reduced by

Standard Deviation of Positive Dependency

Measure.

𝐷𝑇 = 𝑃𝐷𝑀 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑆𝐷 𝑃𝐷𝑀 (3)

PDM Average is the average of positive

Dependency Measure,

SD PDM is standard deviation of positive

Dependency Measure.

2.4 Quality aspects

The quality of the business process model can be

determined by using four aspects: Fitness, Precision,

Simplicity, and Generalization. Fitness is used to

measure compatibility between activity records and

process models. It means that model can produce

every variation in the activity records. Fitness value

has a range between 0 to 1. The closer Fitness value

to 1, the better the process model is. The equation to

calculate Fitness is shown in Eq. (7). The Fitness

value is obtained by dividing the number of

variation in the activity records that is shown on

model with the number of variation in activity

records.

𝑃𝐶𝑀 =
𝑐

𝑡
 (7)

where:

c is number of variation in activity records that is

shown on model,

t is variation total of activity records.

Precision shows whether the variations of processes

derived from a model is same with the variations of

activity records. Precision focuses on determining

the capability of a model to describe founded

behavior in the activity records. The equation to

calculate Precision is shown in Eq. (7). The

Precision value is obtained by dividing the number

of tp in a model with the addition of tp and tn in a

model.

𝑄𝑝 =
𝑡𝑝

𝑝′
 (8)

where:

tp is true positive number (variation on the activity

records that is described in the process model),

p’ is addition of true positive (tp) and false negative

(tn) (all variations described in the process model).

To calculate Generalization and Simplicity, the

business process model must be converted into tree.

Generalization states that a process model should

show generalization of the sample processes that

exist in the activity records. The equation to

calculate Generalization is shown in Eq. (9). The

generalization value is obtained by dividing the sum

of node operators that is implemented variation on

the activity records with the number of node

operators implemented variation on the activity

records.

𝑄𝑔 = 1 −
∑ (√#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠) −1𝑛𝑡

1

𝑁𝑡
 (9)

where:

#nt is node operators number in the process tree,

Nt is node operator that is implemented in the

activity records,

#executions is node operators number implemented

variation on the activity records.

Simplicity measures whether the process model

that is made is as simple as possible without losing

the realization of the process captured from the

activity records. The equation to calculate

Received: January 7, 2019 34

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Figure.1 The process of Heuristic LTL

Simplicity is shown in Eq. (10). The simplicity

value is obtained by reducing 1 with the sum of

activity types number in the activity records and

activity types number in the activity records that are

not displayed in the process tree that have been

divided by the sum of leaf points number and

activities number.

𝑄𝑝 = 1 −
#𝑑𝑎 + #𝑚𝑎

#𝑛𝑝𝑡 + #𝑒𝑣𝑒𝑛𝑡𝑐𝑙𝑎𝑠𝑠
 (10)

where:

#da is activity types number in the activity records

that is displayed in redundant in the process tree,

#ma is the activity types number in the activity

records that are not displayed in the process tree and

the number of leaf points that are not in the activity

records,

#npt is leaf points number in the process tree,

#eventclass is activities number.

3. Method

This research method proposed in this paper is

shown in Fig. 1. This research uses HLTL to build

the process model. For the first step, activity records

are constructed into a process model. The Weight-

Linear Temporal Logic will be determined based on

a graph-based model. To eliminate the unneeded

activities or relations, Dependency Measure (DM)

and Dependency Threshold (DT) are calculated

based on the weight in the graph-based model. The

quality of Heuristic LTL will be determined after the

process tree is formed.

3.1 Heuristic linear temporal logic (HLTL)

HLTL is a combination of Linear Temporal

Logic and Heuristic Miner. This method aims to

model the activities in the activity records into a

simply process model. In Heuristics Linear

Temporal Logic, the Dependency Measure that is

lower than the Dependency Threshold will be

removed so only the important relationships of

activities are remained. Frequency of each activity is

determined using graph algorithm by calculating the

relations of the activity records. The used activity

records in this research is explained in the Table 2.

The activity records contain information, such as id,

activities, Resource and time. Id contains a set of

variation in activity records. Activities has several

information, i.e. activity name, resource that

contains the used threshold, and time that shows the

time of activity is executed.

Table 2. Activity records

Id Activities Resource Time

1 Initializing Game
Game

System

29-08-

2018

16:46:00

1

Collecting company

expenditure data every

month

Player

29-08-

2018

16:46:01

.

.

.

.

.

.

.

.

.

.

.

.

1
Calculating the highest

profit item
BI

29-08-

2018

16:46:21

1 Displaying Dashboard
29-08-

2018

16:46:22

2 Initializing Game
Game

System

29-08-

2018

16:46:23

2

Collecting company

expenditure data every

month

Player

29-08-

2018

16:46:24

.

.

.

.

.

.

.

.

.

.

.

.

2 Calculating ROE BI

29-08-

2018

16:46:44

2 Displaying Dashboard
29-08-

2018

16:46:45

.

.

.

.

.

.

.

.

.

.

.

.

39 Initializing Game
Game

System

29-08-

2018

16:49:13

39

Collecting company

expenditure data every

month

Player

29-08-

2018

16:49:14

.

.

.

.

.

.

.

.

.

.

.

.

Received: January 7, 2019 35

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

39
Calculating the highest

income item
BI

29-08-

2018

16:49:50

39 Displaying Dashboard

29-08-

2018

16:49:51

.

.

.

.

.

.

.

.

.

.

.

.

40 Initializing Game
Game

System

29-08-

2018

16:49:13

40

Collecting company

expenditure data every

month

Player

29-08-

2018

16:49:14

.

.

.

.

.

.

.

.

.

.

.

.

40
Calculating the highest

income item
BI

29-08-

2018

16:49:50

40 Displaying Dashboard

29-08-

2018

16:49:51

HLTL is utilizing graph algorithm to determine

the relations of each activities. Graph-based

algorithm contains points and relations that describe

the relationship between activity and sequence of

activity. Graph-based algorithm uses operations,

such as NEXT, AND JOIN, AND SPLIT, XOR

JOIN and XOR SPLIT. NEXT shows the next

activity that must be executed. XOR SPLIT shows

the activities that must be done next by selecting

two of the existing paths. XOR JOIN is the activity

that is selected from the previous selected activity.

AND SPLIT breaks the activity into 2 parts. It will

execute all activities based on sequence. AND JOIN

is an activity to unite the previous activities that are

divided because of AND SPLIT. In this process,

probability of each activity needs to be calculated.

The result of graph-based model is shown in the Fig.

2. This graph-based model consists of NEXT, XOR,

and AND relations.

The weight is used to determine the weight of

each relation. This weight will be used to determine

the Dependency Measure and Dependency

Threshold. The equation to determine the weight is

explained in the Eq. (4) and Eq. (5). The used

weight is obtained using probability equation. The

probability is determined by calculating the number

of frequencies of each relation.

𝑊𝑒𝑖𝑔ℎ𝑡 𝑋 → 𝑌 = 𝑃 (𝑋 → 𝑌) (4)

Figure.2 Graph-based model

where:

𝑃 (𝑋 → 𝑌) =
∑ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑋 → 𝑌

∑ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑋

(5)

or

𝑃 (𝑋 → 𝑌) =
∑ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑋 → 𝑌

∑ 𝐴𝑛𝑜𝑡ℎ𝑒𝑟 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 → 𝑌
 (6)

There are two condition to determine the weight of

𝑋 → 𝑌 . The condition to determine the weight is

shown in the Definition 1. If the number of relations

𝑋 → 𝑌 is larger than the number of activity X, then

the weight is determined using Eq. (4). If the

number of relations 𝑋 → 𝑌 is smaller than the

number of activity X, then the weight is determined

using Eq. (5). The result of the weighted graph is

shown in the Fig. 3. Each relation has been added

with weight based on frequency.

Definition 1 Let the X is activity X and Y is activity

Y, X→Y is activity X to Y, Y→X is activity Y to X, P

Received: January 7, 2019 36

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

is probability. If ∑(X→Y) ≥ ∑(Y→X) then

P(X→Y)= ∑(X→Y)/ ∑(X) else P(X→Y)= ∑(X→Y)/

∑(AR→X).

To determine the Weigh-LTL, we need to

convert the graph-based model to Weigh-LTL

model. The result of Weight-LTL is shown in fig. 4.

The LTL consist of AND, XOR and NEXT relations.

Each activity has a value that shows their weight.

3.2 Calculating the dependency measure and

dependency threshold

Dependency Measure table needs to be

determined before determining the Dependency

Threshold. The weight of each relation is obtained

from the graph-based model. Dependency Measure

is determined using Eq. (1). Table 3 shows the

probability of each relation and its Dependency

Measure. The Dependency Measure that is used is

consists of 20 data.

Figure.3 Result of weighted graph

Firstactivity (Initializing_Game)

Lastactivity (Displaying_Dashboard)

Initializing_Game -> _O

(Collecting_company_expenditure_data_every_month

1)

Collecting_company_expenditure_data_every_month

 -> _O (Updating_product_configuration_data 1)

Updating_product_configuration_data -> _O

(Choosing_Supplier 1)

Choosing_Supplier -> _O

(Doing_restock_automatically 1)

Doing_restock_automatically -> _O

(Receiving_items_automatically 1)

Receiving_items_automatically -> _O

(Adding_Items_Automatically 1)

Adding_Items_Automatically -> _O

((Recording_items_purchase_journal 0.425

 \/ Calculating_Market_Share 0.575))

_O ((Recording_items_purchase_journal 0. 575 \/

Calculating_Market_Share 0.425)) ->

 _O (Selling_Items_based_on_Market_Share)

Selling_Items_based_on_Market_Share -> _O

(Delivering_Items_automatically 1)

Delivering_Items_automatically -> <>

((Calculating_Supplier_Selection 0.2

/\ Calculating_Optimal_Price 0.2

/\ Calculating_ROP 0.55

/\ Calculating_EOQ 0.05))

<> ((Calculating_Supplier_Selection 0.4

 /\ Calculating_Optimal_Price 0.4

 /\ Calculating_ROP 0.15

 /\ Calculating_EOQ 0.05)) -> _O

(Recording_items_sales_journal)

Recording items_sales_journal -> _O

(Making_maximum_round_checks 1)

Making_maximum_round_checks -> <>

((Calculating_the_highest_profit_item 0.1

 /\ Calculating_the_highest_income_item 0.3

 /\ Calculating_ROI 0.1

 /\ Calculating_ROE 0.4 /\ Calcuating_ROA 0.1))

<> ((Calculating_the_highest_profit_item 0.1

 /\ Calculating_the_highest_income_item 0.2

 /\ Calculating_ROI 0.3 /\ Calculating_ROE 0.3

 /\ Calcuating_ROA 0.1)) -> _O

(Displaying_Dashboard)

Figure.4 Result of LTL with weight

Received: January 7, 2019 37

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Table 3. Probability and Dependency Measure (DM)

No Relations Probability DM

1 (A, B) 1 0.5

2 (B, C) 1 0.5

3 (C, D) 1 0.5

4 (D, E) 1 0.5

5 (E, F) 1 0.5

6 (F, G) 1 0.5

7 (G, H) 0.575 0.365079

8 (G, I) 0.425 0.298246

9 (H, I) 0.575 0.075

10 (H, J) 0.425 0.298246

12 (I, J) 0.575 0.365079

13 (J, K) 1 0.5

14 (K, L) 0.2 0.166667

15 (K, M) 0.05 0.047619

.

.

.

.

.

.

.

.

.

.

.

.

20 (V, W) 0.1 0.090909

Dependency Threshold (DT) is determined

based on Dependency Measure. Dependency

Threshold is determined using Eq. (3). The result of

Dependency Threshold based on Table 3 is 0.0898.

3.3 Eliminate the relation below dependency

threshold

In Heuristic LTL, the relation will be used if

their value of Dependency Measure is more than

Dependency Threshold. From Table 3, the relation

that must be eliminated is relation of 𝐾 → 𝑀 and of

𝑀 → 𝑃. Their Dependency Measure value is below

the Dependency Threshold, that is why it need to be

eliminated. The result of Weight-LTL after

elimination process is shown in the Fig. 5. The

activities that is eliminated in using Heuristic miner

is calculating EOQ.

Firstactivity (Initializing_Game)

Lastactivity (Displaying_Dashboard)

Initializing_Game -> _O

(Collecting_company_expenditure_data_every_month

1)

Collecting_company_expenditure_data_every_month

 -> _O (Updating_product_configuration_data 1)

Updating_product_configuration_data -> _O

(Choosing_Supplier 1)

Choosing_Supplier -> _O

(Doing_restock_automatically 1)

Doing_restock_automatically -> _O

(Receiving_items_automatically 1)

Receiving_items_automatically -> _O

(Adding_Items_Automatically 1)

Adding_Items_Automatically -> _O

((Recording_items_purchase_journal 0.425

 \/ Calculating_Market_Share 0.575))

_O ((Recording_items_purchase_journal 0. 575 \/

Calculating_Market_Share 0.425)) ->

 _O (Selling_Items_based_on_Market_Share)

Selling_Items_based_on_Market_Share -> _O

(Delivering_Items_automatically 1)

Delivering_Items_automatically -> <>

((Calculating_Supplier_Selection 0.2

/\ Calculating_Optimal_Price 0.2

/\ Calculating_ROP 0.55))

<> ((Calculating_Supplier_Selection 0.4

 /\ Calculating_Optimal_Price 0.4

 /\ Calculating_ROP 0.15)) -> _O

(Recording_items_sales_journal)

Recording items_sales_journal -> _O

(Making_maximum_round_checks 1)

Making_maximum_round_checks -> <>

((Calculating_the_highest_profit_item 0.1

 /\ Calculating_the_highest_income_item 0.3

 /\ Calculating_ROI 0.1

 /\ Calculating_ROE 0.4 /\ Calcuating_ROA 0.1))

<> ((Calculating_the_highest_profit_item 0.1

 /\ Calculating_the_highest_income_item 0.2

 /\ Calculating_ROI 0.3 /\ Calculating_ROE 0.3

 /\ Calcuating_ROA 0.1)) -> _O

(Displaying_Dashboard)
Figure.5 Result of HLTL

The result of HLTL will be calculated by the

four quality aspects. HLTL increases the threshold if

the lowest value is Generalization and Simplicity,

and decreases the threshold if the lowest value is

Fitness or Precision. Increase and decrease the

threshold are by using Standard Deviation. The

iteration of finding threshold is stopped if the next

quality is lower or the difference is 0.1.

4. Experimental result

This research is aimed to increase the

performance value of process model using retail

business process. Table 4 shows the activities and

Received: January 7, 2019 38

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Table 4 Activities of retail business process

Activities Aliases

Initializing Game A

Collecting company expenditure data

every month
B

Updating product configuration data C

Choosing Supplier D

Doing restock automatically E

Receiving items automatically F

Adding Items Automatically G

Calculating Market Share H

Recording items purchase journal I

Selling Items based on Market Share J

Delivering Items automatically K

Calculating Supplier Selection L

Calculating EOQ M

Calculating ROP N

Calculating Optimal Price O

Recording items sales journal P

Making maximum round checks Q

Calcuating ROA R

Calculating ROE S

Calculating ROI T

Calculating the highest income item U

Calculating the highest profit item V

Displaying Dashboard W

aliases of retail business process. The retail business

process consist of 23 activities.

To evaluate each aspect of performance, the tree

model of weight LTL is used. The tree model is

shown in the Fig. 6. The tree model contains 22

activities that have AND and XOR relationship.

From the Eqs. (7), (8), (9), and (10), we can

determine the Fitness, Precision, Generalization and

Simplicity. In the first experiment, the obtained

Dependency Threshold is 0.0898. This is will cause

elimination for the relation that has Dependency

Measure value below the Dependency Threshold.

From the Table 3, K→ M and M→ P will be

eliminated because the value of Dependency

Measure is lower than Dependency Threshold. This

elimination process will cause the activity M

disappeared from the process model. if the activity

M disappeared, the Precision value will be 0.

To avoid this problem, Heuristic LTL needs to

increase or decrease the Dependency Threshold

value. In this research, we decrease the Dependency

Threshold by reducing it using standard deviation.

Figure.6 The result of Tree Model

Figure. 7 The result of Tree Model after Dependency

Threshold is increased

Fig. 7 shows the tree model after the value of

Dependency Threshold is increased. The tree model

contains 23 activities that have AND and XOR

relationship.

The result shows that the new process model

have a better quality in term of Generalization

compare to previous method, such as Modified

Heuristic Miner. The result of Heuristic LTL

Received: January 7, 2019 39

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Table 5. Experimental Result

No Algorithm F P G S

1 Heuristic LTL 1 1 0.8422 1

2
Modified

Heuristic Miner
1 1 0.8421 1

which are :F = Fitness (the range is 0.0 – 1.0)

 P = Precision (the range is 0.0 – 1.0)

 G = Generalization (the range is 0.0 – 1.0)

 S = Simplicity (the range is 0.0 – 1.0)

compared to Modified Heuristic Miner is shown in

Table 5. Table 5 compares the performance result of

Heuristic LTL and Modified Heuristic Miner. The

performance result of both methods does not have a

significant different. However, HLTL has a better

quality in term of Generalization value.

5. Conclusion

This paper proposes an algorithm of process

discovery, namely HLTL. This new algorithm

provides an automatic threshold of forming a model

by utilizing quality aspects, i.e. Generalization,

Simplicity, Fitness, and Precision. Besides that,

HLTL gives a formal representation of process

model by utilizing Linear Temporal Logic.

There are several steps of HLTL. Firstly, the

activity records are modeled by using Linear

Temporal Logic with the weight of probability of

relations. Then, The Dependency Measure and

Dependency Threshold will be calculated based on

the weight. All the relation that has weight less than

DT will be eliminated. Afterwards, the model will

be measured by the quality aspects. HLTL increases

the threshold if the lowest value is Generalization

and Simplicity, and decreases the threshold if the

lowest value is Fitness or Precision. The result of

HLTL is a model having highest average of quality

aspects.

The result of experiment shows that HLTL has

better performance quality in term of Generalization

than the modified Heuristic Miner. The

generalization value of HLTL is 0.8422 and the

generalization value of Modified Heuristic Miner is

0.8421. It happened because the value of

Dependency Threshold in the proposed method is

lower than value of Dependency Threshold in the

Modified Heuristic Miner method.

Acknowledgments

Authors give a deep thank to Institut Teknologi

Sepuluh Nopember, The Ministry of Research,

Technology and Higher Education of Indonesia,

Direktorat Riset dan Pengabdian Masyarakat, and

Direktorat Jenderal Penguatan Riset dan

Pengembangan Kementerian Riset, Teknologi, dan

Pendidikan Tinggi Republik Indonesia for

supporting the research.

References

[1] F. Mannhardt, M. de Leoni, H. A. Reijers, W.

M. P. van der Aalst, and P. J. Toussaint,

“Guided Process Discovery – A pattern-based

approach”, Information Systems, Vol. 76, pp.

1–18, 2018.

[2] F. M. Maggi, C. Di Ciccio, C. Di

Francescomarino, and T. Kala, “Parallel

algorithms for the automated discovery of

declarative process models”, Information

Systems, Vol. 74, pp. 136–152, 2018.

[3] H. Zhang, W. Liu, H. Xiong, and X. Dong,

“Analyzing data flow diagrams by combination

of formal methods and visualization

techniques”, Journal of Visual Languages and

Computing, Vol. 48, No. August, pp. 41–51,

2018.

[4] A. Peres Penteado, F. Molina Cohrs, A. Diniz

Hummel, J. Erbs, R. F. Maciel, C. L. Feijó

Ortolani, B. De Aguiar Roza, and I. Torres Pisa,

“Kidney transplantation process in Brazil

represented in business process modeling

notation”, Transplantation Proceedings, Vol.

47, No. 4, pp. 963–966, 2015.

[5] F. Durán, C. Rocha, and G. Salaün, “Stochastic

Analysis of BPMN with Time in Rewriting

Logic”, Science of Computer Programming, No.

August, 2018.

[6] G. Karami and J. Tian, “Maintaining accurate

web usage models using updates from activity

diagrams”, Information and Software

Technology, Vol. 96, No. November 2017, pp.

68–77, 2018.

[7] Z. Daw and R. Cleaveland, “Science of

Computer Programming Comparing model

checkers for timed UML activity diagrams ✩,”

Science of Computer Programming, Vol. 1, pp.

1–23, 2015.

[8] S. Babenyshev and V. Rybakov, “Unification in

linear temporal logic LTL”, Annals of Pure and

Applied Logic, Vol. 162, No. 12, pp. 991–1000,

2011.

[9] V. Rybakov, “Linear temporal logic with until

and next, logical consecutions”, Annals of Pure

and Applied Logic, Vol. 155, No. 1, pp. 32–45,

2008.

[10] A. J. M. M. Weijters, W. M. P. van der Aalst,

and A. K. A. De Medeiros, “Process Mining

with the Heuristics Miner Algorithm”,

Received: January 7, 2019 40

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.04

Technische Universiteit Eindhoven, Tech. Rep.

WP, Vol. 166, No. July 2017, pp. 1–34, 2006.

[11] W. M. P. Van Der Aalst and A. J. M. M. Ton

Weijters, Process Mining. 2005.

[12] R. Sarno, F. Haryadita, D. Sunaryono, and A.

Munif, “Model Discovery of Parallel Business

Processes using Modified Heuristic Miner”, No.

1, pp. 30–35, 2015.

[13] Y. Caesarita, R. Sarno, and K. R. Sungkono,

“Identifying bottlenecks and fraud of business

process using alpha ++ and heuristic miner

algorithms (Case study: CV. Wicaksana

Artha)”, In: Proc. of the 11th International

Conference on Information and

Communication Technology and System, Vol.

2018–Janua, pp. 143–148, 2018.

[14] R. Sarno, Y. A. Effendi, and F. Haryadita,

“Modified Time-Based Heuristics Miner for

Parallel Business Processes”, International

Review on Computers and Software, Vol. 11,

No. 3, pp. 249–260, 2016.

[15] S. K. L. M. vanden Broucke and J. De Weerdt,

“Fodina: A robust and flexible heuristic process

discovery technique”, Decision Support

Systems, Vol. 100, pp. 109–118, 2017.

[16] K. R. Sungkono and R. Sarno, “Constructing

Control-Flow Patterns Containing Invisible

Task and Non-Free Choice Based on

Declarative Model”, International Journal of

Innovative Computing, Information and

Control, Vol. 14, No. 4, 2018.

[17] J. De Smedt, J. De Weerdt, E. Serral, and J.

Vanthienen, “Discovering hidden dependencies

in constraint-based declarative process models

for improving understandability”, Information

Systems, Vol. 74, pp. 40–52, 2018.

[18] S. Goedertier, J. De Weerdt, D. Martens, J.

Vanthienen, and B. Baesens, “Process

discovery in event logs: An application in the

telecom industry”, Applied Soft Computing

Journal, Vol. 11, No. 2, pp. 1697–1710, 2011.

[19] S. De Cnudde, J. Claes, and G. Poels,

“Improving the quality of the Heuristics Miner

in ProM 6.2”, Expert Systems with Applications,

Vol. 41, No. 17, pp. 7678–7690, 2014.

