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Abstract: A noise benefit or stochastic resonance (SR) occurs when noise enhances the performance of a signal 

system. The performance is maximum when the noise probability density function (pdf) matches the signal system. 

Researchers have studied SR using noise with assumed forms of pdf such as Gaussian or uniform or other popular 

pdfs. Then they studied the SR effect by adjusting the parameters of that noise pdf. This paper proposes a use of 

finite Gaussian mixture model (GMM) that approximates any noise pdf with finite moments. Thus varying the 

parameters of a GMM can reshape the pdf to new forms. Then we can optimize the performance of a signal system 

by using proper GMM parameters. Any optimization algorithm such as particle swarm optimization (PSO) can help 

search for respective parameters of GMM that lead to the approximation of the (locally) optimal pdf. We show the 

results using P300 classification systems as test cases. Two-sample t-tests show that GMM noise can improve the 

performance of the noise-free system as well as the Gaussian-noise systems with p-value < 0.05. 

Keywords: Stochastic resonance, Gaussian mixture model, Particle swarm optimization, P300 classification. 

 

 

1. Introduction 

Noise benefit or stochastic resonance (SR) effect 

is a phenomenon when noise at appropriate intensity 

levels can enhance weak input signals. SR effect can 

occur in engineering systems such as signal 

processing, image processing, communications, and 

control [1-4]. Researchers show that noise can 

improve statistical signal detection for array-based 

nonlinear correlators in Neyman-Pearson (NP) and 

maximum-likelihood (ML) signal detection [5, 6]. 

They show that noise benefit rate improves in terms 

of the small-quantizer noise limit as the number of 

array quantizers increases. Noise enhanced 

hypothesis testing is studied in the restricted NP 

criterion where the optimal additive noise can be 

represented by a discrete random variable with a 

certain number of point masses [7].  Noise can also 

enhance model in the binary hypothesis testing, 

where the optimal additive noise is added to increase 

the detection probability PD and decrease the false 

alarm probability PFA [8]. 

Many types of noise pdf such as uniform, 

Gaussian, Laplacian noise, and other noise pdfs can 

enhance the performance of nonlinear systems [1-4]. 

These studies show that different noise pdfs 

distinctly affect the system performance. The 

optimal shape of noise pdf depends on 

characteristics of a signal system. SR studies often 

pick a shape or form of pdf in advance.  This pre-

selected pdf can ease up the task of SR induction but 

it can lead to inferior performance if the selected 

choice of pdf is not the optimal one. Gaussian 

mixture model (GMM) can model any noise pdf 

with finite statistics. Many applications use GMM to 

improve performance of signal processing systems 

such as nucleus segmentation, predicting epileptic 

seizures, image restoration, blood pressure 

estimation and brain MR image segmentation [9-13]. 

Thus we propose a use of GMM to approximate an 

optimal noise pdf for the SR effect. The GMM can 

approximate the optimal noise pdf. Then we propose 

a use of particle swarm optimization (PSO) to search 

for (local) optimal parameters of Gaussian mixture 

model. 
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(a) 

 

 
(b) 

Figure 1. Gaussian noise enhances accuracy of P300 

classification: (a) The system uses array of ESVM 

classifiers with Na = 20 stages. (b)  The test shows how 

classification accuracy PA increases as the number of 

stages Na increases 

 

We use the brain-computer interface (BCI) 

system as a test case to show how we can induce the 

SR effect using (locally) optimal GMM noise. BCI 

is a communication system that allows a person to 

send commands to an external device through direct 

measurements of brain activities without using any 

movement [14-16]. We specifically test our 

proposed method using P300 applications as it has 

been one of the most important types of EEG signals 

in BCI applications [17-20] that include P300 

speller paradigm, neurophone, controlling a 

wheelchair and a robotic arm [19-23]. 

Earlier results show that noise can benefit the 

BCI systems in many ways [24-28]. Noise can 

improve accuracy of the P300 classification system 

[29] when we compare it with existing methods such 

as [30-33]. BCI systems in actual use may also have 

limitations from small amount of signal data for 

training [14, 15] or the need for reduction of data 

collection times (the number of signal repetitions) 

[32, 33]. Noise can improve the accuracy of an array 

of P300 classifications systems as shown in Fig.1 

and can also reduce the number signal repetitions 

and thus reduce collection time [27-29]. Noise can 

also enhance the accuracy of the system using 

multiple user dataset in training phase [29]. The 

noise-added system still performs well on the 

reduced channel and restricted positions of 

commercial recording systems [29]. 

Fig. 1 shows Gaussian noise enhances accuracy 

of P300 classification. The classification system 

uses array of BCI competition III (A) dataset with Nr 

= 15 signal repetitions and 64 channels. The additive 

i.i.d. noise is Gaussian with zero mean and with 

standard deviation or intensity  . We vary the 

intensity   and repeat the test 30 times and show the 

average. (a)  The system uses array of ESVM 

classifiers with Na = 20 stages.  The vertical dash 

lines show the variation from different noise 

realizations. The system shows an optimal point at 

(approximately) opt  1.4  µV and classification 

accuracy PA of 95.93%. Two-sample t-tests show 

that there is noise benefit (or improvement of the 

classification accuracy PA) with p-value < 0.05 for 

the noise intensity  in the interval 1 µV ≤ σ ≤ 1.6 

µV. (b)  The test shows how classification accuracy 

PA increases as the number of stages Na increases. 

Section 2 describes the SR effect with the 

optimal noise pdf for nonlinear systems. Section 3 

discusses the choice of the EEG classification 

systems that we use to test the SR effect. The 

proposed system uses arrays of ESVM classification 

systems [27-29, 32, 33] with additive noise in the 

training phase and the testing phase (or in actual 

use). Section 4 shows the extensive experimental 

results on the BCI competition II dataset IIb [34] 

and the BCI competition III dataset II [35]. Then, 

we show that a use of finite Gaussian mixture model 

(GMM) to approximate any noise pdf with finite 

moments. The optimal noise pdf can improve the 

accuracy and reduce data collection time [27-29]. 

We use the particle swarm optimization (PSO) 

technique to search for a (locally) optimal GMM 

noise density for the P300 classification system as 

shown in Fig. 3. Experimental results show that 

different noise pdf leads to different system 

response that also affects the system’s performance. 

Addition of noise from a pdf that matches the 

system’s characteristics can maximally enhance the 

performance. 
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2. SR-optimal noise PDF for nonlinear 

systems 

Additive noise can enhance the performance of 

some nonlinear systems. Most researchers study SR 

by assuming known forms of noise pdf in advance 

such as Gaussian noise. Then they vary the intensity 

level to examine the SR effects [1-8]. They also 

derive the conditions for optimal noise to use in the 

EM algorithm [4, 36]. Yet the optimal noise pdf is 

not fully explored. We propose the use of GMM to 

approximate the optimal noise pdf.  Then we use 

particle swarm optimization (PSO) to search for the 

GMM parameters that approximates the optimal pdf. 

2.1 Optimal noise PDF approximation  

Finite Gaussian mixture model (GMM) 

approximates any pdf with finite variance. Thus 

varying the GMM parameters can reshape the pdf to 

any forms if the model consists of enough number 

of components. 

The Gaussian mixture model (GMM) 𝑝(𝑥) is a 

weighted sum of Nc Gaussian densities:             

          

𝑝(𝑥) = ∑ 𝑤𝑖
𝑁𝑐
𝑖=1 𝑝𝑖(𝑥|𝜆𝑖)                       (1) 

 

where 𝜆𝑖 = {𝑤𝑖, 𝜇𝑖 , 𝜎𝑖
2}  contains the mean 𝜇𝑖  and 

variance 𝜎𝑖
2  of the Gaussian pdf and 𝑤𝑖  are the 

mixture weights such that ∑ 𝑤𝑖
𝑁𝑐
𝑖=1 = 1 . The ith 

component is a univariate Gaussian density 

𝑝𝑖(𝑥|𝜆𝑖) ∼ 𝒩(𝜇𝑖 , 𝜎𝑖
2) of the form: 

  

𝑝𝑖(𝑥|𝜆𝑖) =
1

𝜎𝑖√2𝜋
𝑒𝑥𝑝 (−

(𝑥−𝜇𝑖)2

2𝜎𝑖
2 )            (2) 

2.2 Optimal GMM noise PDF search using PSO 

Finding parameters of the GMM that maximize 

the performance is an optimization problem. PSO is 

one of the techniques that can search for the 

parameter of Gaussian mixture density to obtain the 

(locally) optimal standard deviation 𝜎𝑜𝑝𝑡, mean 𝜇𝑜𝑝𝑡 

and weight 𝑤𝑜𝑝𝑡  of each mixture component. The 

objective function of classification problem is to 

maximize the classification accuracy 𝑃𝐴  subject to 

the mixture’s intensity 𝜎 , mean 𝜇 , and mixture 

weight 𝑤  between the lower bound 𝜎𝑙 , 𝜇𝑙 , 𝑤𝑙  and 

upper bound 𝜎𝑢, 𝜇𝑢, 𝑤𝑢 [37-39]: 

 

Maximize  𝑃𝐴(𝜆)   subject to  𝜎𝑙 ≤ 𝜎 ≤ 𝜎𝑢  

 𝜇𝑙 ≤ 𝜇 ≤ 𝜇𝑢,   𝑤𝑙 ≤ 𝑤 ≤ 𝑤𝑢         (3) 

We can also apply other optimization techniques 

to solve this optimization problem. Here we show 

how PSO can search for the parameters of optimal 

noise pdf for P300 classification system using the 

following steps [37-39]: 

 

Step 1: Define the number of particles q = 5. 

Note that more particles can give better results but it 

requires more search time. 

 

Step 2: Randomly generate initial particles 

𝜎𝑖
0,𝜇𝑖

0, 𝑤𝑖
0, i = 1,…,q in the range (𝜎𝑙, 𝜎𝑢) = (0.01, 

500), (𝜇𝑙, 𝜇𝑢) = (-500, 500) and (𝑤𝑙, 𝑤𝑢)= (0, 1). 

 

Step 3: Compute the ESVM classification 

accuracy PA (objective function value) at 𝜆𝑖
0 = 

{𝜎𝑖
0,𝜇𝑖

0,𝑤𝑖
0}  as 𝑃𝐴(𝜆1

0), 𝑃𝐴(𝜆2
0), … , 𝑃𝐴(𝜆𝑞

0).  

 

Step 4: Set the initial velocity of each particle 

𝑣𝑖
0 to zero. Set the iteration number as k = 1. 

 

Step 5: Obtain the personal best values 𝜆𝑖
𝑙𝑏𝑒𝑠𝑡 = 

{𝜎𝑖
𝑙𝑏𝑒𝑠𝑡 , 𝜇𝑖

𝑙𝑏𝑒𝑠𝑡 , 𝑤𝑖
𝑙𝑏𝑒𝑠𝑡} that give highest value of the 

objective function 𝑃𝐴(𝜆𝑖
𝑗
) from the ith  particle in all 

previous iterations  j = 1,…,k , and obtain the global 

best value 𝜆𝑖
𝑔𝑏𝑒𝑠𝑡

= { 𝜎𝑔𝑏𝑒𝑠𝑡, 𝜇𝑔𝑏𝑒𝑠𝑡 , 𝑤𝑔𝑏𝑒𝑠𝑡 } that 

gives the highest value of the objective function 

𝑃𝐴(𝜆𝑖
𝑗
) from all particles i = 1,…,q in all previous 

iterations j = 1,…,k. 

  

𝜆𝑖
𝑙𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

1≤𝑗≤𝑘
𝑃𝐴(𝜆𝑖

𝑗
)   (4) 

 𝜆𝑔𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑗≤𝑘,1≤𝑗≤𝑘

𝑃𝐴(𝜆𝑖
𝑗
)  (5) 

 

Step 6: Compute the velocity 𝑣𝑖
𝑘+1  

 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝛼𝑖(𝜆𝑖
𝑙𝑏𝑒𝑠𝑡 − 𝜎𝑖

𝑘) + 𝛽𝑖(𝜆𝑔𝑏𝑒𝑠𝑡 − 𝜎𝑖
𝑘)  (6) 

 

where 𝜆𝑖 = {𝜎𝑖,  𝜇𝑖,  𝑤𝑖}, 𝛼𝑖 and 𝛽𝑖 are uniform (0,1) 

random numbers. 

 

 Step 7: Update the particles 𝜎𝑖
𝑘+1 , 𝜇𝑖

𝑘+1  and 

𝑤𝑖
𝑘+1   

     

 𝜎𝑖
𝑘+1 = 𝜎𝑖

𝑘 + 𝑣𝑖
𝑘+1    (7) 

     

 𝜇𝑖
𝑘+1 = 𝜇𝑖

𝑘 + 𝑣𝑖
𝑘+1    (8) 

     

 𝑤𝑖
𝑘+1 = 𝑤𝑖

𝑘 + 𝑣𝑖
𝑘+1    (9) 
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Figure. 2 A noisy array of ESVM classifiers for P300 classification 

 

Step 8: Evaluate the objective function at the 

current  

 

𝜆𝑖
𝑘 = {𝜎𝑖

𝑘, 𝜇𝑖
𝑘 , 𝑤𝑖

𝑘} as 𝑃𝐴(𝜆1
𝑘), 𝑃𝐴(𝜆2

𝑘), … , 𝑃𝐴(𝜆𝑞
𝑘) (10) 

 

Step 9: Check the convergence of the PSO 

process. The process converges when the positions 

of all particles converge to the same solution (the 

same noise intensity, mean, weight). Thus we obtain 

the (local) optimal noise intensity 𝜎𝑜𝑝𝑡, noise mean 

𝜇𝑜𝑝𝑡  and weight 𝑤𝑜𝑝𝑡  that provides the maximum 

accuracy 𝑃𝐴(𝜎𝑜𝑝𝑡, 𝜇𝑜𝑝𝑡 , 𝑤𝑜𝑝𝑡). In case the objective 

function values PA does not converge, go to Step 5. 

3. SR-Array of P300 classification systems 

This section shows how the proposed algorithm 

can search for locally optimal GMM noise pdf to 

improve accuracy of nonlinear system. We use 

“noisy” EEG classification system for P300 as 

shown in Fig. 2 [29] as a case study. The 

classification system is an array of Na identical P300 

classification systems with additive i.i.d. noise at 

each stage. 

Each stage processes the same filtered signal 𝑥′ 

of the raw EEG data x obtained from the sensors. 

Then each stage i adds i.i.d. GMM noise 𝑛𝑖 to the 

signal 𝑥′  to obtain the noise-added signal 𝑥𝑖
″: 𝑥𝑖

″ =
𝑥′ + 𝑛𝑖. Our goal is to obtain the (locally) optimal 

noise pdf. Training the system with known 

(labelled) data gives us (local) optimal parameters to 

use in the actual EEG signal classification system 

(or the testing phase). In practice, the training phase 

can be performed in advance or before each session. 

3.1 ESVM classifier  

We use an ESVM as a classifier as ESVM 

combines several support vector machines (SVM) 

classifiers to solve problems associated with signal 

variations between subjects and over time for P300 

classification [33]. An SVM classifier training 

process needs to find an optimal hyperplane that 

separates two classes with the largest possible 

margin in order to increase the performance of the 

classifier for the unknown data (testing data). In the 

training phase, we divide the training dataset {𝑥} 

into M clusters. Then we train the kth SVM classifier 

with the data cluster kth to obtain the respective 

weights wkj, bias bk, and Lagrangian multipliers 𝛼𝑘𝑗. 

𝐾𝑘𝑗(𝐸𝑘𝑗, 𝑥) = (𝐸𝑘𝑗
𝑇 𝑥 + 1)𝑛   is the polynomial 

kernel function where n is the degree of a 

polynomial. And support vectors 𝐸𝑘𝑗, 𝑗 = 1,2, … , 𝐿𝑘, 

where Lk is the number of support vectors of the kth 

classifier. The output of an SVM classifier for input 

data x is as follows: 

 

𝑓𝑘(𝑥) = sgn(∑ 𝑦𝑘𝑗
𝐿𝑘
𝑗=1 𝛼𝑘𝑗𝐾𝑘𝑗(𝐸𝑘𝑗 , 𝑥) + 𝑏𝑘)  (11) 

 

for k = 1,…,M.  In this work we use n = 3. 

P300 speller paradigm implies a two-class 

classification problem with class labels 𝑦𝑖 ∈ {−1,1}  

as “present” and “absent”. Thus, the output of the 

ESVM classifier is a sign of the sum of M SVM 

classifiers: 

 

�̂� = 𝑆(𝑥) = sgn(∑ 𝑓𝑘
𝑀
𝑘=1 (𝑥)) (12) 

 

We test the classifier using different numbers of 

clusters for each dataset. We use the cluster number 

M that gives the highest accuracy (17 clusters for A, 

B and 8 clusters for C), as shown in Table 1 to 

examine the noise benefits. 
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Table 1. Datasets of P300 speller paradigm 

Dataset 

(Subject) 

Number of 

Characters 
Number of Signals 

#Clusters 

M 

#Signals 

per cluster 

  Target    Non-target   

BCI IIIA (A) 

Training: 

Testing: 

 

85 

100 

 

2,550 

3,000 

 

12,750 

15,000 

 

17 

 

5 

BCI IIIB (B) 

Training: 

Testing: 

 

85 

100 

 

2,550 

3,000 

 

12,750 

15,000 

 

17 

 

5 

BCI II (C) 

Training: 

Testing: 

 

42 

31 

 

1,260 

930 

 

6,300 

4,650 

 

8 

 

5 

 

 

3.2 P300 signal features  

Table 1 gives the descriptions of P300 dataset 

recorded from 64 electrodes, 240 Hz sampling rate 

and 0.1-60 Hz filter. We denote the datasets as 

Subject A for BCI competition III dataset II, Subject 

B for BCI competition III dataset II, and Subject C 

for BCI competition II dataset IIb. Each dataset 

represents a set of characters where each character 

was repeated 15 times (Nr = 15 signal repetitions) to 

reinforce the P300 responses [34,35]. In our 

experiments we also test the classification system 

using fewer numbers of repetitions as well. 

We use the EEG signal x in the time window of 

0-667 ms after stimulus using a 240 Hz sampling 

rates [33]. The signal passes through a 0.1-20 Hz 

bandpass filter to obtain x'. Then we use amplitudes 

of x' as features. Thus the dimensionality of feature 

space is 896 samples for 64 channels (667 ms × 240 

Hz = 160 samples per channel and reduces to 14 

samples per channel). Then we add Gaussian 

mixture noise n to x' to explore the SR effect. P300 

classification uses samples of EEG signal x(t) from 

all channels as features. We examine the array of Na 

ESVM classifiers. We also vary the signal 

repetitions Nr from 1 to 15. The character prediction 

process considers the row (r) and column (c) that 

have the highest scores from different signal 

repetitions and sum up the scores of �̂�  from 

corresponding rows and columns as follows [33]: 

 

  𝑐 =  argmax
1≤𝑖≤6

∑ �̂�𝑖𝑒
𝑁𝑟
𝑒=1   (13) 

 

𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥
7≤𝑖≤12

∑ �̂�𝑖𝑒
𝑁𝑟
𝑒=1       (14) 

 

where 𝑐 ∈ {1,2, … ,6}  and 𝑟 ∈ {7,8, … ,12}  are 

column and row numbers that have the highest 

scores, and Nr = 15 is the number of signal 

repetitions. 

4. Experimental results 

We test the GMM-noise SR for P300 

classification using EEG data as shown in Table 1 

[34,35]. We use an original classification system as 

a building block for an array system as shown in Fig. 

2. Then we add i.i.d. GMM noise with parameters 

𝜆 = {𝜎𝑖, 𝜇𝑖 , 𝑤𝑖}𝑖=1
𝑁𝑐  to the original signal data x'. 

We examine the SR effects using the following 

steps: Step 1: Preprocessing and feature extraction. 

Use bandpass filtering and other feature extraction 

techniques. Step 2: ESVM classifier training. 

Divide the training dataset into M clusters and use 

each cluster to train SVM classifier. Step 3: Test the 

system with noise addition in training and testing 

phases. We calculate the classification accuracy PA 

as a ratio of the number of correct classification 

outputs NC and the total number of testing characters 

NT in the experiment: 𝑃𝐴 =
𝑁𝐶

𝑁𝑇
× 100 %. The 

classification accuracy varies with noise realizations. 

Thus we repeat each test 30 times and find the 

average to determine the system performance PA.  

Fig. 1 shows the SR effect using Gaussian noise 

𝒩(0, 𝜎)  in training and testing phases. The P300 

classification system uses an array of ESVM 

classifiers with number of stages Na = 20 and 

number of signal repetitions Nr = 15. The result also 

shows that the classification accuracy improves 

when we increase the number of stages. The 

accuracy improves when we add more stages and 

use a suitable level of noise intensity. 
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Table 2. P300 classification accuracy using array of ESVM classifiers with Gaussian and GMM noise 

Dataset 

(Subject) 

Number 

of signal 

repetition 

Nr 

Accuracy 

without 

noise 

𝑃𝐴 (0) 

(%)  

 

Number 

of 

stages 

Na 

Maximum accuracy with noise, 𝑃𝐴𝑛
 (%) Accuracy 

improvement 

𝑃𝐴𝑛,𝑚𝑎𝑥
(𝜆) −

𝑃𝐴(0) (%)  

(p-value) 

Accuracy 

improvement 

𝑃𝐴𝑛,𝑚𝑎𝑥
(𝜆) −

𝑃𝐴𝑛
(𝜎) (%)  

(p-value) 

Gaussian 

𝑃𝐴𝑛
(𝜎)  

GMM 𝑃𝐴𝑛
(𝜆)  

Number of mixtures, Nc 

𝒩(0, 𝜎𝑜𝑝𝑡) 2 3 4 5 

BCI IIIA 

(A) 
14 95.00 

1 

10 

20 

96.00 

97.00 

97.20 

96.80 

96.80 

97.20 

96.80 

97.20 

96.80 

96.40 

97.00 

97.40 

95.16 

96.80 

98.00 

1.80 (0.0057) 

2.20 (5.6210-5) 

3.00 (3.2710-16) 

0.80 (0.0362) 

0.20 (0.0202) 

0.80 (0.0148) 

BCI IIIB 

(B) 
14 94.00 

1 

10 

20 

96.60 

96.40 

97.60 

97.00 

97.20 

96.80 

96.40 

97.00 

98.00 

95.40 

97.20 

96.80 

96.40 

97.20 

99.00 

3.00 (0.0031) 

3.20 (1.0710-6) 

5.00 (2.2110-9) 

0.40 (0.0073) 

0.80 (0.0002) 

1.40 (0.0001) 

BCI II  

(C) 
4 96.77 

1 

10 

20 

98.71 

100 

100 

98.49 

100 

100 

98.71 

100 

100 

98.71 

100 

100 

99.35 

100 

100 

2.58 (0.0376) 

3.23 (9.1410-5) 

3.23 (9.1410-5) 

0.64 (0.00005) 

0 

0 

 

Table 3. Comparison of the P300 classification accuracy of the proposed methods and existing methods 

Methods BCI IIIA (A) BCI IIIB (B) BCI II (C) 

Existing methods    

ICA [40]  - - 100 (𝑁𝑟 = 5)  

SVM [32]  - - 100 (𝑁𝑟 = 5) 

ESVM [33]  97 (𝑁𝑟 = 15) 96 (𝑁𝑟 = 15) - 

CNN-1 [30]  97 (𝑁𝑟 = 15) 92 (𝑁𝑟 = 15) - 

MCNN-1 [30]  97 (𝑁𝑟 = 15) 94 (𝑁𝑟 = 15) - 

Proposed method 98 (𝑵𝒓 = 𝟏𝟒) 99 (𝑵𝒓 = 𝟏𝟒) 100 (𝑵𝒓 = 𝟒) 

 

 

Then we examine the use of GMM noise. We 

search the appropriate optimal GMM noise pdf by 

varying the noise intensity, noise mean, and mixture 

weights with specific signal repetition, number of 

mixtures, and array size. We use PSO to search for 

locally optimal noise intensity  from 0.01 µV to 

500 µV, noise mean µ varies from -500 µV to 500 

µV, and weight of Gaussian mixture w varies 

between 0 to 1 (weight sum of all Gaussian mixture 

must be equal to 1) in training phase and testing 

phase. We test several number of mixtures Nc = 

2,...,5. We also test the system with different number 

of stages: Na = 1, 10, and 20. We test the system 

using Nr = 1 to 15 signal repetitions. 

Fig. 3 shows samples of GMM approximation 

of optimal noise pdf’s for Subjects A, B, and C for 

P300 classification systems using ESVM. PSO 

search for the optimal noise pdf can give different 

locally optimal pdfs. Table 2 compares the 

classification accuracy of the array systems that use 

Gaussian noise and GMM noise. We use the 

smallest number of signal repetition Nr that already 

gives the highest accuracy. The accuracy in bold is 

the maximum accuracy among classifiers that use 

the same number of stages Na.  

Subject A: Accuracy 𝑃𝐴𝑛
= 98.00% with 5-

component GMM  𝑝(𝑛)~0.082𝒩(−3.20,3.48) +

0.202𝒩(2.56,8.45) + 0.259𝒩(−7.30,5.71) +
0.218𝒩(−2.10,7.75) + 0.239𝒩(−6.40,4.21) for 

𝑁𝑎 = 20 and 𝑁𝑟 = 14.  

Subject B: Accuracy 𝑃𝐴𝑛
= 99.00% with 5-

component GMM 𝑝(𝑛)~0.163𝒩(−1.03,0.1) +
0.258𝒩(1.44,0.1) + 0.164𝒩(2.03,0.1) +
0.178𝒩(0.81,0.1) + 0.237𝒩(0.46,0.1) for 𝑁𝑎 =
20 and 𝑁𝑟 = 14.  

Subject C: Accuracy 𝑃𝐴𝑛
= 100% with 2-

component GMM 𝑝(𝑛)~0.9999𝒩(47.97,90.18) +
0.0001𝒩(17.65,100) for 𝑁𝑎 = 10 and 𝑁𝑟 = 4.  

Two-sample t-tests confirm that there is an 

increase of accuracy from GMM noise benefits: 

𝑃𝐴𝑛
(𝜆) > 𝑃𝐴(0) with p-value < 0.05. Another two-

sample t-tests also confirm that GMM noise can 

improve the accuracy over the Gaussian noise: 

𝑃𝐴𝑛
(𝜆) > 𝑃𝐴𝑛

(𝜎) with p-value < 0.05 for Subjects A 

and B. For Subject C, both GMM and Gaussian 

noise can give perfect classification.  

We compare the proposed method with other 

existing methods [30,32,33,40] as shown in Table 3. 

The results show that optimal noise density can 

enhance the accuracy of the BCI systems in general. 

This implies that we can reduce the number of 

signal repetitions or the collection time and so can 

speed up the responses with high accuracy. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 3 SR-optimal noise pdf approximation using 

GMMs with 2, 3, 4 and 5 components for P300 

classifications. (a)-(c) Each subject (A, B, or C) tend to 

use different optimal noise pdfs: (a) subject A, (b) subject 

B, and (c) subject C 

5. Discussion and conclusion 

Noise can enhance the performance of a 

nonlinear system. Experimental results show that 

different noise pdf’s lead to different system 

responses and that affect its performance. Addition 

of noise from a pdf that matches the system’s 

characteristics can maximally enhance the 

performance. Statistical tests confirm that GMM 

noise can provide an approximation to any noise pdf 

that provide another boost to the complex 

classification problems. 

The results lead to a call for investigations to 

other signal processing applications that can also 

benefit from noise. A signal processing application 

may require a more complex setting of noise 

addition as well as its pdf that may also depend on 

the system parameters or different stage of the 

system. Solving this complex optimization problem 

to obtain an exact solution can be discouraging. A 

method or an algorithm for approximation of a local 

solution still remains a preferred choice.  

The use of GMM noise pdf offers such a 

solution to the design of any SR-optimal system for 

practical use. A nonlinear system that processes 

GMM noise can be difficult to obtain a closed form 

analysis. But we can approximate or search for 

locally optimal solutions using existing optimization 

techniques. PSO is an example of such algorithm 

that gives local solution to this complex 

optimization problem. Other techniques may be 

more suitable and more efficient to obtain the SR-

optimal parameters. The most efficient technique on 

how to maximize the system performance remains 

open research problems. 
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