
Received:  December 17, 2018                                                                                                                                          256 

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019           DOI: 10.22266/ijies2019.0630.25 

 

 
Meta-heuristic Techniques for Placement of Virtual Machines in Distributed 

Cloud Centers 

 

Kumaraswamy Siddagangaiah1*          Mydhili Krishnan Nair2 

 
1Department of Computer Science and Engineering, 

Global Academy of Technology, Bengaluru 560098, India 
2Department of Information Science and Engineering,  

Ramaiah Institute of Technology, Bengaluru 560054, India 
* Corresponding author’s Email: skswamy99@gmail.com 

 

 
Abstract: The Virtual Machine Placement techniques provide an attractive opportunity to achieve the goal of energy 

conservation in Cloud Centers. The Virtual Machines can be broadly classified into data intensive and CPU intensive 

based on their workload characteristics. Placing or migrating large number of data intensive Virtual Machines can 

lead to degradation of task execution efficiency in Cloud Centers. Hence, the Virtual Machine Placement techniques 

need to consider the Virtual Machine workload characteristics to prevent associated negative consequences. Even 

though workload characteristics aware Virtual Machine migration technique has been presented in the literature for 

single-location Cloud Centers, it does not cater to Distributed Cloud Centers, where the cloud resources are 

distributed in different geographical locations, and in such setting, new performance issues arise which have to be 

effectively addressed. In this work, the NP-Complete Bin Packing Problem framework is extended to model the 

Workload Characteristic aware Virtual Machine Placement problem in Distributed Cloud Centers. The proposed 

solution is based on two meta-heuristic techniques having polynomial complexity: Particle Swarm Optimization and 

Ant Colony Optimization technique. The proposed techniques are compared against the contemporary technique in 

simulated environment. In the simulated study of the proposed techniques, both these techniques discover 

approximate solutions to the Bin Packing Problem which are extremely close to the optimal solution, and thereby 

directly contribute in efficient load distribution in Distributed Cloud Centers.  

Keywords: Cloud computing, Virtual machine placement, Distributed cloud data centers, Bin packing, Meta-

heuristic techniques. 

 

 

1. Introduction 

1.1 Overview on virtual machine placement 

Cloud Center (CC) refers to commercial 

computational service center, which provides 

computational services to clients on an ad-hoc basis 

over the Internet. Cloud Computing limits the effort 

and cost required to maintain and procure 

computational resources and software systems for 

the organizations. In-fact, the organizations can 

access the Cloud services when and where required. 

Currently, many organizations are moving their 

operations to the CCs. This trend has resulted in the 

enormous expansion of CCs. 

The CCs consists of numerous Physical 

Machines (PM), and each PM is associated with 

number of Virtual Machines (VMs), which abstracts 

the PM [1]. Most of the services are provided to the 

clients through the VMs. In certain scenarios, some 

of the PMs might have very few active VMs, and a 

recent study [2] has revealed that, even a single 

active VM can result in 50% power consumption in 

the corresponding PM. If such VMs are migrated to 

other PMs which have multiple active VMs, then, 

the PMs from which migration has been performed 

can be shutdown, which results in reduction in total 

power consumption in the CCs. The problem of 
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migrating the required VMs to other PMs is known 

as -- Virtual Machine Placement (VMP) or Virtual 

Machine Migration -- problem.  

Each VM is associated with an image, which 

stores all the data and code corresponding to the VM. 

This image is stored in the PM on which the VM 

executes. Since, distributed architecture is prevalent 

in most of the cloud centers, the image can be 

accessed from other PMs. 

The existing perception about VMs is that, all of 

them are similar in their workload characteristics. 

Recently, it has been shown that [2], there are two 

broad classifications of VMs based on their 

workload characteristics: data intensive and CPU 

intensive VMs. The former involves large 

proportion of data intensive tasks, and the latter 

involves large proportion of CPU intensive tasks. 

If a data intensive VM is migrated without 

copying its corresponding image to a new PM, 

performance degradation of around 40% WRT 

execution efficiency of tasks inside these VMs is 

observed [2]. However, the equivalent impact is not 

observed regarding CPU intensive VMs. It can be 

inferred that, migrating large number of data 

intensive VMs away from their images is not 

recommended [2]. 

If a PM has large number of data intensive VMs, 

then, competition for accessing the disk resources 

can increase significantly, which in-turn can degrade 

the task execution efficiency performance. Hence, 

the number of data intensive VMs running in a PM 

has to be limited [2]. 

The VM migration technique presented in [2] 

was based on VM workload characteristics, and 

considered non-Distributed CCs -- here:(1) 

workload characteristics of VMs were considered 

for classifying them as data intensive or CPU 

intensive VMs; (2) VM migration was performed by 

considering these classified VMs. The proposed VM 

migration technique in [2], achieved noticeable task 

execution efficiency improvement when compared 

to the VM migration technique which did not 

consider VM workload characteristics.  

1.2 Motivation 

Currently, computational load in the CCs is 

increasing rapidly due to the popularity of Cloud 

Computing. The CCs are not just confined to a 

single geographical location [1], and such CCs are 

denoted as Distributed CCs (DCCs). Obviously, it 

can be hypothesized that, by employing workload 

characteristics based VM migration technique which 

was presented in [2], effective VM migration in 

even DCC environments can be achieved. However, 

the associated unpredictability in accurately 

predicting the future computation load in different 

locations of the DCC is usually high [1]. Hence, 

performing large number of VM migration to 

different geographical locations may lead to 

frequent migration scenario [1], which can seriously 

degrade the efficiency of DCC. Ideally, it is 

recommended that, each PM should host limited 

number of VMs migrated from different 

geographical locations [1]. Thus, in DCC 

environments, classifying VMs as data intensive and 

CPU intensive will not suffice, and further 

classification of these VMs based on their locations 

is also essential. However, the presented VM 

migration technique in [2], the issue of further 

classifying the VMs based on their locations for 

DCC environments, is not addressed, and which will 

be addressed in this work by suitably extending the 

VM migration technique presented in [2], and such 

endeavor has not been carried out previously in the 

literature [1].   

1.3 Contributions 

In this presented work, the following 

contributions are made: 

1. The VMP problem for DCC environment 

which is based on VM Workload 

characteristics, is modeled through 3–slot Bin 

Packing Problem (BPP). The NP completeness 

justification of 3–slot BPP is presented. Two 

meta-heuristic solutions based on Particle 

Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO) techniques respectively 

are presented. 

2. The proposed solution techniques are evaluated 

through MATLAB simulation, and compared 

against the contemporary technique [1]. Both 

these solution techniques exhibit their 

effectiveness by providing solutions that are 

closer to their optimal counterparts, and with 

appreciable execution efficiency. 

1.4 Paper organization 

The paper is organized as follows: Section 2 

describes the related work. Section 3 presents the 

proposed VMP techniques. Section 4 presents the 

empirical results, and finally, the work is concluded 

in Section 5. 

2. Related work 

The VM migration techniques presented in the 

literature can be broadly classified into: Live and 

Non-Live techniques; wherein, the former indicates 
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that, the VM migration does not affect normal 

services of the Cloud, and in the latter, such 

constraint is not enforced.  

The Non-Live migration techniques have 

become unpopular in the literature due to the issue 

of halting of services during VM migration, because 

such issue cannot meet the required Service Level 

Agreement (SLA) of many clients who would not 

prefer halting of such services. Some of the popular 

Non-Live migration techniques and their 

characteristics have been outlined in [1].  

The Live VM migration techniques are the most 

preferred techniques in the literature [1], which are 

further classified into: Memory migration 

techniques, Storage migration techniques and 

Network connection migration techniques.  

The memory migration techniques aim at 

continuing the current processing of those VMs 

which have to be migrated, and to achieve this goal, 

the memory contents of these VMs are also 

transferred; along with the memory content, CPU 

current state is also migrated. Many variations of 

memory migration techniques have been presented 

in the literature recently: hybrid memory copy-

oriented technique [3]; efficiency-oriented technique 

[4]; multiple application-oriented technique [5]; 

workload prediction-oriented technique [6]; NFV 

featured network-oriented technique [7]; Traffic 

sensitive technique [8]; Agile live migration 

technique [9]; Hash-Table oriented technique [10]; 

VNF live migration technique [11]. However, these 

techniques do not specifically address the issue of 

VM migration in DCCs by considering VM 

workload characteristics. 

In certain cloud environments, a scenario might 

occur; wherein, the data storage of the source server 

from which a certain VM has to be migrated might 

not be accessible to the target server to which the 

VM is migrated. In such scenarios, Virtual Disks 

from the source server are migrated to the target 

server, and the VM migration techniques which 

address such scenarios are indicated as Storage 

Migration techniques. Storage Migration techniques 

are usually required in WAN environments. Many 

varied contributions have been recently made in the 

literature WRT Storage Migration techniques: time-

constraint oriented technique [12];caching based 

technique [13]; geographically shifting CC based 

technique [14]; machine learning based technique 

[15]; three-layer image-based technique [16]. 

However, again, all these contributions do not 

specifically address the issue of VM migration in 

DCC environment by considering VM workload 

characteristics.    

The VMs which get migrated to another server 

or Physical Machine (PM) has to become accessible 

to its users. In some PMs, due to system restrictions, 

the migrated VMs might not be available to the 

clients at the required flexibility, and new 

constraints might be imposed. Hence, the Network 

Connection migration techniques aim to achieve 

VM migration by providing the VM services to the 

user at the required flexibility, and this goal is 

achieved through varied tools and techniques which 

have been recently presented in the literature: 

topology adaptive technique [17]; SDN-based 

technique [18]; optical circuit switching oriented 

technique [19]; seamless migration-oriented 

technique [20]. Since, in this paper, the problem of 

effective VM migration in DCC environments is 

considered without specifically addressing the 

Network Connection migration technique, hence, 

these Network connection migration techniques are 

further not considered in this paper.  

Recently, VM migration in DCC environment 

was presented in [21]. It was highlighted in [21] that, 

carbon footprint is a major concern in DCC 

environment, which also results in higher operation 

costs for CCs -- hence, a VM migration technique 

which specifically targets reduction in carbon 

footprint was presented, and the VM migration 

technique considered the CC locations which are 

powered by renewable energy sources as one of the 

important parameters in migration of VMs. 

However, in [21], the issue of task execution 

efficiency after VM migration in DCC environment 

has been completely ignored, without addressing 

this issue, the reduction in carbon footprint may not 

correlate to improvement inresource utilization and 

task execution efficiency.   

In [22] authors developed system to minimize 

power consumption and resource wastage in virtual 

machine placement using ant colony optimization 

with hypercube framework. In [23] generalized 

online optimization methodology was used to place 

as many virtual machines as possible in both non-

distributed and distributed cloud data centers to 

increase the cloud service provider’s revenue.  

From the above outlined Related Work, it is 

clear that, the problem of designing workload 

specific VMP technique for DCCs, has not been 

effectively addressed in the literature, and this 

problem will be effectively addressed in the 

subsequent sections.  

3. Meta-heuristic techniques for VMP 



Received:  December 17, 2018                                                                                                                                          259 

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019           DOI: 10.22266/ijies2019.0630.25 

 

3.1 Problem framework 

The 3–slot BPP has n items, which are 

exclusively divided into three classes indicated by I1, 

I2 and I3. Here, |I1| = n1, |I2| = n2, |I3| = n3, and 

n1+n2+n3 = n. The term ikj(1≤k≤3)(1≤ j≤ nk) indicates 

the jth item of the class Ik. Each ikj is associated with 

the corresponding item weight indicated by 0 <wkj< 

1. Each bin has a maximum item weight capacity of 

1. The weight capacity of each bin is divided into 

three slots. The first slot has a maximum weight 

capacity indicated by C1(0 <C1< 1), and only the 

items ϵ I1 and I3 can be stored. The second slot has a 

maximum weight capacity indicated by C2(0 <C2< 

1), and only the items ϵ I2 and I3 can be stored. The 

third slot has a maximum weight capacity indicated 

by C3(0 <C3< 1), and only the items I3 can be stored. 

Here, C1+C2+C3 = 1. The goal of BPP is to store the 

n items in the fewest bins possible. 

The VMP problem in DCC is modeled by using 

the 3–slot BPP. Here, n indicates the number of 

VMs that are subjected to placement in the DCC. 

Each bin corresponds to a PM. The first slot of each 

bin can store either different location data intensive 

VMs (I1) or same/differentlocation CPU intensive 

VMs (I3). The second slot of each bin can store 

either same location data intensive VMs (I2) or 

same/different location CPU intensive VMs. The 

third slot can only store same/different location CPU 

intensive VMs. The weight of each item ikj is 

calculated as represented in Eq. (1). Here, 

αk(0 < αk< 1) indicates the tuning parameter for kth 

slot, which ensures that, 0 <wkj <Ck, and size(ikj) 

indicates the size of ikj. 

wkj = αksize(ikj)                     (1) 

A solution to the 3–slot BPP which satisfies all 

the specified constraints is denoted as feasible 

solution. The task is to find the most optimal 

feasible solution, which corresponds to placement of 

VMs in the fewest possible PMs. 

3.2 Problem complexity 

The complexity of the proposed 3–slot BPP in a 

simple instance, wherein, |I1| = 0 and |I2| = 0 is 

presented in Theorem 1. Since, this problem is  

NP-complete for this simple instance, if, |I1| ≠ 0or 

|I2| ≠ 0, then, the complexity of 3–slot BPP further 

increases. Hence, approximate solution techniques, 

which have polynomial complexity need to be 

designed. In this work, PCO and ACO based 

approximate solution techniques are presented. 

Theorem 1. If, |I1| = 0 and |I2| = 0, then, the 3–slot 

BPP is NP-complete. 

Proof. Consider a simple instance of 3 slot BPP, 

wherein, |I1| = 0 and |I2| = 0. Clearly, 3–slot BPP 

transforms into BPP, which is NP-complete, and 

which makes this instance of 3–slot BPP also 

NP-complete. 

3.3 ACO based solution technique 

The ACO technique is based on the principle of 

Biologically Inspired Computing [24]. This meta-

heuristic technique provides an approximate 

solution to the optimization problem. The main 

design of ACO technique is inspired from the path 

discovery process utilized by ants to discover 

shortest path between food source and their nest. 

Multiple ants are involved in the approximate 

solution discovery, and each ant builds its own 

approximate solution, which is based on the 

information collected by other ants. Initially, each 

ant utilizes an empty bin and set of all n items. The 

items are incrementally added to the corresponding 

class slots of the empty bin ensuring that, the 

specified constraints of 3–slot BPP are not violated. 

If the new items, which are yet to be placed, cannot 

fit into this existing bin, then, new bin is created. 

Each ant chooses the next item randomly, to build 

the incremental approximate solution. This item 

selection probability is represented in Eq. (2). Here, 

pk(b, s, j) indicates the probability that, the kth ant 

selects the jth item for bin b w.r.t. partial solution s, β 

is a suitable tuning parameter, Jk(s, b) indicates the 

qualified set of items, which can be included in the 

current/newly created bin, η(j) indicates the weight 

of jth item, τb(j) indicates the pheromone value of jth 

item in bin b, which signifies the merit of selecting 

jth item for bin b, and it is calculated as represented 

in Eq. (3). 

 

𝑝𝑘(b,s,j) = 

           {

[𝜏𝑏(𝑗)][𝜂(𝑗)]𝛽

∑ [𝜏𝑏𝑔𝜖𝐽𝑘(𝑠,𝑏) (𝑔)][𝜂(𝑔)]𝛽 ,

0,                                 
 

(2) 

  

𝜏𝑏(j) = {
∑ 𝜏𝑖𝜖𝑏 (𝑖,𝑗)

|𝑏|
,

 1,              
                                            (3)  

  

 

Consider Eq. (3), and the two items–item j and 

item i, which belong to the same class. Here,  

τ(i,j) indicates the merit of adding jth item into bin b 

when ith item is already in bin b, and this metric is 

calculated as represented in Eq. (4). Here, sbest 

indicates the best partial solution found until now, ρ 

if j ϵ Jk(s,b) 

otherwise 

if b ≠ ϕ 

otherwise 
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is a tunable parameter, m indicates the number of 

times the pair of items in which the weight of first 

item = η(i) and the weight of second item = η(j) is 

added to sbest, and f() indicates the fitness function 

represented in Eq.(5). Here, N indicates the number 

of used bins, c is a tunable weight parameter and Fi 

indicates the total left over capacity of the ith bin by 

considering all the three slots. 

 

τ (i,j) = ρτ(i,j) + mf(sbest)                                    (4) 

 

f(s) = 
∑ 𝐹𝑖

𝑐𝑁
𝑖=1

𝑁
                                                       (5) 

 

Algorithm 1 outlines the ACO based solution 

technique. The r ants indicated by (a1, a2, ….ar) are 

initialized w.r.t. their corresponding empty bin and 

set of n items through the function initialize(a1, a2, 

…. ar,n). The ith ant (1 ≤ i ≤ r) builds its 

corresponding partial solution s by considering the 

remaining unplaced items. The placement of items is 

performed for the newly created bin indicated by b, 

and it is achieved through the function  

item_placement(Ji(s,b),flag),which attempts to place 

the unplaced item set indicated by Ji(s,b) based on 

the ACO item placement principle outlined above, 

here, each item ϵ Ji(s,b) is considered to be placed in 

its corresponding class slot in the bin b, and if, the 

placement of any item ϵJi(s,b) in b is not possible, 

then, flag is set as 1, which initiates a new bin 

creation through the function create_new_bin(ai). 

This item placement continues until all the items are 

placed. 

 

Algorithm 1ACO Based Solution Technique 

initialize(a1, a2, ……. ar, n) 

for i = 1 to r do 

 while Ji(s,b) ≠ ϕ do 

  flag = 0 

  item_placement(Ji(s,b), flag) 

  if flag == 1then 

   create_new_bin(ai) 

  end if 

 end while 

end for 

Theorem 2 indicates that, if the number of ants used 

in Algorithm 1, is sufficiently large, then, with high 

chances, the approximate solution obtained for the 

3-slot BPP will be closer to optimal solution. 

Theorem 2. For Algorithm 1, if the value of r is 

sufficiently large, then, the chances of obtaining the 

approximate solution to 3-slot BPP closer to 

optimal solution is high. 

Proof. Let, 𝑆𝑜  and 𝑆𝑎  indicate the optimal solution 

and approximate solution obtained through 

Algorithm 1 respectively, for 3-slot BPP. Assume a 

scenario that, 𝑆𝑎 − 𝑆𝑜 is large. The ACO technique 

effectiveness is significantly influenced through r, 

because a greater number of ants lead to effective 

calculation of 𝜏𝑏 , which in-turn leads to better 

approximate solution production [15]. Hence, the 

chances of the assumed scenario occurring when r is 

sufficiently large is minimal, which immediately 

proves the theorem. 

Theorem 3 establishes that fact that, Algorithm 1 

executes in polynomial time complexity. Let, 

𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖)  indicate the execution time 

for 𝑎𝑖 . If, each 𝑎𝑖 is assigned a separate 

computational node for executing 𝑎𝑖 , then, it is clear 

that, the complexity of Algorithm 1, will be ≈
 𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖) . Suppose, all 𝑎𝑖 execute in a 

single node, then, it leads to sequential execution of 

Algorithm 1, which leads to the Algorithm 1 

complexity of ≈ 𝑟 ×  𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖). 

Theorem 3. Algorithm 1 executes in polynomial 

time complexity.  

Proof. In Algorithm 1, each 𝑎𝑖 picks the item 

randomly, and places it in the required bin based on 

the probability score denoted by 𝑝𝑘. Form this item 

placement procedure, it is clear that, this procedure 

executes in O(n) complexity. Hence, the proof is 

completed. 

3.4 PSO based solution technique 

PSO technique [24] is another meta-heuristic 

technique which provides an approximate solution 

to the optimization problems, and it is inspired by 

the social behavior of birds. The search for optimal 

solution is carried out by group of particles, where 

in, each particle has an exclusive zone in the feasible 

solution space, and union of all particle zones is 

equal to the feasible solution space. Each point in 

the feasible solution space represents a feasible 

solution vector. The particles are continuously 

moving in their corresponding feasible solution 

space to identify the optimal solution, and are 

involved in continuous communication for 

exchanging their locally discovered best solution, 

which in-turn decides the corresponding velocity of 

the particle for navigation. The particles continue 

their search until acceptable solution is obtained. 
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The PSO based solution technique for 3–slot 

BPP utilizes r particles. Here, the current position of 

the ith particle at iteration t is indicated by �⃗�𝑖(t), and 

the position for the next iteration is indicated 

by �⃗�𝑖 (t+1), which is calculated as represented in 

Equation 6. Here,�⃗⃗� i(t) indicates the velocity of ith 

particle for t+1 iteration, and it is calculated as 

represented in Equation 7. Here, D1 and D2 indicate 

the degree of particle attraction towards individual 

and group success respectively, �⃑� gbest and �⃑� pbesti 

indicate the global best solution obtained by all the 

particles until the current iteration and the local best 

solution obtained by the ith particle until the current 

iteration respectively, W indicates a control variable, 

and r1,r2 ϵ [0,1] indicate the random factors. 

 

�⃗�𝑖(t+1) = �⃗�𝑖(t) + �⃗⃗�𝑖(t+1)                                   (6) 
 

�⃗⃗�𝑖(t+1) = 

      W�⃗⃗�𝑖(t)+D1r1(�⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖 
–�⃗�𝑖(t))+D2r2 (�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡 – �⃗�𝑖(t)) 

(7) 
 

The PSO based solution technique for 3–slot 

BPP is outlined in Algorithm 2. Here, 

initialize_PSO(P) divides the feasible solution space 

among the r search particles indicated by 

P = p1, p2 …… pr, and assigns each particle to some 

arbitrary positions in their corresponding feasible 

solution space. Each particle calculates its feasible 

solution for the corresponding current position 

through compute_score( �⃗�𝑖 (t)), which utilizes 

Equations 6 and 7. The values for �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖 
and 

�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡 are calculated through local_best(scorei) and 

global_best(P, �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖 
) respectively. The particles 

continue to search until the acceptable solution is 

found, and which is calculated through acceptable 

(�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡 ). 

 

Algorithm 2 PSO Based Solution Technique 

P = p1, p2, . . . . . pr 

initialize_PSO(P) 

flag = 0 

t = 0 

while flag == 0 do 

 t = t + 1 

 for i = 1 to r do 

  scorei = compute_score (�⃗�𝑖(t)) 

  �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖 
= local_best(scorei) 

  �⃗�𝑔𝑏𝑒𝑠𝑡= global_best(P, �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
) 

  if acceptable(�⃗�𝑔𝑏𝑒𝑠𝑡) then 

   flag = 1 

  end if 

 end for 

 t = t + 1 

end while  

  

The effectiveness of Algorithm 2 in producing 

approximate solutions WRT optimal solution for 3-

BPP is established through Theorem 4. The 

polynomial complexity property of Algorithm 2 is 

established through Theorem 5. It is clear from the 

proof of Theorem 5 that, by exploiting parallelism, 

substantial improvement in complexity can be 

obtained for Algorithm 2.  

 

Theorem 4. For Algorithm 2, If the number of 

particles (r) is sufficiently large, then, the chances of 

obtaining the approximate solution to 3-slot BPP 

closer to optimal solution is high. 

Proof. Let, 𝑁𝑠𝑜  indicate the number of feasible 

solutions. Assume a scenario where 2𝑟 = 𝑁𝑠𝑜. Also, 

each particle will have at least 2 iterations. In this 

scenario, it is clear that, the optimal solution will be 

found, because some particle will reach it. However, 

this search will not have polynomial complexity -- if 

the number of computing nodes are very limited. 

The inference from this scenario is that, with large 

number of particles, the search effectiveness WRT 

quality of approximate solution improves. By using 

this inference, it can be deduced that, having 

sufficiently large value for r such that, the search 

complexity does not become non-polynomial, the 

chances of obtaining the approximate solution to 3-

slot BPP closer to optimal solution is high.  

 

Theorem 5. Algorithm 2 executes in polynomial 

time complexity. 

Proof. As already outlined in Proof of Theorem 4, 

extremely large number of search particles can lead 

to non-polynomial complexity for Algorithm 4. 

However, this non-polynomial complexity can be 

avoided through the scheme where each particle is 

executed in a separate computing node. However, 

this scheme can become impractical due to 

infeasible resource requirement. It must be noted 

that, the design of PSO search mechanism ensures 

that, even with a single search particle, the search 

complexity always remains polynomial [18]. Let’s 

indicate this complexity as C. Hence, by using 

sufficiently large number of particles, such that, 

each particle is executed in separate computing node, 

the complexity of Algorithm 2 can become  ≈
𝐶

𝑟
. 

Hence, the proof immediately follows. 
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4. Results and discussions 

4.1 Simulation setup 

The proposed solution techniques for 3–slot BPP 

are implemented in MATLAB, and for the ease of 

reference, ACO based solution technique and PSO 

based solution technique are referred as ACOST and 

PSOST respectively. The 3-slot BPP has not been 

previously presented in the literature.  Hence, 

PSOST and ACOST are the first techniques to 

provide solution to the 3-slot BPP, and due to which 

there are no contemporary techniques presented in 

the literature to perform relative simulation study 

along with PSOST and ACOST. However, in [1], the 

technique of discovering the optimal solution for 

classical BPP was outlined, which basically 

performs brute force search of all the possible 

solutions in-order to obtain the optimal solution. By 

extending this optimal solution search technique to 

3-slot BPP, the optimal solution for the 3-slot BPP 

can be discovered, and this technique is denoted as 

Optimal [1]. It must be noted that, since, 3-slot BPP 

is NP-Complete, Optimal would incur Non-

Polynomial complexity in its execution, and hence 

not suitable to be used in real-world scenarios due to 

extremely large execution complexity. However, 

Optimal [1] will be subjected to relative comparison 

with PSOST and ACOST in the simulation study 

WRT solution quality, and not WRT execution 

efficiency; so that, the effectiveness of PSOST and 

ACOST  WRT solution quality can be analyzed. 
 

Table 1.Simulation parameter settings 

Simulation 

Parameter 

Set Value 

Number of bin 

items (n) 

Varied between 103 and104 

Number of search 

particles (PSOST) 

10 

Number of search 

ants (ACOST) 

10 

C1 Varied between 0.2–0.3 

C2 Varied between 0.2–0.4 

C3 Varied between 0.3–0.6 

W 0.9 

r1 0.7 

r2 0.8 

D1 0.95 

D2 0.95 

c 4 

Item distribution n1 = n2 = n3 

β 0.85 

ρ 0.85 

 

The simulation parameter settings are outlined in 

Table 1. Search functionality of each particle for 

PSOST and each ant for ACOST are executed on an 

exclusive computing node to exploit parallelism. 

4.2 Simulation results and discussions 

The first experiment analyzes the performance 

of PSOST and ACOST when the number of bin 

items are varied. The utilized slot capacity setting is 

(C1=0.25, C2=0.25, C3=0.5). The result of this 

experimental analysis WRT number of utilized bins 

is illustrated in Fig. 1, and tabulated in Table 2. Both 

PSOST and ACOST provide approximate solutions 

which are closer to the Optimal mainly due to the 

scrupulous design proposed for these two solution 

techniques. The second and third experiments are 

similar to the first experiment, only there is a change 

in the slot capacity setting. The result of 

experimental analysis for second experiment with 

slot capacity setting (C1=0.2, C2=0.4, C3=0.4) and 

third experiment with slot capacity setting (C1=0.2, 

C2=0.2, C3=0.6) are presented in Figs. 2 and 3, and 

tabulated in Tables 3 and 4 respectively. Again, 

results that are similar to the first experiment are 

obtained. The results illustrated in Figs. 1, 2 and 3, 

clearly demonstrate the superior effectiveness of 

PSOST and ACOST, in providing approximate 

solutions to 3-slot BPP which are closer to the 

corresponding solutions provided by the Optimal. 

Table 2. C1 = 0.25, C2 =0.25, C3=0.5 

No of Bin 

Items 

Optimal 

[1] (No of 

Bins 

Used) 

PSOST 

(No of 

Bins 

Used) 

ACOST 

(No of 

Bins 

Used) 
1000 402 453 461 

2000 1105 1204 1201 

3000 1607 1702 1684 

4000 2132 2305 2321 

6000 3023 3321 3423 

8000 3314 3821 3794 

10000 4516 4743 4812 

Table 3. C1 = 0.2, C2 =0.4, C3=0.4 

No of Bin 

Items 

Optimal 

[1] (No of 

Bins 

Used) 

PSOST 

(No of 

Bins 

Used) 

ACOST 

(No of 

Bins 

Used) 
1000 512 576 584 

2000 950 1005 1001 

3000 1214 1340 1335 

4000 2126 2304 2396 

6000 2732 2901 2898 

8000 3220 3408 3404 

10000 4804 5026 5006 
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Table 4. C1 = 0.2, C2 =0.2, C3=0.6 

No of Bin 

Items 

Optimal 

[1] (No of 

Bins Used) 

PSOST 

(No of 

Bins Used) 

ACOST 

(No of 

Bins Used) 

1000 431 500 505 

2000 1004 1242 1228 

3000 1503 1700 1645 

4000 2002 2338 2290 

6000 3004 3223 3400 

8000 3514 3724 3820 

10000 4115 4640 4700 

 
Table 5. C1 = 0.25, C2 =0.25, C3=0.5 

No of Bin 

Items 

PSOST (Exe 

Time) (s) 

ACOST (Exe 

Time) (s) 

1000 73 81 

2000 89 88 

3000 148 156 

4000 194 190 

6000 280 292 

8000 345 348 

10000 610 600 

 

The execution time analysis results for the first, 

second and third experiments are illustrated in 

Figures 4, 5and 6, and tabulated in Tables 5, 6 and 7 

respectively. Both, PSOST and ACOST incur similar 

execution costs, because the number of searching 

elements for both these techniques is equal, and the 

navigation complexity of the searching elements is 

also similar. The results illustrated in Figures 4, 5 

and 6, clearly demonstrate the noticeable execution 

efficiency of PSOST and ACOST, in searching for 

the approximate solution for the 3-slot BPP. 
 

Table 6. C1 = 0.2, C2 =0.4, C3=0.4 

No of Bin 

Items 

PSOST (Exe 

Time) (s) 

ACOST (Exe 

Time) (s) 

1000 58 65 

2000 71 74 

3000 127 120 

4000 158 156 

6000 245 248 

8000 340 360 

10000 620 630 

 

Table 7. C1 = 0.2, C2 =0.2, C3=0.6 

No of Bin 

Items 

PSOST (Exe 

Time) (s) 

ACOST (Exe 

Time) (s) 

1000 77 85 

2000 88 88 

3000 152 146 

4000 200 183 

6000 270 275 

8000 343 338 

10000 590 610 

 

 

 

 
Figure. 1 C1 = 0.25, C2 =0.25, C3=0.5 
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Figure.2 C1 = 0.2, C2 =0.4, C3=0.4 

 

 

 
Figure.3 C1 = 0.2, C2 =0.2, C3=0.6 
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Figure.4 C1 = 0.25, C2 =0.25, C3=0.5 

 

 
Figure.5 C1 = 0.2, C2 =0.4, C3=0.4 

 

 
Figure.6 C1 = 0.2, C2 =0.2, C3=0.6 
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5. Conclusion 

In this work, VMP techniques which consider 

workload characteristics in DCC environment was 

presented. The proposed VMP techniques were 

modeled through 3-slot BPP framework. The 3-slot 

BPP was proved as NP-Complete, and hence, two 

meta-heuristics solutions were presented, which 

were based on PSO and ACO techniques. Both the 

proposed solutions were simulated, and their 

effectiveness were analyzed against the 

contemporary technique. Both the proposed 

techniques provided approximate solutions to 3-slot 

BPP which are closer to the optimal solution, and 

these demonstrated results will directly aid in 

improving load distribution in DCCs. Also, both 

these proposed techniques exhibit appreciable 

execution latency, and thereby, are well suited to be 

utilized in real-world scenarios. However, both these 

proposed techniques are meta-heuristic techniques, 

and hence, do not provide any performance 

guarantees. In-future, 3-slot BPP needs to be solved 

through approximation techniques which can 

provide appreciable performance guarantees.    
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