
Received: December 17, 2018 256

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

Meta-heuristic Techniques for Placement of Virtual Machines in Distributed

Cloud Centers

Kumaraswamy Siddagangaiah1* Mydhili Krishnan Nair2

1Department of Computer Science and Engineering,

Global Academy of Technology, Bengaluru 560098, India
2Department of Information Science and Engineering,

Ramaiah Institute of Technology, Bengaluru 560054, India
* Corresponding author’s Email: skswamy99@gmail.com

Abstract: The Virtual Machine Placement techniques provide an attractive opportunity to achieve the goal of energy

conservation in Cloud Centers. The Virtual Machines can be broadly classified into data intensive and CPU intensive

based on their workload characteristics. Placing or migrating large number of data intensive Virtual Machines can

lead to degradation of task execution efficiency in Cloud Centers. Hence, the Virtual Machine Placement techniques

need to consider the Virtual Machine workload characteristics to prevent associated negative consequences. Even

though workload characteristics aware Virtual Machine migration technique has been presented in the literature for

single-location Cloud Centers, it does not cater to Distributed Cloud Centers, where the cloud resources are

distributed in different geographical locations, and in such setting, new performance issues arise which have to be

effectively addressed. In this work, the NP-Complete Bin Packing Problem framework is extended to model the

Workload Characteristic aware Virtual Machine Placement problem in Distributed Cloud Centers. The proposed

solution is based on two meta-heuristic techniques having polynomial complexity: Particle Swarm Optimization and

Ant Colony Optimization technique. The proposed techniques are compared against the contemporary technique in

simulated environment. In the simulated study of the proposed techniques, both these techniques discover

approximate solutions to the Bin Packing Problem which are extremely close to the optimal solution, and thereby

directly contribute in efficient load distribution in Distributed Cloud Centers.

Keywords: Cloud computing, Virtual machine placement, Distributed cloud data centers, Bin packing, Meta-

heuristic techniques.

1. Introduction

1.1 Overview on virtual machine placement

Cloud Center (CC) refers to commercial

computational service center, which provides

computational services to clients on an ad-hoc basis

over the Internet. Cloud Computing limits the effort

and cost required to maintain and procure

computational resources and software systems for

the organizations. In-fact, the organizations can

access the Cloud services when and where required.

Currently, many organizations are moving their

operations to the CCs. This trend has resulted in the

enormous expansion of CCs.

The CCs consists of numerous Physical

Machines (PM), and each PM is associated with

number of Virtual Machines (VMs), which abstracts

the PM [1]. Most of the services are provided to the

clients through the VMs. In certain scenarios, some

of the PMs might have very few active VMs, and a

recent study [2] has revealed that, even a single

active VM can result in 50% power consumption in

the corresponding PM. If such VMs are migrated to

other PMs which have multiple active VMs, then,

the PMs from which migration has been performed

can be shutdown, which results in reduction in total

power consumption in the CCs. The problem of

Received: December 17, 2018 257

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

migrating the required VMs to other PMs is known

as -- Virtual Machine Placement (VMP) or Virtual

Machine Migration -- problem.

Each VM is associated with an image, which

stores all the data and code corresponding to the VM.

This image is stored in the PM on which the VM

executes. Since, distributed architecture is prevalent

in most of the cloud centers, the image can be

accessed from other PMs.

The existing perception about VMs is that, all of

them are similar in their workload characteristics.

Recently, it has been shown that [2], there are two

broad classifications of VMs based on their

workload characteristics: data intensive and CPU

intensive VMs. The former involves large

proportion of data intensive tasks, and the latter

involves large proportion of CPU intensive tasks.

If a data intensive VM is migrated without

copying its corresponding image to a new PM,

performance degradation of around 40% WRT

execution efficiency of tasks inside these VMs is

observed [2]. However, the equivalent impact is not

observed regarding CPU intensive VMs. It can be

inferred that, migrating large number of data

intensive VMs away from their images is not

recommended [2].

If a PM has large number of data intensive VMs,

then, competition for accessing the disk resources

can increase significantly, which in-turn can degrade

the task execution efficiency performance. Hence,

the number of data intensive VMs running in a PM

has to be limited [2].

The VM migration technique presented in [2]

was based on VM workload characteristics, and

considered non-Distributed CCs -- here:(1)

workload characteristics of VMs were considered

for classifying them as data intensive or CPU

intensive VMs; (2) VM migration was performed by

considering these classified VMs. The proposed VM

migration technique in [2], achieved noticeable task

execution efficiency improvement when compared

to the VM migration technique which did not

consider VM workload characteristics.

1.2 Motivation

Currently, computational load in the CCs is

increasing rapidly due to the popularity of Cloud

Computing. The CCs are not just confined to a

single geographical location [1], and such CCs are

denoted as Distributed CCs (DCCs). Obviously, it

can be hypothesized that, by employing workload

characteristics based VM migration technique which

was presented in [2], effective VM migration in

even DCC environments can be achieved. However,

the associated unpredictability in accurately

predicting the future computation load in different

locations of the DCC is usually high [1]. Hence,

performing large number of VM migration to

different geographical locations may lead to

frequent migration scenario [1], which can seriously

degrade the efficiency of DCC. Ideally, it is

recommended that, each PM should host limited

number of VMs migrated from different

geographical locations [1]. Thus, in DCC

environments, classifying VMs as data intensive and

CPU intensive will not suffice, and further

classification of these VMs based on their locations

is also essential. However, the presented VM

migration technique in [2], the issue of further

classifying the VMs based on their locations for

DCC environments, is not addressed, and which will

be addressed in this work by suitably extending the

VM migration technique presented in [2], and such

endeavor has not been carried out previously in the

literature [1].

1.3 Contributions

In this presented work, the following

contributions are made:

1. The VMP problem for DCC environment

which is based on VM Workload

characteristics, is modeled through 3–slot Bin

Packing Problem (BPP). The NP completeness

justification of 3–slot BPP is presented. Two

meta-heuristic solutions based on Particle

Swarm Optimization (PSO) and Ant Colony

Optimization (ACO) techniques respectively

are presented.

2. The proposed solution techniques are evaluated

through MATLAB simulation, and compared

against the contemporary technique [1]. Both

these solution techniques exhibit their

effectiveness by providing solutions that are

closer to their optimal counterparts, and with

appreciable execution efficiency.

1.4 Paper organization

The paper is organized as follows: Section 2

describes the related work. Section 3 presents the

proposed VMP techniques. Section 4 presents the

empirical results, and finally, the work is concluded

in Section 5.

2. Related work

The VM migration techniques presented in the

literature can be broadly classified into: Live and

Non-Live techniques; wherein, the former indicates

Received: December 17, 2018 258

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

that, the VM migration does not affect normal

services of the Cloud, and in the latter, such

constraint is not enforced.

The Non-Live migration techniques have

become unpopular in the literature due to the issue

of halting of services during VM migration, because

such issue cannot meet the required Service Level

Agreement (SLA) of many clients who would not

prefer halting of such services. Some of the popular

Non-Live migration techniques and their

characteristics have been outlined in [1].

The Live VM migration techniques are the most

preferred techniques in the literature [1], which are

further classified into: Memory migration

techniques, Storage migration techniques and

Network connection migration techniques.

The memory migration techniques aim at

continuing the current processing of those VMs

which have to be migrated, and to achieve this goal,

the memory contents of these VMs are also

transferred; along with the memory content, CPU

current state is also migrated. Many variations of

memory migration techniques have been presented

in the literature recently: hybrid memory copy-

oriented technique [3]; efficiency-oriented technique

[4]; multiple application-oriented technique [5];

workload prediction-oriented technique [6]; NFV

featured network-oriented technique [7]; Traffic

sensitive technique [8]; Agile live migration

technique [9]; Hash-Table oriented technique [10];

VNF live migration technique [11]. However, these

techniques do not specifically address the issue of

VM migration in DCCs by considering VM

workload characteristics.

In certain cloud environments, a scenario might

occur; wherein, the data storage of the source server

from which a certain VM has to be migrated might

not be accessible to the target server to which the

VM is migrated. In such scenarios, Virtual Disks

from the source server are migrated to the target

server, and the VM migration techniques which

address such scenarios are indicated as Storage

Migration techniques. Storage Migration techniques

are usually required in WAN environments. Many

varied contributions have been recently made in the

literature WRT Storage Migration techniques: time-

constraint oriented technique [12];caching based

technique [13]; geographically shifting CC based

technique [14]; machine learning based technique

[15]; three-layer image-based technique [16].

However, again, all these contributions do not

specifically address the issue of VM migration in

DCC environment by considering VM workload

characteristics.

The VMs which get migrated to another server

or Physical Machine (PM) has to become accessible

to its users. In some PMs, due to system restrictions,

the migrated VMs might not be available to the

clients at the required flexibility, and new

constraints might be imposed. Hence, the Network

Connection migration techniques aim to achieve

VM migration by providing the VM services to the

user at the required flexibility, and this goal is

achieved through varied tools and techniques which

have been recently presented in the literature:

topology adaptive technique [17]; SDN-based

technique [18]; optical circuit switching oriented

technique [19]; seamless migration-oriented

technique [20]. Since, in this paper, the problem of

effective VM migration in DCC environments is

considered without specifically addressing the

Network Connection migration technique, hence,

these Network connection migration techniques are

further not considered in this paper.

Recently, VM migration in DCC environment

was presented in [21]. It was highlighted in [21] that,

carbon footprint is a major concern in DCC

environment, which also results in higher operation

costs for CCs -- hence, a VM migration technique

which specifically targets reduction in carbon

footprint was presented, and the VM migration

technique considered the CC locations which are

powered by renewable energy sources as one of the

important parameters in migration of VMs.

However, in [21], the issue of task execution

efficiency after VM migration in DCC environment

has been completely ignored, without addressing

this issue, the reduction in carbon footprint may not

correlate to improvement inresource utilization and

task execution efficiency.

In [22] authors developed system to minimize

power consumption and resource wastage in virtual

machine placement using ant colony optimization

with hypercube framework. In [23] generalized

online optimization methodology was used to place

as many virtual machines as possible in both non-

distributed and distributed cloud data centers to

increase the cloud service provider’s revenue.

From the above outlined Related Work, it is

clear that, the problem of designing workload

specific VMP technique for DCCs, has not been

effectively addressed in the literature, and this

problem will be effectively addressed in the

subsequent sections.

3. Meta-heuristic techniques for VMP

Received: December 17, 2018 259

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

3.1 Problem framework

The 3–slot BPP has n items, which are

exclusively divided into three classes indicated by I1,

I2 and I3. Here, |I1| = n1, |I2| = n2, |I3| = n3, and

n1+n2+n3 = n. The term ikj(1≤k≤3)(1≤ j≤ nk) indicates

the jth item of the class Ik. Each ikj is associated with

the corresponding item weight indicated by 0 <wkj<

1. Each bin has a maximum item weight capacity of

1. The weight capacity of each bin is divided into

three slots. The first slot has a maximum weight

capacity indicated by C1(0 <C1< 1), and only the

items ϵ I1 and I3 can be stored. The second slot has a

maximum weight capacity indicated by C2(0 <C2<

1), and only the items ϵ I2 and I3 can be stored. The

third slot has a maximum weight capacity indicated

by C3(0 <C3< 1), and only the items I3 can be stored.

Here, C1+C2+C3 = 1. The goal of BPP is to store the

n items in the fewest bins possible.

The VMP problem in DCC is modeled by using

the 3–slot BPP. Here, n indicates the number of

VMs that are subjected to placement in the DCC.

Each bin corresponds to a PM. The first slot of each

bin can store either different location data intensive

VMs (I1) or same/differentlocation CPU intensive

VMs (I3). The second slot of each bin can store

either same location data intensive VMs (I2) or

same/different location CPU intensive VMs. The

third slot can only store same/different location CPU

intensive VMs. The weight of each item ikj is

calculated as represented in Eq. (1). Here,

αk(0 < αk< 1) indicates the tuning parameter for kth

slot, which ensures that, 0 <wkj <Ck, and size(ikj)

indicates the size of ikj.

wkj = αksize(ikj) (1)

A solution to the 3–slot BPP which satisfies all

the specified constraints is denoted as feasible

solution. The task is to find the most optimal

feasible solution, which corresponds to placement of

VMs in the fewest possible PMs.

3.2 Problem complexity

The complexity of the proposed 3–slot BPP in a

simple instance, wherein, |I1| = 0 and |I2| = 0 is

presented in Theorem 1. Since, this problem is

NP-complete for this simple instance, if, |I1| ≠ 0or

|I2| ≠ 0, then, the complexity of 3–slot BPP further

increases. Hence, approximate solution techniques,

which have polynomial complexity need to be

designed. In this work, PCO and ACO based

approximate solution techniques are presented.

Theorem 1. If, |I1| = 0 and |I2| = 0, then, the 3–slot

BPP is NP-complete.

Proof. Consider a simple instance of 3 slot BPP,

wherein, |I1| = 0 and |I2| = 0. Clearly, 3–slot BPP

transforms into BPP, which is NP-complete, and

which makes this instance of 3–slot BPP also

NP-complete.

3.3 ACO based solution technique

The ACO technique is based on the principle of

Biologically Inspired Computing [24]. This meta-

heuristic technique provides an approximate

solution to the optimization problem. The main

design of ACO technique is inspired from the path

discovery process utilized by ants to discover

shortest path between food source and their nest.

Multiple ants are involved in the approximate

solution discovery, and each ant builds its own

approximate solution, which is based on the

information collected by other ants. Initially, each

ant utilizes an empty bin and set of all n items. The

items are incrementally added to the corresponding

class slots of the empty bin ensuring that, the

specified constraints of 3–slot BPP are not violated.

If the new items, which are yet to be placed, cannot

fit into this existing bin, then, new bin is created.

Each ant chooses the next item randomly, to build

the incremental approximate solution. This item

selection probability is represented in Eq. (2). Here,

pk(b, s, j) indicates the probability that, the kth ant

selects the jth item for bin b w.r.t. partial solution s, β

is a suitable tuning parameter, Jk(s, b) indicates the

qualified set of items, which can be included in the

current/newly created bin, η(j) indicates the weight

of jth item, τb(j) indicates the pheromone value of jth

item in bin b, which signifies the merit of selecting

jth item for bin b, and it is calculated as represented

in Eq. (3).

𝑝𝑘(b,s,j) =

 {

[𝜏𝑏(𝑗)][𝜂(𝑗)]𝛽

∑ [𝜏𝑏𝑔𝜖𝐽𝑘(𝑠,𝑏) (𝑔)][𝜂(𝑔)]𝛽 ,

0,

(2)

𝜏𝑏(j) = {
∑ 𝜏𝑖𝜖𝑏 (𝑖,𝑗)

|𝑏|
,

 1,
 (3)

Consider Eq. (3), and the two items–item j and

item i, which belong to the same class. Here,

τ(i,j) indicates the merit of adding jth item into bin b

when ith item is already in bin b, and this metric is

calculated as represented in Eq. (4). Here, sbest

indicates the best partial solution found until now, ρ

if j ϵ Jk(s,b)

otherwise

if b ≠ ϕ

otherwise

Received: December 17, 2018 260

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

is a tunable parameter, m indicates the number of

times the pair of items in which the weight of first

item = η(i) and the weight of second item = η(j) is

added to sbest, and f() indicates the fitness function

represented in Eq.(5). Here, N indicates the number

of used bins, c is a tunable weight parameter and Fi

indicates the total left over capacity of the ith bin by

considering all the three slots.

τ (i,j) = ρτ(i,j) + mf(sbest) (4)

f(s) =
∑ 𝐹𝑖

𝑐𝑁
𝑖=1

𝑁
 (5)

Algorithm 1 outlines the ACO based solution

technique. The r ants indicated by (a1, a2, ….ar) are

initialized w.r.t. their corresponding empty bin and

set of n items through the function initialize(a1, a2,

…. ar,n). The ith ant (1 ≤ i ≤ r) builds its

corresponding partial solution s by considering the

remaining unplaced items. The placement of items is

performed for the newly created bin indicated by b,

and it is achieved through the function

item_placement(Ji(s,b),flag),which attempts to place

the unplaced item set indicated by Ji(s,b) based on

the ACO item placement principle outlined above,

here, each item ϵ Ji(s,b) is considered to be placed in

its corresponding class slot in the bin b, and if, the

placement of any item ϵJi(s,b) in b is not possible,

then, flag is set as 1, which initiates a new bin

creation through the function create_new_bin(ai).

This item placement continues until all the items are

placed.

Algorithm 1ACO Based Solution Technique

initialize(a1, a2, ……. ar, n)

for i = 1 to r do

 while Ji(s,b) ≠ ϕ do

 flag = 0

 item_placement(Ji(s,b), flag)

 if flag == 1then

 create_new_bin(ai)

 end if

 end while

end for

Theorem 2 indicates that, if the number of ants used

in Algorithm 1, is sufficiently large, then, with high

chances, the approximate solution obtained for the

3-slot BPP will be closer to optimal solution.

Theorem 2. For Algorithm 1, if the value of r is

sufficiently large, then, the chances of obtaining the

approximate solution to 3-slot BPP closer to

optimal solution is high.

Proof. Let, 𝑆𝑜 and 𝑆𝑎 indicate the optimal solution

and approximate solution obtained through

Algorithm 1 respectively, for 3-slot BPP. Assume a

scenario that, 𝑆𝑎 − 𝑆𝑜 is large. The ACO technique

effectiveness is significantly influenced through r,

because a greater number of ants lead to effective

calculation of 𝜏𝑏 , which in-turn leads to better

approximate solution production [15]. Hence, the

chances of the assumed scenario occurring when r is

sufficiently large is minimal, which immediately

proves the theorem.

Theorem 3 establishes that fact that, Algorithm 1

executes in polynomial time complexity. Let,

𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖) indicate the execution time

for 𝑎𝑖 . If, each 𝑎𝑖 is assigned a separate

computational node for executing 𝑎𝑖 , then, it is clear

that, the complexity of Algorithm 1, will be ≈
 𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖) . Suppose, all 𝑎𝑖 execute in a

single node, then, it leads to sequential execution of

Algorithm 1, which leads to the Algorithm 1

complexity of ≈ 𝑟 × 𝑎𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒(𝑎𝑖).

Theorem 3. Algorithm 1 executes in polynomial

time complexity.

Proof. In Algorithm 1, each 𝑎𝑖 picks the item

randomly, and places it in the required bin based on

the probability score denoted by 𝑝𝑘. Form this item

placement procedure, it is clear that, this procedure

executes in O(n) complexity. Hence, the proof is

completed.

3.4 PSO based solution technique

PSO technique [24] is another meta-heuristic

technique which provides an approximate solution

to the optimization problems, and it is inspired by

the social behavior of birds. The search for optimal

solution is carried out by group of particles, where

in, each particle has an exclusive zone in the feasible

solution space, and union of all particle zones is

equal to the feasible solution space. Each point in

the feasible solution space represents a feasible

solution vector. The particles are continuously

moving in their corresponding feasible solution

space to identify the optimal solution, and are

involved in continuous communication for

exchanging their locally discovered best solution,

which in-turn decides the corresponding velocity of

the particle for navigation. The particles continue

their search until acceptable solution is obtained.

Received: December 17, 2018 261

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

The PSO based solution technique for 3–slot

BPP utilizes r particles. Here, the current position of

the ith particle at iteration t is indicated by �⃗�𝑖(t), and

the position for the next iteration is indicated

by �⃗�𝑖 (t+1), which is calculated as represented in

Equation 6. Here,�⃗⃗� i(t) indicates the velocity of ith

particle for t+1 iteration, and it is calculated as

represented in Equation 7. Here, D1 and D2 indicate

the degree of particle attraction towards individual

and group success respectively, �⃑� gbest and �⃑� pbesti

indicate the global best solution obtained by all the

particles until the current iteration and the local best

solution obtained by the ith particle until the current

iteration respectively, W indicates a control variable,

and r1,r2 ϵ [0,1] indicate the random factors.

�⃗�𝑖(t+1) = �⃗�𝑖(t) + �⃗⃗�𝑖(t+1) (6)

�⃗⃗�𝑖(t+1) =

 W�⃗⃗�𝑖(t)+D1r1(�⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
–�⃗�𝑖(t))+D2r2 (�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡 – �⃗�𝑖(t))

(7)

The PSO based solution technique for 3–slot

BPP is outlined in Algorithm 2. Here,

initialize_PSO(P) divides the feasible solution space

among the r search particles indicated by

P = p1, p2 …… pr, and assigns each particle to some

arbitrary positions in their corresponding feasible

solution space. Each particle calculates its feasible

solution for the corresponding current position

through compute_score(�⃗�𝑖 (t)), which utilizes

Equations 6 and 7. The values for �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
and

�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡 are calculated through local_best(scorei) and

global_best(P, �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
) respectively. The particles

continue to search until the acceptable solution is

found, and which is calculated through acceptable

(�⃗⃗⃗�𝑔𝑏𝑒𝑠𝑡).

Algorithm 2 PSO Based Solution Technique

P = p1, p2, pr

initialize_PSO(P)

flag = 0

t = 0

while flag == 0 do

 t = t + 1

 for i = 1 to r do

 scorei = compute_score (�⃗�𝑖(t))

 �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
= local_best(scorei)

 �⃗�𝑔𝑏𝑒𝑠𝑡= global_best(P, �⃗⃗⃗�𝑝𝑏𝑒𝑠𝑡𝑖
)

 if acceptable(�⃗�𝑔𝑏𝑒𝑠𝑡) then

 flag = 1

 end if

 end for

 t = t + 1

end while

The effectiveness of Algorithm 2 in producing

approximate solutions WRT optimal solution for 3-

BPP is established through Theorem 4. The

polynomial complexity property of Algorithm 2 is

established through Theorem 5. It is clear from the

proof of Theorem 5 that, by exploiting parallelism,

substantial improvement in complexity can be

obtained for Algorithm 2.

Theorem 4. For Algorithm 2, If the number of

particles (r) is sufficiently large, then, the chances of

obtaining the approximate solution to 3-slot BPP

closer to optimal solution is high.

Proof. Let, 𝑁𝑠𝑜 indicate the number of feasible

solutions. Assume a scenario where 2𝑟 = 𝑁𝑠𝑜. Also,

each particle will have at least 2 iterations. In this

scenario, it is clear that, the optimal solution will be

found, because some particle will reach it. However,

this search will not have polynomial complexity -- if

the number of computing nodes are very limited.

The inference from this scenario is that, with large

number of particles, the search effectiveness WRT

quality of approximate solution improves. By using

this inference, it can be deduced that, having

sufficiently large value for r such that, the search

complexity does not become non-polynomial, the

chances of obtaining the approximate solution to 3-

slot BPP closer to optimal solution is high.

Theorem 5. Algorithm 2 executes in polynomial

time complexity.

Proof. As already outlined in Proof of Theorem 4,

extremely large number of search particles can lead

to non-polynomial complexity for Algorithm 4.

However, this non-polynomial complexity can be

avoided through the scheme where each particle is

executed in a separate computing node. However,

this scheme can become impractical due to

infeasible resource requirement. It must be noted

that, the design of PSO search mechanism ensures

that, even with a single search particle, the search

complexity always remains polynomial [18]. Let’s

indicate this complexity as C. Hence, by using

sufficiently large number of particles, such that,

each particle is executed in separate computing node,

the complexity of Algorithm 2 can become ≈
𝐶

𝑟
.

Hence, the proof immediately follows.

Received: December 17, 2018 262

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

4. Results and discussions

4.1 Simulation setup

The proposed solution techniques for 3–slot BPP

are implemented in MATLAB, and for the ease of

reference, ACO based solution technique and PSO

based solution technique are referred as ACOST and

PSOST respectively. The 3-slot BPP has not been

previously presented in the literature. Hence,

PSOST and ACOST are the first techniques to

provide solution to the 3-slot BPP, and due to which

there are no contemporary techniques presented in

the literature to perform relative simulation study

along with PSOST and ACOST. However, in [1], the

technique of discovering the optimal solution for

classical BPP was outlined, which basically

performs brute force search of all the possible

solutions in-order to obtain the optimal solution. By

extending this optimal solution search technique to

3-slot BPP, the optimal solution for the 3-slot BPP

can be discovered, and this technique is denoted as

Optimal [1]. It must be noted that, since, 3-slot BPP

is NP-Complete, Optimal would incur Non-

Polynomial complexity in its execution, and hence

not suitable to be used in real-world scenarios due to

extremely large execution complexity. However,

Optimal [1] will be subjected to relative comparison

with PSOST and ACOST in the simulation study

WRT solution quality, and not WRT execution

efficiency; so that, the effectiveness of PSOST and

ACOST WRT solution quality can be analyzed.

Table 1.Simulation parameter settings

Simulation

Parameter

Set Value

Number of bin

items (n)

Varied between 103 and104

Number of search

particles (PSOST)

10

Number of search

ants (ACOST)

10

C1 Varied between 0.2–0.3

C2 Varied between 0.2–0.4

C3 Varied between 0.3–0.6

W 0.9

r1 0.7

r2 0.8

D1 0.95

D2 0.95

c 4

Item distribution n1 = n2 = n3

β 0.85

ρ 0.85

The simulation parameter settings are outlined in

Table 1. Search functionality of each particle for

PSOST and each ant for ACOST are executed on an

exclusive computing node to exploit parallelism.

4.2 Simulation results and discussions

The first experiment analyzes the performance

of PSOST and ACOST when the number of bin

items are varied. The utilized slot capacity setting is

(C1=0.25, C2=0.25, C3=0.5). The result of this

experimental analysis WRT number of utilized bins

is illustrated in Fig. 1, and tabulated in Table 2. Both

PSOST and ACOST provide approximate solutions

which are closer to the Optimal mainly due to the

scrupulous design proposed for these two solution

techniques. The second and third experiments are

similar to the first experiment, only there is a change

in the slot capacity setting. The result of

experimental analysis for second experiment with

slot capacity setting (C1=0.2, C2=0.4, C3=0.4) and

third experiment with slot capacity setting (C1=0.2,

C2=0.2, C3=0.6) are presented in Figs. 2 and 3, and

tabulated in Tables 3 and 4 respectively. Again,

results that are similar to the first experiment are

obtained. The results illustrated in Figs. 1, 2 and 3,

clearly demonstrate the superior effectiveness of

PSOST and ACOST, in providing approximate

solutions to 3-slot BPP which are closer to the

corresponding solutions provided by the Optimal.

Table 2. C1 = 0.25, C2 =0.25, C3=0.5

No of Bin

Items

Optimal

[1] (No of

Bins

Used)

PSOST

(No of

Bins

Used)

ACOST

(No of

Bins

Used)
1000 402 453 461

2000 1105 1204 1201

3000 1607 1702 1684

4000 2132 2305 2321

6000 3023 3321 3423

8000 3314 3821 3794

10000 4516 4743 4812

Table 3. C1 = 0.2, C2 =0.4, C3=0.4

No of Bin

Items

Optimal

[1] (No of

Bins

Used)

PSOST

(No of

Bins

Used)

ACOST

(No of

Bins

Used)
1000 512 576 584

2000 950 1005 1001

3000 1214 1340 1335

4000 2126 2304 2396

6000 2732 2901 2898

8000 3220 3408 3404

10000 4804 5026 5006

Received: December 17, 2018 263

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

Table 4. C1 = 0.2, C2 =0.2, C3=0.6

No of Bin

Items

Optimal

[1] (No of

Bins Used)

PSOST

(No of

Bins Used)

ACOST

(No of

Bins Used)

1000 431 500 505

2000 1004 1242 1228

3000 1503 1700 1645

4000 2002 2338 2290

6000 3004 3223 3400

8000 3514 3724 3820

10000 4115 4640 4700

Table 5. C1 = 0.25, C2 =0.25, C3=0.5

No of Bin

Items

PSOST (Exe

Time) (s)

ACOST (Exe

Time) (s)

1000 73 81

2000 89 88

3000 148 156

4000 194 190

6000 280 292

8000 345 348

10000 610 600

The execution time analysis results for the first,

second and third experiments are illustrated in

Figures 4, 5and 6, and tabulated in Tables 5, 6 and 7

respectively. Both, PSOST and ACOST incur similar

execution costs, because the number of searching

elements for both these techniques is equal, and the

navigation complexity of the searching elements is

also similar. The results illustrated in Figures 4, 5

and 6, clearly demonstrate the noticeable execution

efficiency of PSOST and ACOST, in searching for

the approximate solution for the 3-slot BPP.

Table 6. C1 = 0.2, C2 =0.4, C3=0.4

No of Bin

Items

PSOST (Exe

Time) (s)

ACOST (Exe

Time) (s)

1000 58 65

2000 71 74

3000 127 120

4000 158 156

6000 245 248

8000 340 360

10000 620 630

Table 7. C1 = 0.2, C2 =0.2, C3=0.6

No of Bin

Items

PSOST (Exe

Time) (s)

ACOST (Exe

Time) (s)

1000 77 85

2000 88 88

3000 152 146

4000 200 183

6000 270 275

8000 343 338

10000 590 610

Figure. 1 C1 = 0.25, C2 =0.25, C3=0.5

400

900

1400

1900

2400

2900

3400

3900

4400

4900

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
O

 O
F

B
IN

S
U

SE
D

NO OF BIN ITEMS(N)

Optimal PSOST ACOST

Received: December 17, 2018 264

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

Figure.2 C1 = 0.2, C2 =0.4, C3=0.4

Figure.3 C1 = 0.2, C2 =0.2, C3=0.6

400

900

1400

1900

2400

2900

3400

3900

4400

4900

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
O

 O
F

B
IN

S
U

SE
D

NO OF BIN ITEMS(N)

Optimal PSOST ACOST

400

900

1400

1900

2400

2900

3400

3900

4400

4900

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
O

 O
F

B
IN

S
U

SE
D

NO OF BIN ITEMS(N)

Optimal PSOST ACOST

Received: December 17, 2018 265

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

Figure.4 C1 = 0.25, C2 =0.25, C3=0.5

Figure.5 C1 = 0.2, C2 =0.4, C3=0.4

Figure.6 C1 = 0.2, C2 =0.2, C3=0.6

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000

EX
E

TI
M

E(
S)

NO OF BIN ITEMS(N)

PSOST ACOST

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000

EX
E

TI
M

E(
S)

NO OF BIN ITEMS(N)

PSOST ACOST

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000

EX
E

TI
M

E(
S)

NO OF BIN ITEMS(N)

PSOST ACOST

Received: December 17, 2018 266

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

5. Conclusion

In this work, VMP techniques which consider

workload characteristics in DCC environment was

presented. The proposed VMP techniques were

modeled through 3-slot BPP framework. The 3-slot

BPP was proved as NP-Complete, and hence, two

meta-heuristics solutions were presented, which

were based on PSO and ACO techniques. Both the

proposed solutions were simulated, and their

effectiveness were analyzed against the

contemporary technique. Both the proposed

techniques provided approximate solutions to 3-slot

BPP which are closer to the optimal solution, and

these demonstrated results will directly aid in

improving load distribution in DCCs. Also, both

these proposed techniques exhibit appreciable

execution latency, and thereby, are well suited to be

utilized in real-world scenarios. However, both these

proposed techniques are meta-heuristic techniques,

and hence, do not provide any performance

guarantees. In-future, 3-slot BPP needs to be solved

through approximation techniques which can

provide appreciable performance guarantees.

References

[1] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, "A

Survey on Virtual Machine Migration:

Challenges, Techniques and Open Issues",

IEEE Communications Surveys and Tutorials,

pp. 1206-1239, 2018.

[2] J.S. Yang, P. Liu, and J.J. Wu, "Workload

characteristics-aware virtual machine

consolidation algorithms", In: Proc. of IEEE

4th International Conference on Cloud

Computing Technology and Science, pp. 42-49,

2012.

[3] L. Hu, J. Zhao, G. Xu, Y. Ding, and J. Chu,

“HMDC: Live Virtual Machine Migration

based on Hybrid Memory Copy and Delta

Compression”, Appl. Math, Vol. 7, No. 2L, pp.

639–646, 2013.

[4] J. Kim, D. Chae, J. Kim, and J. Kim, “Guide-

Copy: Fast and Silent Migration of Virtual

Machine for Datacenters”, In: Proc. of Int.

Conf. High Perform Comput. Netw. Stor. Anal.,

2013.

[5] H. Liu and B. He, “VM buddies: Coordinating

Live Migration of Multitier Applications in

Cloud Environments”, IEEE Trans. Parallel

Distrib. Syst., Vol. 26, No. 4, pp. 1192–1205,

2015.

[6] B. R. Raghunath and B. Annappa, “Virtual

Machine Migration Triggering using

Application Workload Prediction”, Procedia

Comput. Sci., Vol. 54, pp. 167–176, 2015.

[7] J. Xia, D. Pang, Z. Cai, M. Xu, and G. Hu,

“Reasonably Migrating Virtual Machine in

NFV-Featured Networks”, In: Proc. of IEEE

Int. Conf. Comput. Inf. Technol., pp. 361–366,

2016.

[8] U. Deshpande, and K. Keahey, “Traffic-

Sensitive Live Migration of Virtual Machines”,

Future Gener. Comput. Syst., Vol. 72, pp. 118–

128, 2016.

[9] U. Deshpande, D. Chan, T.Y.Guh, J. Edouard,

K. Gopalan, and N. Bila, “Agile Live

Migration of Virtual Machines”, In: Proc. of

IEEE Int. Parallel Distrib. Process. Symp., pp.

1061–1070, 2016.

[10] M. Zheng and X. Hu, “Template-based

Migration between Data Centers using

Distributed Hash Tables”, In: Proc. of the 12th

Int. Conf. Fuzzy Syst.Knowl. Disc., pp. 2443–

2447, 2015.

[11] J. Zhang, L. Li, and D. Wang, “Optimizing

VNF Live Migration via Para-Virtualization

Driver and Quick-Assist Technology”, In: Proc.

of IEEE Int. Conf. Commun., pp. 1–6, 2017.

[12] K. Tsakalozos, V. Verroios, M. Roussopoulos,

and A. Delis, “Live VM Migration under

Time-Constraints in Share-Nothing IaaS-

Clouds”, IEEE Trans. Parallel Distrib. Syst.,

Vol. 28, No. 8, pp. 2285–2298, 2017.

[13] T. Lu, P. Huang, M. Stuart, Y. Guo, X. He, and

M. Zhang, “Successor: Proactive Cache Warm-

Up of Destination Hosts in Virtual Machine

Migration Contexts”, In: Proc. of the 35th

Annu. IEEE Int. Conf. Comput. Commun., pp.

1–9, 2016.

[14] Z. Shen, Q. Jia, G.E. Sela, B. Rainero, W. Song,

R. Van Renesse, and H. Weatherspoon,

“Follow the Sun through the Clouds:

Application Migration for Geographically

Shifting Workloads”, In: Proc. of the 7th ACM

Symp. Cloud Comput., pp. 141–154, 2016.

[15] M. Arif, A. K. Kiani, and J. Qadir, “Machine

Learning based Optimized Live Virtual

Machine Migration over WAN Links”,

Telecommun. Syst., Vol. 64, No. 2, pp. 245–

257, 2017.

[16] F. Zhang, X. Fu, and R. Yahyapour,

“Layermover: Storage Migration of Virtual

Machine across Data Centers based on Three-

Layer Image Structure”, In: Proc. of IEEE 24th

Int. Symp. Modeling Anal. Simulat. Comput.

Telecommun. Syst., pp. 400–405, 2016.

[17] S.Xiao, Y. Cui, X. Wang, Z. Yang, S. Yan, and

L. Yang,“Traffic-Aware Virtual Machine

Received: December 17, 2018 267

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.25

Migration in Topology-Adaptive DCN”, In:

Proc. of IEEE 24th Int. Conf. Netw. Protocols,

pp. 1–1, 2016.

[18] J. Liu, Y. Li, and D. Jin, “SDN-Based Live

VM Migration across Data-Centers”, ACM

SIGCOMM Comput. Commun. Rev., Vol. 44,

No. 4, pp. 583–584, 2015.

[19] P. Samadi, J. Xu, and K. Bergman, “Virtual

Machine Migration over Optical Circuit

Switching Network in a Converged Inter-Intra

Data Center Architecture”, In: Proc. of Opt.

Fiber Commun. Conf. Exhibit., pp. 1–3, 2015.

[20] R. Xie, Y. Wen, X. Jia, and H. Xie,

“Supporting Seamless Virtual Machine

Migration via Named Data Networking in

Cloud Data Center”, IEEE Trans. Parallel

Distrib. Syst., Vol. 26, No. 12, pp. 3485–3497,

2015.

[21] A. Khosravi, L. L. Andrew, and R. Buyya,

“Dynamic VM Placement Method for

Minimizing Energy and Carbon Cost in

Geographically Distributed Cloud Data

Centers”, IEEE Transactions on Sustainable

Computing, Vol. 2, pp. 183 – 196, 2017.

[22] B. Perumal and A. Murugaiyan, “Virtual

Machine Placement Using Hypercube Ant

Colony Optimization Framework”,

International Journal of Intelligent

Engineering and Systems, Vol. 10, No. 5, pp.

77-86, 2017.

[23] F. Hao, M. Kodialam, T. V. Lakshman, and S.

Mukherjee, “Online Allocation of Virtual

Machines in a Distributed Cloud”, IEEE/ACM

Transactions on Networking, pp.238-249, 2017.

[24] K. Kar, “Bio Inspired Computing -- A Review

of Algorithms and Scope of Applications”,

Expert Systems with Applications, pp.20-32,

2016.

