
Received: December 29, 2018 192

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

A High Capacity PDF Text Steganography Technique Based on Hashing Using

Quadratic Probing

Sanjive Tyagi1* Rakesh Kumar Dwivedi1 Ashendra K. Saxena1

1College of Computing Sciences and Information Technology, Teerthanker Mahaveer University, India

* Corresponding author’s Email: tosanjive@gmail.com

Abstract: In this paper, a novel approach of PDF-based text steganography is presented. A covert communication is

achieved by embedding secret information at between-characters positions of words within cover PDF text. A stego-

encoding technique is being designed to improve the embedding capacity along with sufficiently reduced overheads

of stego-cover PDF file. The proposed method constructs multilevel embedding capacities which can be used

according to requirements from higher embedding capacity to typical embedding capacity. Encoding and decoding

of secret text is being obtained by implementing quadratic probing of hashing technique that builds up a direct

encoding table which provides better performance in term of time complexity. Exploratory outcome exhibits that the

proposed technique gives productive algorithms in term upgraded security and high payload of concealed data.

Experiential verification and examination of the proposed technique with certain prominent text steganographic

techniques demonstrate that proposed technique performs better than current methodologies and free of requirements

like shading scheme, languages, wordlist, compression and so forth.

Keywords: Copyright, Cryptography, Embedding, Steganography, Watermark.

1. Introduction

Security is an essential part everywhere in our

life to keep the information protected with the

objective that any unauthorized couldn't steal them.

For this reason, different strategies are available to

keep them secured by password security, secret key,

finger-printing protection and so forth. However,

today in this time of digital communication over the

global network, activities like unlawful accessing,

tempering, and breaking the copyright act are rising

massively. Thus, there is a need to ensure very vital

data by utilizing digital security strategies which can

be accomplished by covering up confidential digital

data inside another digital file or by transforming it

into a non-comprehensible frame. In this manner,

steganography and cryptography innovations can be

assumed a vital part in digital information security

framework. Cryptography has its own significance

to protect the secret information by making non-

understandable, on the other hand, its weakness is

encryption information can make the suspicious

about its privacy and can be tempered by the third

party though preferred standpoint of steganography

is, it protects the secret information by embedding it

into another digital file thus making the secret

information imperceptible so there is less probability

of susceptibility. Steganography is a developing

research field keeping in mind the goal to provide

state-of-the-art development of information security

framework [1].

Basic view of PDF layout [2] is being described

here such as PDF (Portable Document Format) was

created as Acrobat item in 1993 for generating the

platform-independent e-document by Adobe (Adobe

Systems Incorporated). A PDF file is the

arrangement of text, graphics, and binary

information. It is an organization of a few indirect

objects comprehensively characterized in four

segments as (1) header, (2) body, (3) cross-reference

section (4) trailer described in Table 1, which

comprises of career locations to conceal secret

information without influencing the displaying

Received: December 29, 2018 193

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

Table 1. Describing PDF file layout

Header A header recognizes the version of the PDF

description to which the file adapts and it

comprises of comments.

Body Body section comprises of text objects like

Tm, Td, TD operators deals with the text

position, operator Tj, operator Tc for

character situating, operator Tw for dealing

words, operator TJ manage the layout of

PDF file which independent of any platform,

so on. This section is responsible for the

appearance of textual record in PDF file.

Cross-

referen

ce

table

The cross-reference information is used to

find any page quickly not subject to the

length of a document containing any number

of pages. A cross-reference section

containing data about the indirect objects in

the PDF file.

Trailer A trailer section reference to the area of the

cross-reference table and certain unique

objects inside the body of the file.

quality of PDF file. In [3], it is explained that each

segment of PDF document is controlled by page

formatting depiction script known as PostScript. The

method in [3] illustrated Tj administrator strings

might be utilized as secret data transporter covertly.

There are large integer values being used within Tj

operator to describe the style of a text of PDF file.

These integer values may be used as the secret

information carrier. In this approach controlling the

redundancy of integer values of Tj operator is a

tedious task at the time of extraction of hidden data.

This embedding process may not assure the

robustness and high embedding capacity.

PDF text steganography is a valuable approach

to cover up secret information. It can be used to

convey secret data confidentially across an

unreliable network system and to watermark as

copyright data into the PDF files. Scheme in [4]

described that there are some strategies for text

steganography by managing the between-words

spaces as one between-words space may imply bit 0

and two between-words spaces may imply 1 and so

on., by controlling syntactic rules of language, by

controlling semantic guidelines settled between

dispatcher and recipient, by making simulating text

containing secret words put under specific standards,

so on. In most case, it is conceivable in just those

word processors where fixed spacing is being used,

this is one of the disadvantages of such approaches,

whereas portable document file is constructed in a

way that white-space characters are utilized to

isolate syntactic builds from each other. As

indicated by the PDF standard, numerous different

characters are dealt with as white spaces. All white-

space characters are equal, with the exception of

comments, strings, and streams. This property can

be utilized to embed secret messages covertly into

PDF files.

In [5], the author suggested PDF text

steganography by encoding each character of secret

text by Huffman coding algorithm thereby null A0s

are implanted to conceal secret characters at

between-characters positions of words within the

cover PDF file. It is noticed during the study this

technique embeds the table of frequency also,

generated by Huffman coding algorithm in the cover

PDF file which increases the size of the cover PDF

file and time-consuming. Our paper introduced a

stego-encoding technique based on hashing method

that may be employed to hide sufficient larger

number of secret textual data inside PDF file with

better time complexity and fewer overheads than the

method in [5].

A semantic text steganography suggested by [6]

that employing equivalent word substitution method

to hide bit frame of secret text. Here substitution

method is changing the actual text which may

recognizable as unnatural by the human spectator. In

[7], the author presented LZW compression-based

text steganography with email-ids and email texts as

career medium of secret data. In [8], text

steganography presented by combining the move-to-

front, burrows-wheeler-transform and LZW

compression methods to obtain improved

compression of secret text whereas the cover

medium is similar to [7]. In [9], an extension of text

steganography [8] is presented in order to improve

embedding capacity by the application of the

Huffman algorithm. In [7-9] schemes cover text

chosen is not natural text that utilizing the set of

email-ids as a cover medium may create

susceptibility which may be noticeable as unnatural

by the human observer and can be tempered. An

approach of text steganography suggested by [10]

utilizing a set of email-ids as career locations of

secret text. Furthermore, in the second method of

[10] confidential bits are implanted into email body

by utilizing the colour shading scheme. These

methods use too much email-id as career media also

altering the appearance of actual cover contents by

colour shading which leads to vulnerability for

steganalysis attack. However, our proposed work

well against such discrepancies.

Our innovative approach performs better than

various existing steganographic schemes in terms

that no alteration takes place in the contents of the

cover file. It additionally performs well in opposing

the steganalysis attack because of invisible control

ASCII code A0 are utilized to conceal secret text

Received: December 29, 2018 194

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

rather than bits. By introducing hashing technique

with quadratic probing the better time complexity is

being developed. The arrangement paper is

composed as given: In Section 2 related work;

Section 3 proposed steganography technique in

details with its subsections; section 4 results and

discussion; section 5 Comparative Analysis; the

conclusion of paper in section 6.

2. Related work

The work presented in [11] introduces the text

steganography by using the incremental updates

feature of PDF document that is generally used to

control modification within PDF file, these

characteristics of incremental updates is employed

to implant confidential data inside PDF file. The

incremental update method is appropriate for

smaller embedding capacity. An approach in [12]

described that OpenPuff scheme implants secret

contents within the end-of-line symbols which are

referred to as white-space-characters. In this [12], an

analytical study was presented that a steganography

using popular OpenPuff tool can also be detected

which implies that a high embedding capacity

scheme is not only the parameter for better

performance of steganography technique. Threshold

secret sharing scheme is presented in [13] that

utilize the cryptographic hash procedure to validate

the shared information by an authorized shareholder

through implementing the secret sharing method of

[14]. This scheme is suitable to decompose and

reconstruct the secret data among multiple

participants with strong security. The method in [15]

introduced a technique by applying a homomorphic

encryption method with secret text. This approach

has a restriction that cover text should consist of

encrypted characters of secret text which have to be

embedded whereas our proposed work does not

have such restrictions. In [16], the author proposed a

steganography scheme in which text of host file and

text of secret text is generated by utilizing the

process of Markov chain. This dependence of cover

contents with secrets text leads susceptibility to

steganalysis attack. The scheme presented in [17],

introduces the PDF steganography in which secret

information is embedded into new entry line of page

object Tm for which every time cross-reference and

trailer have to be modified otherwise PDF document

will not be displayed correctly. Such PDF

Steganography is very much time consuming and

embedded data may not be extracted properly,

however hiding capacity is high. A text

steganography method was introduced in [18] that

employing transformation of Bengali text for

concealing confidential text. They claim this method

is safe to oppose steganalysis assaults; however, the

transformation of cover contents is always against

the imperceptibility.

 An approach of text steganography suggested in

[19] using missing letter technique, wordlist strategy

and by means of a first and last letter of words. In

[20], text-based steganography is proposed in which

applicant data are substituted by similar outset,

including alternative word (synonym), homonym or

exceptional character. A Notes-based steganography

technique presented in [21] that utilize automatic

notetaking strategies by using varieties between

input human-notes and produces programmed notes,

based on this strategy, secret data are implanted by

implementing the substitution method. These

substitution methods [19-21] are proposed by

changing the features of character, words, and

special symbols etc. which make cover contents

unnatural that can lead to susceptibility. An

approach in [22] demonstrated that short message

service provides secured and higher embedding

scheme. It is found in study its extraction process is

not sufficiently efficient so that it can extract

accurate short text message.

In conventional text steganographic methods,

some kind of alteration takes place such as

substitution by similar outset, wordlist, alternative

word, exceptional character, colour shading etc. to

the contents of the cover file which may identify as

unnatural by a human observer, which leads to

susceptibility for steganalysis attack. To overcome

this issue invisible control ASCII code A0s are

proposed to encode and embed the secret data

confidentially within PDF document. Furthermore,

between-characters locations of words are used as

placeholders for implanting secret data which

improve the embedding capacity and

imperceptibility. Proposed hashing technique also

decreases the overheads of stego-cover text with a

sufficiently high payload. The PDF text

steganography is being developed as a part of a

proposed paper to conceal the secret data inside PDF

text file without affecting the visual quality of PDF

document.

3. Proposed steganography technique

In this section, various methods associated with

the proposed steganography technique are discussed.

There are various ASCII codes used to form the

PDF text. One of them is non-breaking space i.e.

ASCII code A0 is a control code. ASCII code A0

have a characteristic, when embedded with any

Received: December 29, 2018 195

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

Table 2. Hash-Value-Array [126] in Table 3 is divided

into three sections based on the given range of ASCII

code
Hash-

table

Number

The range of

ASCII code

Size of table

(n) taken

nearest prime

number

Binary Code

to represent

table

number

HTable1 48 to 90 43 001

HTable2 91 to 126 36 ≈37 010

HTable3 10, 32 to 47 17 011

ASCII character then it creates invisible white space

and it occupies the width in the text equivalent to

single space but when its width is made to zero

called zero-width A0, it is possible because PDF

format permits to control the width assessment of

every character used in PDF text. In proposed

approach ASCII code A0 does not occupy the width

of one character thereafter it became space-less

without width but zero-width A0 is there, hence it

can be embedded between-characters where it is

invisible without occupying the visible space when

it is seen from the normal view of PDF file. This is

just like sandwiching A0 without occupying any

width between characters of a cover text of PDF file.

We have proposed a new zero-width coding

technique based on hashing using quadratic probing

that may be employed to hide a larger number of

secret textual data in PDF file with better time

complexity.

3.1 Method of encoding characters to hash-

values

This section briefly describes the hashing

scheme used to encode characters of secret data.

In the proposed method, there are only 96

printable characters generally used to make the

secret text. ASCII codes of printable characters lie

between 10, 32 to 126 including LF (line feed) as

controlling printable character. These ASCII codes

of printable characters are divided into three sub-

tables (shown in Table 2) in order to get smaller

hash value corresponding to each ASCII character

which will be used as the frequency of zero-width's

A0s to embed the encoded characters of secret text

at between-characters positions of words within the

cover PDF file. Therefore sub tables of ASCII

characters are designed as Table 1.

Hashing technique is being designed to encode

the ASCII code of each printable characters of secret

text, where hash function using Quadratic Probing is

taken [23] in a given form:
h (key, j) = (h’(key) + x1.j +x2.j

2) mod n, here h

denotes hash function for a value of key of an

auxiliary type, x1 !=0 and x2 !=0, x1 and x2 are

constants of auxiliary type and j= 0,1, 2. 3, … , n-1.

3.1.1 Encoding based on hash function using

quadratic probing

We have hash function using Quadratic Probing

h (key, j)=[(key mod n) + x1.j +x2. j
2) mod n, (1)

where key = ASCII code within the range of ASCII

code shown in Table 2, n=43 for Hash-table1, n=37

for Hash-table2, n=17 for Hash-table3, x1=1 and

x2=3 are taken arbitrarily. Using hash function Eq.

(1), one hash value equals to 0 is obtained for one

ASCII code in each sub table. Here the hash value

of ASCII character equals to 0 cannot represent the

ASCII code of any printable character so replace

hash value 0 with its n value.

3.1.2 Compute Hash-Value

In the proposed method, secret data is made up

96 printable characters, which ASCII code is given

as 10, 32 to 126 and 1-D array named Hash-Value-

Array [size] is created where size is 126 shown in

Table 3 referred as direct encoding table, here array

indexes are the ASCII code of 96 printable

characters additionally corresponding values of

Hash-Value-Array [ASCII-Code] are hash values

computed using the following algorithm Compute

Hash-Value.

Input: ASCII code of characters

Output: Hash-value is a number

Algorithm Compute Hash-Value

1. x1=1, x2=3

2. if ASCII-code >=48 and ASCII-code < =90 then

3. Compute hash-value = [(ASCII-code mod n) +

x1.j +x2.j
2] mod n, using quadratic probing for

n=43, j= 1… n

4. if hash-value !=0 then Hash-Value-Array[ASCII-

code]=hash-value else if hash-value = 0 then

Hash-Value-Array[ASCII-code]=n
endif // endif of line 4

 endif // endif of line 4

 endif // endif of line 2

5. if ASCII-code >=91 and ASCII-code< =126 then

6. Compute hash-value= [(ASCII-code mod n) +

x1.j +x2.j
2] mod n using quadratic probing for

n=36, j= 1… n

7. if hash-value!=0 then Hash-Value-Array[ASCII-

code]=hash-value else if hash-value=0 then

Hash-Value-Array[ASCII-code]=n

endif // endif of line 7

 endif // endif of line 7

Received: December 29, 2018 196

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

 endif // endif of line 5

8. if ASCII-code >=10 and ASCII-code < =47 then

9. Compute hash-value= [(ASCII-code mod n) +

x1.j +x2.j
2] mod n using quadratic probing for

n=17, j= 1… n

10. if hash-value !=0 then Hash-Value-Array[ASCII-

code]=hash-value else if hash-value=0 then

Hash-Value-Array[ASCII-code]=n

endif // endif of line 10

 endif // endif of line 10

 endif //endif of line 8

11. end

3.2 Implementation of proposed steganography

technique

This section briefly describes details of proposed

embedding and extracting process.

3.2.1 Steps for embedding secret data

In this subsection, steps for embedding secret

text into cover PDF text file are discussed using

proposed zero-width Coding Technique.

Step 1: In order to obtain a balanced size of

stego-cover PDF file we choose to hide one

character within one between-characters location per

word and referenced hash table number is embedded

at followed between-words space. For convenient, it

is assumed that number of hidden characters minus

one equal to the number of words in the cover PDF

file, where the last word is not used as place-holder

of secret character which indicates the end of file of

stego-cover PDF file.

Step 2: Count number of characters in secret text

file and transform each character of secret text into

its equivalent ASCII code and store them into a

matrix named SCASCII[nRow][nCol] as follows

SCASCII[nRow][nCol] = { encodeToASCII(Secret

text file) }, where nCol is number of columns (64),

nRow (number of rows) is total number of secret

characters/64.

Step 3: Each cell of matrix

SCASCII[nRow][nCol] have to be embedded into

cover PDF file named CoverPdf by implementing

the Algorithm for Embedding Secret Data, by

applying zero-width coding technique.

(FrequencyA0s is a variable to store a hash value

corresponding ASCII code)

Algorithm for Embedding Secret Data-

Input: Cover PDF file named CoverPdf and secret

data SCASCII[nRow][nCol] in matrix form, where

nCol is number of columns (64), nRow (no. of

rows) is total number of secret characters/64.

Output: CoverPdfStego as stego cover file

Algorithm Embedding Secret Data

1. Open CoverPdf PDF file on read and write

mode to scan and edit CoverPdf PDF file

2. CountSecretCharacters ← Count number of

characters in secret text file

3. CountCoverWords ← Count number of words

in CoverPdf file

4. CountCoverWords ← CountCoverWords -1 //

last word CoverPdf file will not be used

5. if CountSecretCharacters > CountCoverWords

then

Display “Secret text file is larger in size”

exit

 endif

6. nCol ← 64

7. nRow ← CountSecretCharacters/64

8. Transform each character of secret text into

ASCII code and store them into matrix

SCASCII[nRow][nCol]

9. Locate between-characters location of word to lc

in CoverPdf file // consider first between-

characters location of each word is being used to

embed encoded secret character

10. CtrRow ← 1 //indicating row no.

11. while (CtrRow < = nRow)

12. CtrCol ← 1 // indicating column no.

13. while (CtrCol < = nCol)

14. FrequencyA0s ← Hash-Value-Array [

 SCASCII [CtrRow] [CtrCol]]

15. HtableNo ← Call TableNumber (SCASCII

 [CtrRow][CtrCol])

16. Embed no. of zero-width A0s as FrequencyA0s

 no. (obtained from step 14) at location lc of

 CoverPdf file

17. Locate between-words space in CoverPdf file

 then embed no. of zero-width A0s as HtableNo

 no. at located between-words space // embed 1

 A0 for Htable no=1, 2 A0s for Htable no=2, 3

 A0s for Htable no=3

18. CtrCol ← CtrCol + 1

19. Get between-characters location to lc in next

 word of CoverPdf file

 endwhile

20. CtrRow ← CtrRow + 1

21. endwhile

22. close CoverPdf file

23. rename CoverPdf file as CoverPdfStego file

24. End

Algorithm to find hash table no-
This algorithm is used to find sub-table number to

which secret character’s ASCII code belongs to

Algorithm Find TableNumber (ASCII-code)

1. If ASCII-code >=48 and ASCII-code < =90 then

Received: December 29, 2018 197

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

HTableNo=1

endif

2. If ASCII-code >=91 and ASCII-code< =126 then

HTableNo=2

endif

3. If ASCII-code >=10 and ASCII-code < =47 then

HTableNo=3

4. endif

5. return HTableNo

6. End

Running time- Let us assume secret text file consists

of n number of secret characters thus time complexity

of embedding algorithm is dependent on number of

characters of secret text file and procedure Find-

TableNumber takes O(1) time and step 14 (obtaining

FrequencyA0s i.e. hash value) in above algorithm is

using direct address table takes O(1) time to encode

targeted embedding character, hence time complexity

of algorithm = O(n) + O(1) + O(1) = O(n).

3.2.2 Steps for extracting of secret data

This subsection briefly describes steps for

extracting the secret text from stego-cover PDF text

file using proposed zero-width Coding Technique.

Step 1: In order to extract ASCII codes of secret

characters, create a matrix ESCASCII[nRow][nCol],

where nRow and nCol are obtained from valid

stego-cover PDF file. Then obtain the indexes by

searching the hash values within Hash-Value-Array

[126] (shown in Table 3), where hash values are

equals to a number of zero-width's A0s extracted

from between-characters positions of each word

inside stego-cover PDF file. These obtained indexes

are representing ASCII code of secret characters

which will be stored into a created matrix by

implementing the Algorithm for Extracting Secret

Data in Step 2.

Step 2: Extract and decode the embedded secret

characters by extracting the zero-width's A0s by

applying zero-width decoding technique as the given

algorithm.

Input: Stego cover PDF file named CoverPdfStego.

Output: Matrix ESCASCII[nRow][nCol] of ASCII

code of extracted secret characters, where nCol is

number of columns (64), nRow (number of rows) is

(total number of words in CoverPdfStego -1)/64.

Algorithm for Extracting Secret Data

1. Open CoverPdfStego PDF file on read mode to

scan CoverPdfStego file

2. nw ← Count number words of CoverPdfStego

file -1

3. nCol ← 64

4. nRow ← nw/nCol

5. Declare matrix ESCASCII[nRow][nCol]

6. Locate word in CoverPdfStego file

7. keyWord ← Get located word stream

8. Locate between-words space

9. keySpace ← Get located between-words space

stream

10. CtrRow ← 1 //indicating row no.

11. CtrCol ← 1 //indicating column no.

12. while not eof (CoverPdfStego)

13. EHashValue ← Find and count number of

 zero-width’s A0s between-characters of

 keyWord

14. ETableNo ← Count number of zero-width’s

 A0s in keySpace

15. EASCII-Code ← Call SearchASCIIValue

 (EHashValue, ETableNo)

16. ESCASCII[CtrRow][CtrCol] ← EASCII-

 Code

17. Locate next word in CoverPdfStego file

18. keyWord ← Get located word stream

19. Locate next between-words space

20. keySpace ← Get located between-words space

 stream

21. If eof (CoverPdfStego) then

22. Exit from while loop

 endif

23. if CtrCol = 64 then

24. CtrCol ← 0

25. CtrRow ← CtrRow +1

26. endif

27. CtrCol ← CtrCol +1

28. endwhile

29. end

Output: Extracted secret text is obtained.

Running Time: Let us assume cover file consists of

n number of words then its running time is based on

the number of words within cover file plus running

time of procedure SearchASCIIValue which is a

constant, hence time complexity of this algorithm is

O(n)+ O(1) =O(n).

Procedure SearchASCIIValue (EHashValue,

ETableNo)

This procedure (algorithm) searches

EHashValue in the array Hash-Value-Array [126]

shown in Table 3 containing three sections as

HTable1, HTable2, and HTable3, where section of

table is decided on the basis of ETableNo. If

EHashValue is found in an array as given algorithm

then it returns the index of found EHashValue,

which is actually the ASCII code of the desired

character then obtained ASCII code can be decoded

to the readable secret character.

Received: December 29, 2018 198

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

Table 3. Direct encoding table- obtained from hashing technique using quadratic probing: Secret characters are

encoded by obtaining their hash values using Hash-Value-Array [ASCII-code]

HTable No= 3 HTable No = 1 Htable No = 2

Hash-Value-Array from index 1 to

47 consist of n=17 values

Hash-Value-Array from index 48 to

90 consist of n=43 values

Hash-Value-Array from index 91 to

126 consist of n=36 values

Array Index Hash-Value

Array

Index

Hash-

Value

Array

Index

Hash-

Value

Array

Index

Hash-

Value

Array

Index

Hash-

Value

10 10 48 5 70 27 91 19 113 5

32 15 49 6 71 28 92 20 114 6

33 16 50 7 72 29 93 21 115 7

34 17 51 8 73 30 94 22 116 8

35 1 52 9 74 31 95 23 117 9

36 2 53 10 75 32 96 24 118 10

37 3 54 11 76 33 97 25 119 11

38 4 55 12 77 34 98 26 120 12

39 5 56 13 78 35 99 27 121 13

40 6 57 14 79 36 100 28 122 14

41 7 58 15 80 37 101 29 123 15

42 8 59 16 81 38 102 30 124 16

43 9 60 17 82 39 103 31 125 17

44 14 61 18 83 40 104 32 126 18

45 11 62 19 84 41 105 33

46 12 63 20 85 42 106 34

47 13 64 21 86 43 107 35

 65 22 87 1 108 36

 66 23 88 2 109 1

 67 24 89 3 110 2

 68 25 90 4 111 3

 69 26 112 4

Average-Hash-Value=9 Average-Hash-Value=22 Average-Hash-Value=18

Average-Hash-Value of HTable No-1, HTable No-2 and HTable No-3 = 16.33

Algorithm SearchASCIIValue (EHashValue,

ETableNo)

1. if ETableNo = 1 then search EHashValue in Hash-

Value-Array between array index 48 and 90 then

if EHashValue found in an array

2. then return index of found EHashValue

 endif

 endif

3. if ETableNo = 2 then search EHashValue in Hash-

Value-Array between array index 91 and 126 then

if EHashValue found in an array

4. then return index of found EHashValue

 endif

 endif

5. if ETableNo = 3 then search EHashValue in Hash-

Value-Array between array index 10 and 47 then

if EHashValue found in an array

6. then return index of found EHashValue

 endif

 endif

7. end

Step 3: Transform each cell of matrix

ESCASCII[nRow][nCol] into equivalent character

corresponding to its ASCII code, hence obtain the

extracted hidden secret information from

CoverPdfStego cover PDF file.

Secret Text

= {ASCII-decode (ESCASCII [nRow] [nCol])}

Output: Extracted secret data is obtained.

4. Results and discussion

4.1 Performance analysis

Here we are analyzing the performance of our

proposed work by computing its time complexity and

comparing it with various existing schemes.

In the proposed scheme any printable character is

encoded by obtaining the hash value in one step

corresponding to its ASCII code by using direct

encoding table shown in Table 3, hence this searching

operation takes O(1) constant time so if there are n

number of character to get the hash values then time

complexity of proposed scheme would be O(n)

whereas time complexity of Huffman algorithm is O(n

log n) for encoding the characters used by [5]. At the

time of extraction, the time complexity is also O(n)

since n number secret characters have to be decoded

from n number of words including running time of

Received: December 29, 2018 199

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

procedure SearchASCIIValue which is also constant.

Therefore the proposed encoding approach is better in

term of time complexity. In the proposed approach

there is no need to embed the hashing table with secret

data because it can be regenerated under predefined

rules between sender and receiver. However, in [5] it is

required to embed the Huffman coding table as part of

hidden data in order to recover secret data towards

recipients’ side.

4.2 Experimental result

Here, we are exhibiting simulation outcomes by

inspecting and validating the proposed approach with

sample secret text and sample cover PDF file. Let us

assume a sample cover PDF text file on an average

contains 51 lines per page, 10 words per line, 510

words per page, and 6.5 characters per word with all

type of average margins 1.2 inch, font size 11pt, single

line spacing where size of one character is taken one

byte and measurement is considered of only sample

text.

Let on an average N is 510 be the number of words

per page in a cover file C. As it is assumed on an

average each word consist of Nwc is 6.5 number of

characters then total number of characters in our

sample page denoted by Nctot including words and

between-words spaces are taken as Nctot = N x Nwc +

(N-1) =510 x 6.5+509= 3824.00. Here between-words

spaces are not focused locations to hide the secret text.

Destined between-characters positions per word

denoted by Nbc = (Nwc-1) = 5.5 then targeted career

locations denoted by Nc per sample page can be

obtained by Nc=(N-1) x Nbc = 509 x 5.5 = 2799.50 as

the last word of sample page or file is not used to hide

secret text which indicate end of stego-word in file.

However between-words spaces are used to hide

additional secret data that is referenced to a hash-table

number. In the proposed approach encoding of secret

characters is achieved by direct encoding hash

techniques by using quadratic probing scheme. During

the study, we found that if we use all between-

characters locations then the size of cover text

increases with high proportion which is not appropriate

for the sake of security which may create a suspicious

for steganalyst. Analysis has been done as shown in

Table 4 and Fig. 1. Here it is found varying embedding

capacities can be achieved using proposed approach. It

is evaluated that normal (typical) embedding capacity

1.66% is obtained by choosing one between-characters

position per 8th word, medium embedding capacity

13.31% is obtained by choosing one between-

characters position per word and higher embedding

capacity 73.21% is obtained by choosing each position

within each word as shown in Table 4. Embedding

gains are investigated in Fig. 1 to determine the rate of

increase in the size of stego-text with proportion to

selecting the between-characters positions within

words of a cover PDF document. It is found in

experiential analysis that two preferable cases, first is,

one between-characters position per word where 509

bytes of secret text is embedded into cover text of size

3824.00 bytes then embedding capacity is evaluated to

13.31% and second is, fourth between-characters

position per word where 699.88 bytes of secret text is

embedded into cover text of size 3824.00 bytes then

embedding capacity is evaluated to 18.30%. These are

two cases where the size of stego-cover text file is not

growing unexpectedly. It is clear from Fig. 1 that case

1 is best suited as it lies in between of all other cases.

Table 4. Experimental outcomes of the proposed scheme using sample text and sample cover PDF file

 Unit of size measurement in bytes

S

N

Chosen between-

characters position of

cover text to hide secret

data

Size of

cover

text

Targeted

positions

available

in cover

text

Payloa

d of

Secret

Text

Size of

Stego

text

Growth

in size of

Cover

text

Growth

in size of

Cover

text %

Embedding

capacity

%

1 Each position in word 3824.00 2799.50 2799.50 49541.84 45717.84 1195.55 73.21

2 Each 2nd position in word 3824.00 1399.75 1399.75 26683.92 22859.92 597.80 36.60

3 Each 4th position of word 3824.00 699.88 699.88 15254.96 11430.96 298.93 18.30

4 One position per word 3824.00 509.00 509.00 12137.97 8313.97 217.42 13.31

5 One position per 2nd word 3824.00 254.50 254.50 7981.99 4157.99 108.73 6.66

6 One position per 4th word 3824.00 127.25 127.25 5903.99 2079.99 54.39 3.33

7 One position per 8th word 3824.00 63.63 63.63 4865.00 1041.00 27.22 1.66

Average number of zero width A0 needed to represent any character is computed 16.33

Received: December 29, 2018 200

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

Table 5. Comparison of embedding (hiding) capacity among existing and proposed technique

Methods Used Capacity (%) Explanation

 [19] PA(Paragraph Approach) 2.151 Evaluated by employing the dataset sample-2 in Table 6

 [7] 6.925
Evaluated by employing the dataset sample-2 of referred

article in Table 6

 [8] 7.030
Evaluated by employing the dataset sample-2 of referred

article in Table 6

 [9] 7.210
Evaluated by employing the dataset sample-2 of referred

article in Table 6

 [19] MLA(Missing Letter Approach) 8.672 Evaluated by employing the dataset sample-2 in Table 6

 [6] 9.100 Reported by basing on the sample in the referred articles

 [10] 10.891
Evaluated by employing the dataset sample-1 of referred

article in Table 6

Proposed approach 13.310 Evaluated by employing the dataset sample-3 in Table 6

Table 6. Training datasets used (without quotes) to evaluate embedding capacity for comparative analysis

 Secret data Cover Media

Dataset Secret text No. of

Characters

Cover text Text type No. of

Characters

Sample-1 "underlying …….

Mechanisms"

33 "you cant …… yourself" and 5

email ids as “qheet@btinternet.com,

vsert@aol.com,......”

plain text 51

Sample-2 "behind using……………

intended recipient"

198 “in the research area

……………least 16 bits”

plain text 847

Sample-3 "Information can be

hidden……… dependent"

509 “Steganography is the technology

……… immensely”

PDF text 3824

Figure. 1 Observing payloads (size in bytes of hidden data) based on selecting between-characters positions within words of

cover text (PDF file), locations used within words of cover text to hide secrete characters

Received: December 29, 2018 201

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

 Figure. 2 Comparison of embedding capacities among

existing techniques and proposed technique

5. Comparative analysis

Embedding capacities of various existing

schemes and proposed technique are evaluated in

Table 5 and training datasets used are shown in

Table 6. Experiential analysis and verification of the

proposed system with certain prominent text

steganographic procedures exhibited in Table 5 and

Fig. 2 respectively. Here outcomes developed that

our proposed scheme giving significantly higher

embedding capacity. In the event that we compare

our proposed approach with the method that

utilizing encoding of secret data by colouring

pattern within cover message then it is discovered,

excessively shading combination utilized as a part of

content can create suspicious which is not

suggestible however our projected approach does

not make any such suspicious. If we compare

proposed approach with steganography based on

languages then it is found phonetic steganography

frameworks begin with cover content, thereafter,

this cover message is being altered to conceal secret

data this alteration offers to ascend to specific

vulnerabilities. One kind of weakness is that the

altered content is identifiable as unnatural by the

human observer, whereas our presented scheme is

free from requirements like shading scheme,

languages, wordlist, alteration, compression etc. that

exhibit predominance of our proposed approach.

6. Conclusion

This paper introduced an innovative

implementation process with effective embedding

and extracting algorithms which transforming secret

text into a highly protected encoded frame with high

payload steganography. A novel stego-encoding

technique is being introduced that produces less

number embedding bits, that lessens the gain in size

of stego-cover file with high embedding capacity

that likewise reduces the overheads of stego-cover

PDF file. Here interesting feature of this scheme is

that embedding capacity can be managed by

manipulating a number of targeted between-

characters positions. In light of our outcomes, we

trust that adequate high embedding capacity 13.31%

might be acquired by choosing one between-

characters position per word. Execution assessment

and result examination exhibits that presented

steganographic technique is secure besides the

implanting capacity is adequately improved and this

innovative approach is practically feasible. Further

research on this paper might be extended to

exceptionally secured image steganography

incorporated with PDF-based steganography.

References

[1] S. Tyagi, A. K. Saxena, and S. Garg, “Secured

High Capacity Steganography using

Distribution Technique with Validity and

Reliability”, In: Proc. of the International Conf.

on System Modeling & Advancement in

Research Trends, pp.109 –114, 2016.

[2] Adobe System Incorporated, PDF Reference

Sixth edition, Version 1.7,

http://www.adobe.com/content/dam/Adobe/en/

devnet/acrobat/pdfs/pdf_reference_1-7.pdf,

November 2006.

[3] S. Zhong, X. Cheng, and T. Chen, “Data

Hiding in a Kind of PDF Texts for Secret

Communication”, International Journal of

Network Security, Vol. 4, No. 1, pp.17–26,

2007.

[4] D. Salomon, “Data Hiding in Text”, eBook of

Data Privacy and Security, Chapter-10, pp-

247-267, 2003.

[5] I. S. Lee and W. H. Tsai, “A New Approach to

Covert Communication Via PDF Files”, Signal

Processing, Vol. 90, No. 2, pp. 557-565, 2010.

[6] S. Mahato, D. A. Khan, and D. K. Yadav, “A

Modified Approach to Data Hiding in

Microsoft Word Documents by Change-

Tracking Technique”, Journal of King Saud

University – Computer and Information

Sciences, In Press, 2017.

[7] E. Satir and H. Isik, “A Compression-Based

Text Steganography Method”, Journal of

Systems and Software, Vol. 85, No. 10, pp.

2385-2394, 2012.

[8] R. Kumar, S. Chand, and S. Singh, “An Email

Based High Capacity Text Steganography

Scheme using Combinatorial Compression”, In:

Proc. of the International Conf. on Confluence-

Received: December 29, 2018 202

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.20

The Next Generation Information Technology

Summit, pp. 336–339, 2014.

[9] R. Kumar, S. Chand, and S. Singh, “A High

Capacity Email Based Text Steganography

Scheme using Huffman Compression”, In: Proc.

of the International Conf. on Signal Processing

and Integrated Networks, pp. 53-56, 2016.

[10] A. Malik, G. Sikka, and H. K. Verma, “A High

Capacity Text Steganography Scheme Based on

LZW Compression and Color Coding”,

Engineering Science and Technology, an

International Journal, Vol. 20, No. 1, pp. 72-79,

2017.

[11] H. Liu, L. Li, J. Li, and J. Huang, “Three Novel

Algorithms for Hiding Data in PDF Files Based

on Incremental Updates”, eBook of Digital

Forensics and Watermarking, Vol. 7128,

pp.167–180, 2012.

[12] T. Sloan and J. H. Castro, “Dismantling

OpenPuff PDF Steganography”, Digital

Investigation, Vol. 25, pp. 90-96, 2018.

[13] K. M. Faraoun, “A Novel Fast and Provably

Secure (T, N)-Threshold Secret Sharing

Construction for Digital Images”, Journal of

Information Security and Applications”, Vol.

19, No. 6, pp. 331-340, 2014.

[14] A. Shamir, “How to Share a Secret”,

Communication of the ACM, Massachusetts

Institute of Technology, Vol. 22, pp. 612-613,

1979.

[15] N. Naqvi, A. T. Abbasi, R. Hussain, M. A.

Khan, and B. Ahmad, “Multilayer Partially

Homomorphic Encryption Text Steganography

(MLPHE-TS): A Zero Steganography

Approach”, Wireless Personal Communications,

pp. 1-23, 2018.

[16] A. N. Shniperov and K. A. Nikitina, “A Text

Steganography Method Based on Markov

Chains”, Automatic Control and Computer

Sciences, Vol. 50, No. 8, pp. 802–808, 2016.

[17] Y. C. Lai and W. H. Tsai, “Covert

Communication via PDF Files by New Data

Hiding Techniques”, In: Proc. of Conf. on

Computer Vision, Graphics and Image

Processing, 2009.

[18] M. Khairullah, “A Novel Steganography

Method using Transliteration of Bengali Text”,

Journal of King Saud University – Computer

and Information Sciences, In Press, 2018.

[19] M. Agarwal, “Text Steganographic

Approaches: A Comparison”, International

Journal of Network Security & Its Applications,

Vol. 5, No. 1, pp. 91-106, 2013.

[20] L. Gongshen, D. Xiaoyun, S. Bo, and M. Kui,

“A Text Information Hiding Algorithm Based

on Alternatives”, Journal of Software, Vol. 8,

No. 8, pp. 2072-2079, 2013.

[21] A. Desoky, “Notestega: Notes-Based

Steganography Methodology”, Information

Security Journal: A Global Perspective, Vol.

18, No. 4, pp. 178-193, 2009.

[22] W. Ren, Y. Liu, and J. Zhao, "Provably Secure

Information Hiding via Short Text in Social

Networking Tools", Tsinghua Science and

Technology, Vol. 17, No. 3, pp. 225-231, 2012.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest,

and C. Stein, “Introduction to Algorithms”,

MIT press, Publisher: PHI Learning Pvt. Ltd,

New Delhi, India, 2009.

