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Abstract: For a simple and accurate prediction of the Remaining Useful Life (RUL) of a component/system, 

degradation-based algorithms, deployed by data-driven prognostic model, attempt to track a sensed or preprocessed 

feature called prognostic feature, highly correlated with fault growth. This feature should reflect the fault evolution 

through the entire component/system life, i.e. having a monotonic trend shape. Extracted features usually show 

undesirable behaviors such as fluctuation, non-monotonicity and abrupt increase at the end of the component life-

cycle which hampers the accurate prediction of the RUL. We must, therefore, be addressed to the identification of 

new prognostic features having an obvious monotonic trend shape to enhance the prediction of the RUL. In this 

context, this paper attempts to address this issue by further preprocessing the extracted features in a way that the 

identified prognostic feature results in a smoothed and trended shape. The qualities of the identified feature are 

evaluated by a set of established and proposed suitability metrics. Datasets from bearings run-to-failure experiments 

provided by FEMTO-ST Institute - IEEE PHM 2012 challenge- were used to validate our approach. A mean 

percentage error of 12.18% was achieved indicating that the model worked accurately and reliably on every tested 

bearing. 

Keywords: Fuzzy neural networks, Particle filtering, Prognostics and health management, Remaining useful life. 

 

 

1. Introduction 

Downtime caused by premature failures of 

mechanical components, driven by bearings or 

gearboxes, challenges almost industrial processes 

and increases the maintenance cost. In this context, 

the Prognostics and Health Management (PHM), as 

an approach to system life-cycle support, seeks to 

reduce or eliminate inspections and time-based 

maintenance [1]. Among the Architectures proposed 

for the PHM process, the Open System Architecture 

(OSA-PHM), which consists of seven layers ranging 

from data acquisition to the recommendation of 

mitigation actions, including in between detecting, 

identifying, isolating, predicting and managing 

faults and failures [2], Fig. 1. Enormous works have 

been focused on the first four layers of the OSA-

PHM architecture; sensing, signal processing, fault 

detection, and diagnostics, but there is still further to 

do.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 1 OSA-CBM architecture 
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The prognostic, which is the key process of the 

PHM, focuses mainly on predicting the RUL of a 

component/system with a confidence interval [2]. It 

can be achieved by using three main approaches 

namely model-based, data-driven and hybrid 
approaches [3]. Understanding pathological 

phenomena of failure and underlying physic laws 

that govern it is crucial to build an accurate 

degradation based model for the prognostic purpose. 

In the lack of this knowledge, data-driven 

techniques are preferred and bring a compromise 

between precision and complexity [4]. The 

strategies chosen by these techniques for RUL 

prediction: can be summarized in 1) finding a 

degradation indicator and predicting the trend until a 

threshold; 2) direct mapping from extracted features 

to RUL by regression [5]. Beneath the first category, 

degradation-based prognostic algorithms, called also 

projection algorithms, aim to track a prognostic 

feature, even sensed or pre-processed, reflecting the 

fault evolution through the entire component/system 

life; i.e. having a monotonic trend shape. In this 

framework, a lot of works have been dedicated to 

assess the RUL of the bearings. They are mainly 

categorized in two approaches, statistical approaches 

and artificial intelligent (AI) approaches [6-8]. The 

precision of these algorithms in predicting the RUL 

is tributary on the monotonicity and trendability of 

the prognostic features. 

Implementing these methods in a classical way 

i.e. starting from feature extraction step of the 

acquired raw vibration signal, then evaluating the 

current health condition of a bearing through a 

health indicator and finally projecting the health 

indicator until it reaches a failure threshold rises 

some drawbacks that needed to be resolved. Theses 

drawbacks are summarised below: 

- The identification of the suitable prognostic 

features of the available data left to expert analysis 

and engineering judgment, or typically identified 

through visual inspection are time consuming and 

tedious. These features can exhibit different 

degradation signatures at different levels of the 

degradation process. The trend of some features can 

occur right before the failure of the component, as 

shown in Fig. 2 and 7b which hampers the accurate 

prediction of the RUL. Others are not monotonic or 

very sensitive to the measurement noise;  

- Merging multiple features into a single health 

indicator which is then used to predict the RUL is 

common practice in prognostic works. This 

assumption of dimensionality fails at presenting the 

state of a bearing that can exhibit multiple failure 

modes [9]. 

 

 

 

 

 

 

 

 

 

Figure. 2 Example of (1) high (2) low (monotonicity and 

trendability) 

 

These methods typically require setting a failure 

threshold. A static threshold can be non-convenient, 

and an adaptive one is difficult to estimate [10]. 

To deal with all these issues is out of the scope 

of this study. Instead identifying a new feature with 

monotonic trend shape is a challenging problem and 

is our first goal. There is no such endeavour to 

tackle this problem, in our best knowledge, only few 

papers [11- 15] deal with this issue.  The common 

ground of all authors is to establish a set of shape 

quality metrics to evaluate the suitability of the 

features for the prognostic task. 

For instance, the authors in [11] and [12] use a 

weighted sum of shape quality metrics namely 

trendability, monotonicity, and prognosability as 

fitness function and try to identify an optimal set of 

prognostic features based on their suitability for the 

prediction task from a population of features by 

merging them using genetic algorithm to extract the 

best of all together. These metrics are reported in 

section 2.2.3.  

The authors in [13] instead, have proposed a 

fitness function based on the separability measure of 

successive time segments to assess the suitability of 

the extracted features for the RUL prediction. 

The authors in [14] followed what was done in 

[11] and [12] and proposed a Genetic Programming 

(GP) as optimization approach which combines 

randomly mathematical operators, analytic functions, 

constants, and state variables to find out a 

mathematical expression of the advanced feature 

highly correlated with the fault growth using 

monotonicity as the only suitability metric. However, 

in addition to the hard understanding of the physical 

meaning of the identified feature, the difficulty, 

resides in determining failure threshold when 

different input features are concerned by the GP 

method.  

Instead of dealing with an optimisation problem 

as the aforementioned authors do, [15] uses another 

approach based on the energy entropy, in which the 

normalized energy in the frequency spectrum is 

calculated over the cycles and the entropy is 

calculated as a trending feature. He claims that the 
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Figure. 3 Framework of the proposed RUL prediction approach 
 

proposed energy entropy method shows smooth and 

constant decrease over the cycles which may 

represents the degree of fault progression. 

Our approach to address this issue attempts 

firstly to acquire the trending shape by further pre-

processing the extracted features transforming them 

to their cumulative form and secondly using Particle 

Filtering (PF) technique as a projecting algorithm to 

predict the RUL due to its capability to carry 

nonlinear systems in presence of non-Gaussian 

process/observation noise. But the use of PF 

technique raises another problem of induced errors 

since the system state evolution (i.e. bearing 

degradation feature in our case) usually integrated in 

PF as analytic expression even linear, logarithmic or 

exponential, kind of first order Markov Model, 

doesn’t fit exactly the failure behavior. Again, to 

address this issue, we propose to use an offline 

trained model to be integrated later in PF. In our 

case, we propose a Neuro-Fuzzy System (NFS) 

predictor that fit perfectly the degradation process; 

Fig. 9.  

This paper is organized in a way that it follows 

the flowchart of a typical health monitoring system. 

Starting from the data acquisition step in section 1, 

then the pre-processing step to identify the 

appropriate prognostic feature in section 2. The 

prediction of RUL is carried out using the adapted 

PF to the prognostic purpose with the integrated 

NFS as evolution state model in section 3. The 

validation step ended our approach by the 

assessment of the results and the comparison with 

the previous works given in section 4 and 5 

respectively. Finally, a conclusion is drawn in 

section 6. 

2. Methodology 

The methodology followed here is that of the 

flowchart of Fig. 3.  

The flowchart of the proposed method for 

bearing RUL prediction, illustrated in Fig. 3, 

includes two main phases: training phase and testing 

phase. The training phase conducted off-line aims to 

generate firstly a health indicator by further 

preprocessing the extracted feature from raw 

vibration signals acquired by the sensors and 

secondly to train the evolution model (NFS) used by 

particle filtering algorithm to fit the bearing 

degradation data. The testing phase is an on-line 

prediction that uses the generated model from the 

training phase to predict the RUL when a new test 

sample is available. 

2.1 Data acquisition step (L1) 

The choice of bearings and their condition 

monitoring to validate this study can be justified 

firstly, by the fact that these components are 

omnipresent in almost industrial processes using 

rotating elements and are subject to frequent failures. 

Secondly, when condition monitoring of bearings 

without altering their operation is considered, the 

vibrations is top ranked among the sensored data.  

Note that the datasets were provided by 

FEMTO-ST Institute from an experimental test 

bench called PRONOSTIA. 

2.2 Data preprocessing step (L2) 

2.2.1. Feature extraction 

The main goal of this step is to cartography the 

acquired data into a feature space related to the 

component health state using various signal 

processing techniques in time domain, frequency 

domain or time-frequency domain, [16]. For the 

PHM case study, none of the extracted features from 

raw vibration signal shows a monotonic trend shape. 

2.2.2. Feature preprocessing  

Motivated by the proposed model in [17] which 

states that the accumulated degradation for time 

interval [0…t] is proportional to the accumulated 

accelerations (vibrations). That means the influence 

of actual and high accelerations are more significant 

than the older and low accelerations. This is the case 

of mechanical components that do not undergo self-

healing like batteries. Therefore, transforming the 

extracted features into their cumulative form as 
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health indicator using the cumulative sum (1) should 

well reflect the fault growth.  

Note that the extracted features are presented as 

time series.  

𝑐𝑓(𝑖) =
∑(𝑑𝑎𝑡𝑎(1: 𝑖))

√|(∑(𝑑𝑎𝑡𝑎(1: 𝑖)))|

 
(1) 

where 𝑑𝑎𝑡𝑎(1: 𝑖) is the time series of any extracted 

feature up to time 𝑖.  
𝑐𝑓 is the cumulative form of the time series 𝑑𝑎𝑡𝑎. 

2.2.3. Feature evaluation 

The evaluation of the suitability of the features 

for the prognostic task was made according to [11] 

using a set of suitability metrics namely 

monotonicity, trendability and prognosability, 

ranging from 0 to 1 for low and high suitability 

measure respectively. These metrics characterize the 

shape quality of the degradation curve.  

Monotonocity stand for average fraction of 

positive and negative derivatives. 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 = 

           𝑚𝑒𝑎𝑛 (|
#𝑝𝑜𝑠(𝑑

𝑑𝑥⁄ )

𝑛 − 1
−

#𝑛𝑒𝑔(𝑑
𝑑𝑥⁄ )

𝑛 − 1
|) (2) 

where #𝑝𝑜𝑠(𝑑
𝑑𝑥⁄ )  is number of positive 

derivatives and #𝑛𝑒𝑔(𝑑
𝑑𝑥⁄ )  is the number of 

negative derivatives 

Prognosability is approximated as the variation 

of the final failure values for each degradation path 

divided by the mean range of the paths. It is 

exponentially weighted to provide the desired zero 

to one scale. 

 
𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =    

exp (−
𝑠𝑡𝑑( 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒𝑠)

𝑚𝑒𝑎𝑛(|𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑣𝑎𝑙𝑢𝑒|)
) 

(3) 

 
The trendability is given by the smallest absolute 

correlation of the re-sampled prognostic feature 

according to the fraction of total lifecycle. 

 

𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑚𝑖𝑛(|𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓𝑖𝑗 |) (4) 

 

𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓𝑖𝑗are correlation coefficients of prognostic 

parameters 

In addition to these metrics, we have also 

proposed the sum of the differential coefficients as 

another suitability measure. The differential 

coefficients are calculated after partitioning the 

degradation curve in equidistant time segments and 

using a linear regression for each part to calculate 

these coefficients. 

3. Remaining useful life prediction  

3.1 Particle filtering technique adapted to 

prognostics purpose (L5) 

The Particle filtering is an interesting technique 

for sequential signal processing based on the 

concepts of Bayesian theory and Sequential 

Importance Sampling (SIS). It is particularly useful 

in dealing with nonlinear systems with the presence 

of non-Gaussian process/observation noise [18]. 

The posterior PDF is approximated each time 

point by a swarm of random samples, known as 

particles, with associated weights representing the 

discrete probability masses, drawn from the state 

evolution model [19-20]. 

The PF framework adapted for prognostic task is 

presented in Fig. 5 and it works as follow. 

During the learning phase, we assume that the initial 

PDF 𝑝(𝑥0) of the state is specified. So, the posterior 

PDF 𝑝(𝑥𝑘 |𝑧1:𝑘 )  is obtained recursively in two 

steps: 

Prediction step: the particles are propagated using 

the state evolution model 𝑝(𝑥𝑘 |𝑥𝑘−1) (in our case 

the NFS model). We obtain a new PDF. 

Update step: the weights 𝑤𝑘
𝑖  are update on the light 

of measurement according to the calculated 

likelihood 𝑝(𝑧𝑘 |𝑥𝑘). 

          

         𝑤𝑘
𝑖 ≈ 𝑤𝑘−1

𝑖  𝑝(𝑧𝑘 | 𝑥𝑘
𝑖 ) (5) 

 

A re-sampling step is needed to avoid 

degeneration by eliminating the particles with lower 

weights. 

At the end of this phase, when no measurement 

is available and the likelihood is no longer 

calculated; starts the prediction phase; only the state 

𝑥𝑘  is propagated from one stage to another using the 

evolution model [21]. 

3.2 Integration of NFS in particle filtering 

Analytic expressions even linear, exponential or 

logarithmic are often used to model the degradation 
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process. These expressions are kind of first-order 

Markov models where the future system state 𝑥𝑘+1 

depends only on the present state 𝑥𝑘 and a process 

noise 𝜔𝑘 . As our degradation data exhibits a 

complex shape, approximating the degradation 

process by analytic expression induces errors. To 

address this issue, a Neuro-Fuzzy System (NFS) 

predictor was proposed to fit the degradation 

process. The proposed NFS is a fuzzy logic system 

combining the human-like reasoning style of fuzzy 

systems with the learning and connectionist 

structure of neural networks. He has the architecture 

of a single input-single output (SISO) system, Fig. 

4,with five layers, wherein the signal is processed 

throw, namely input layer, Membership Function 

(MF) layer, rule layer, normalized layer and output 

layer, respectively [16] and [22].The system 

dynamics are handled by the process noise: 

 

𝑥𝑘+1 = 𝑥𝑘+1 + 𝜔𝑘       
                      𝑥𝑘+1 = 𝑔𝑘+1(𝑥𝑘)                   (6) 

 

𝑔𝑘+1(𝑥𝑘) is a nonlinear function used by the NFS 

and 𝜔𝑘 is the process noise. 

4. Experiment setup  

4.1 PHM Case Study (Bearings Datasets of IEEE 

PHM Challenge 2012) 

The datasets were provided by FEMTO-ST 

Institute from an experimental platform called 

PRONOSTIA and are mainly composed of run-to-

failure vibration signals related to ball bearings. The 

datasets were recorded at a sampling frequency of 

acceleration and temperature of 25.6 kHz and 0.1 Hz 

respectively. The experiments were stopped when 

amplitude of the vibration signal reaches 20g limit 

(g: gravity). Further details are given in [23]. 

𝐵𝑒𝑟𝑖−𝑗 stands for the bearing number 𝑗 under the 

load condition 𝑖. Figs. 6 (a) and (b) show the raw 

vibration signals of the bearing 𝐵𝑒𝑟1−1  on the 

horizontal and vertical axis respectively. 

 

 

 

 

 

 

 

 
Figure. 4 SISO NFS predictor architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5 Particle filter framework for prognostics 

 

 

S 

S 

S 

T N 

N 

N 

T 

     T   

𝑥𝑡  𝑥𝑡+1 

    L1     L2     L3  L4     L5 

 

Initialize filter 

Propose initial population (w0, x0) 

Start prediction at tp 

Estimate initial population (wp, xp) 

Learning Prediction 

Propagate particles using NFS model and process 

noise:  xk-1 → xk 

Measurements: 

zk 

Update weights: 

wk-1 → wk 

Weights 

degenerate? 

Resample 

tp 

reached ? 

Propagate particles using NFS 

model and process noise: 

xp+k-1 → xp+k 

 
Threshold 

reached? 

 

Generate RUL PDF 

    No 

No 

 

Yes  

Yes 

No 

 k=k+1 



Received:  December 3, 2018                                                                                                                                            161 

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019           DOI: 10.22266/ijies2019.0630.17 

 

4.2 Feature extraction & exploring  

Following the steps of the prognostic scheme 

and in addition to the statistical extracted features 

even dimensionally or dimensionless in time domain 

and the energies (defined as sum of the squares of 

amplitudes) over frequency bands centred on 

specific frequencies (e.g. rotating frequency and it 

harmonics and/or bearing defect frequencies) 

extracted using Fast Fourier Transform (FFT)  

which are taken as representative features in 

frequency domain, features in time-frequency 

domain are also considered, using the Daubichies 

wavelet of 4th order D4 and 4th decomposition level 

for the analysis of bearing vibration signals. We 

suppose that the 4th decomposition level is enough to 

carry all the bearing defect frequencies and at least 3 

of their harmonics according to [24]. 

Statistical features were performed on at 

different decomposition levels using detail 

coefficients. Fig. 7a and Fig 7b are illustrating 

examples. These features still show a low trending 

and present variation right before failure time which 

limits their prognostic capabilities as mentioned 

before. 

Instead, the extracted feature transformed to its 

cumulative form as health index feature, Fig. 8, 

exhibits a smoothed and trended shape and appears 

to be well adapted to the RUL prediction. This claim 

is substantiated by the results of the suitability 

comparison between the extracted and the pre-

processed features, presented in Table 1 which show 

clearly that the pre-processed feature outperform the 

extracted one. The comparison was made using the 

suitability metrics according to [11] namely 

monotonicity, trendability, prognosability and the 

sum of the differential coefficients as another 

proposed measure of suitability. The comparison 

results were done on the fitted version of the 

extracted feature because these metrics are greatly 

affected by rapid fluctuations. The 11th order 

polynomial fitting was used in our case to handle the 

global trend and local variations. 

For the sake of emphasizing the comparison 

between the two normalized features of Fig. 8b (i.e. 

the extracted feature compared to the pre-processed 

one), we present the results of the RUL predictions 

in Fig. 11. These results are very close to the true 

RUL. An average error percentage of 17.76 % was 

achieved instead of 81.87 %. 

The given threshold for the training vibration 

dataset was 20g correspond to 37,5g on the 

cumulative form which was kept for the test phase. 
 

Table 1. Results of the suitability comparison of the 

extracted feature vs its cumulative form 

 

 
(a) 

 
(b) 

Figure. 6 Vibration signals of the bearing Ber1−1: (a) 

horizontal and (b) vertical axis 

 

 
(a) 

 
(b) 

Figure. 7 (a) RMS vibration features of bearing 

Ber1−1 and (b) RMS of wavelet detail coefficients of 

level 4 of bearing Ber1−1 with its fitting curve (red) 
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Vibrations: vertical axis
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Vibrations: horizontal axis
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normalized  
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Monotonocity 1 0.8064 

Trenddability 0.9934 0.8799 

Prognosability 1 1 

Sum of differential 

coefficients (proposed) 

0.0328 0.0138 
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(a) 

 
(b) 

Figure. 8 (a) Identified feature for the bearing Ber1−1 and 

(b) Normalized versions of the identified feature and the 

fitted curve of RMS wavelet detail coefficients of level 4 

 

 
Figure. 9 Results of NFS evolution mode 

 

 
Figure. 10 Example PDF RUL prediction at 15010s of 

Ber1-7 

5. Comparison to previous works 

The percentage error of RUL prediction is 

calculated according to [23] as: 

 

 
Figure. 11 Median RUL predictions for the wavelet RMS 

(blue) and its cumulative form (red) – Ber1-3 

 

%𝐸𝑅 = 100 ×
𝑎𝑐𝑡𝑅𝑈𝐿 − 𝑅𝑈�̂�

𝑎𝑐𝑡𝑅𝑈𝐿
 (7) 

 

where 𝑎𝑐𝑡𝑅𝑈𝐿  is the actual RUL and 𝑅𝑈�̂�  the 

predicted one. A negative value indicates a late 

prediction, while a positive value indicates an early 

prediction.  

To benchmark the proposed method, we present 

in Tables 2 and 3 the results of some published 

works for bearing RUL prediction using the same 

PRONOSTIA datasets. The strategies taken in 

almost works can be summarized in two main 

points: 1) identifying a health indicator then 

extrapolating it until it reaches a predefined 

threshold; 2) using regression to map directly the 

health indicator to RUL prediction.  

The prediction results of the RUL are depicted 

in Table 2. For each testing bearing, the prediction is 

made at the end of test data. The method proposed 

by [26], winner of the IEEE PHM 2012 Prognostic 

Challenge, predicts the RUL using frequency 

analysis-based anomaly detection, degradation 

feature extrapolation, and survival time ratios. [26] 

extracted a prognostic feature by taking averaging of 

five highest absolute acceleration values measured 

in each observation, realized degradation state 

recognition of bearings by anomaly detection when 

there was a change in the frequency of the peak 

vibration in the frequency spectrum and estimated 

RUL based on making comparisons on durations of 

degradation states between the training and the test 

bearings. However, the method has the disadvantage 

of defining the anomaly detection time point based 

on subjective criteria used to calculate the bearing 

survival time ratios. Instead of looking for an overall 

regression model for RUL prediction, [27] proposes 

a RUL prediction framework based on multiple 

health state assessment that divides the entire 

bearing life into several health states where a local 

regression model can be built individually based on 

multiple health state assessment and adopt SVM as 
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Table 2. Performance comparisons of the proposed method with related research on the PRONOSTIA dataset 

 Current 

point (s) 

actual 

RUL 

RUL predicted by 

 [26]  [27]  [28]  [29]  [30]  [10] L10 Proposed method 

Bearing 1_3 18010 5730 3610 5842 5790 3250 5750 5670 15,323 6520 

Bearing1_4 11380 339 68 1109 410 110 320 270 21,953 - 

Bearing1_5 23010 1610 1465 - 6090 1980 0 1430 10323 1210 

Bearing1_6 23010 1460 1533 - 1460 1150 1050 950 10323 1475 

Bearing1_7 15010 7570 7721 - 7560 6220 6090 5360 18323 8275 

 
Table 3. Percentage error %𝐸𝑅 

 %𝐸𝑅 

 [26]  [27]  [28]  [29 ]  [30]  [10] L10 Proposed method 

Bearing 1_3 37 -2 -1,04 43,28 -0,35 1,05 -167 -13,78 

Bearing1_4 80 62 -20,94 67,55 5,60 20,35 -660 - 

Bearing1_5 9 - -278,26 -22,98 100 11,18 -541 24,64 

Bearing1_6 -5 - 19,18 21,23 28,08 34,93 -607 -1 

Bearing1_7 

mean 

-2 

26,6 

- 

 

-7,13 

65,31 

17,83 

34,57 

-19,55 

30,86 

29,19 

19,34 

-142 

423,4 

9,31 

12,18 

 

the technique to implement both health state 

assessment and local RUL prediction. Another work 

was published by [28]. They used wavelet packet-

EMD for feature extraction and SOM for 

constructing the HI. The method shows improved 

errors over previous studies, but requires the 

extraction of approximately one hundred features to 

estimate bearing performance. [29] published an 

RNN-based RUL prediction method constructed by 

selecting and fusing multiple features extracted from 

the time, frequency, and time-frequency domains. 

To improve the accuracy of RUL prediction, a deep 

learning approach was adopted. This method 

demonstrated its superiority over SOM-based HI. 

[30], proposed a new HI (i.e.,WMQE) to predict the 

RUL of bearings. WMQE was constructed by fusing 

a select few weighted features based on correlation 

clustering among the 28 features extracted from the 

bearings. The study showed the best performance 

among existing studies. A most recent study 

published by [10] use image features to construct a 

HI. The CNN model was used as a regression model 

to estimate the HI between 0 and 1. The estimated 

CWTCNN-HI was used for the RUL prediction. A 

deep learning approach was adopted to train the 

CWTCNN-HI model. 

The proposed method took the first strategy, i.e. 

identifying a health indicator then extrapolating it 

until it reaches a predefined threshold, and was 

based essentially on transforming the extracted 

features into their cumulative form to construct the 

HI then using the PF technique as extrapolating tool. 

The results depicted in Table 3 show overall low 

percentage errors, A mean percentage error of 

12.18% was achieved, indicating that the model 

worked accurately and reliably on every tested 

bearing except for the bearing Ber1-4 where major 

deviation was found and which was then discarded. 

Compared to the aforementioned works, the 

proposed method would be a good compromise if 

the goal is to decrease the computational 

requirements with an error that does not increase too 

much. 

6. Conclusion  

As found in the several case studies including 

ours, traditional extracted features have shown 

undesirable behaviors such as fluctuation, non-

monotonicity and abrupt increase at the end of the 

component’s life cycle which impair the prediction 

accuracy. 

The problem of enhancing the RUL was tackled 

with a new way; i.e. we have focusing on shifting 

the degradation behavior from an abrupt change at 

the end of the component’s life cycle to a monotonic 

and smoothed trend shape through the entire 

component’s life cycle reflecting the fault growth 

rather than dealing with projection algorithms in 

attempt to improve the prediction accuracy or 

seeking for extracted features which were 

intrinsically trendables as many works do. 

The first goal of the proposed approach was 

mainly achieved by further pre-processing the 

extracted features transforming them into their 

cumulative form as health indicator. The identified 

health indicator exhibits, this time, a monotonic 

trend that clearly reflects the fault evolution of the 

component, compared to its original form. The 

assessment of the identified health indicator 

qualities was performed by a set of proposed and 

established suitability metrics which show clearly 
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the superiority of the identified features over the 

extracted one. 

As a projection tool, we have adopted the PF 

technique for the prediction of the RUL due to its 

capability to carry nonlinear systems in presence of 

non-Gaussian process/observation noise with the 

NFS predictor that fit perfectly the degradation 

process to simulate the state model evolution.  

 The proposed approach was validated through a 

set of acquired bearing run to failure datasets. The 

results of the RUL predictions are very convincing 

and quite close to the true ones. A mean percentage 

error of 12.18% was achieved, indicating that the 

model worked accurately and reliably on every 

tested bearing. 

The strong point of this method lies in its 

simplicity and simplicity implies less computing 

compared to other studies that invest in accuracy at 

the expense of computing time. This study makes a 

good compromise between accuracy and less 

computing.  

The challenge remaining for the future work is 

to reduce the uncertainty of the RUL prediction. 
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