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Abstract: Indonesia is a country that has a tropical climate, so that many typical tropical climate diseases emerge. 

This disease is caused by viruses and parasites that breed during the dry season or the rainy season. One typical tropical 

disease is measles. This paper discusses the geographical information system (GIS) technology by analyzing spatial 

data modeling to determine the classification of measles-prone areas based on immunization status coverage using the 

Simple Additive Weighting (SAW) and Weight Product Model (WPM) method. Some parameters are used consist of 

immunization status data for multiple attribute decision making (MADM), diseases preventable by immunization 

(PD3I), epidemic and nutritional status of infants. The SAW and WPM method in modeling spatial data analysis 

processes data according to the parameters to determine the scale in comparing all alternative data on the scope of 

classification of immunization status areas, namely: good, average, fair and poor. The test results with the Cohen's 

Kappa Method Consistency Test (MCT) is obtained an average coefficient of 0.41 for consistent measurements for the 

chosen method. It can be concluded that the two measurements using the SAW and WPM methods have a moderate 

for the strength of agreement category, for using in spatial data modeling on the GIS for classification of measles prone 

regions using MADM. 
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1. Introduction 

Measles is one of the diseases that often becomes 

an extraordinary event in the tropics, such as 

Indonesia. The spread of measles is a global problem 

in the health sector. The problems, information on the 

incidence of measles is still based on risk factors for 

immunization status in the measles surveillance 

technique manual. Research studies are still 

descriptive statistics and there are no system 

applications that globally can identify areas prone to 

measles disease based on multi-criteria parameters to 

determine the distribution of vulnerable categories of 

regions.  Measles control in this decade has been done 

by giving complete immunization to every baby or 

child, as a mitigation measure by the public health 

authority [1], measles is one type of disease that 

breeds in regions with tropical climates [2]. Based on 

the World Health Organization (WHO), measles 

incidence rate per million, Indonesia is a country with 

6345 cases at a rate of 24.30. In 2017 the number of 

confirmed 11389 cases increased compared to 2016 

which only reached 7204 confirmed cases [3]. Spatial 

patterns can be used to identify patterns of behavior 

of measles spreading, based on local seasonal factors 

in each region [4]. 

In the beginning, spatial data modeling was done 

by analyzing the needs of geospatial data to be 

processed for decision-making systems. The need for 

spatial data analysis was important in the field of 

research and policy making, provides a description of 

data needs, methods, and illustrations of case studies 

used [5], as well as in the health sector [6, 7] measles 

field [8]. Analysis of spatial data as a mitigation 

measure for disease prevention and control had a very 

important role. This was developed based on the 

conditions of regional climate and social behavior of 

the community, the method of Inverse Distance 
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Weighting (IDW), the functions and weighted 

overlay functions were used to predict the location of 

disease spread [9]. The risk of spreading the disease 

to areas adjacent to the affected area has been carried 

out by using a spatial clustering method. In this 

method, a comparison was made on spatial grouping 

in heterogeneity. The resulting information would be 

beneficial for the Ministry of Health to formulate 

regional coping strategies as hotspots in epidemic 

diseases [10].  

Spatial data modeling was the process of spatial 

analysis results data to determine the decisions and 

policies of stakeholders. The resulting process 

included geocoding and mapping to produce a 

decision-making system [11, 12] through the 

application of artificial intelligence (AI) methods 

[13]. The AI method used to map measles has been 

applied including fuzzy inference system [14], Data 

mining techniques [15], Bayesian mixture model [16], 

hierarchical Bayesian model [17], Bayesian spatial 

modeling [18]. The AI fuzzy inference system 

method is used to determine the symptoms of measles 

based on the input variable rule in the inference 

engine [14]. Artificial Neural Network (ANN), 

Decision Tree Algorithm and Naïve Bayes Classifier 

on Data Mining techniques, are used to predict 

disease trends. One of them is measles based on time 

series database disease [15]. Bayesian Normal 

mixture models were used to estimate the prevalence 

of measles through age factor [16]. Spatial 

hierarchical Bayesian models are used to map the risk 

of measles based on data on the number of measles, 

unemployment, birth rates, education level and age of 

immunization [17]. Bayesian spatial modeling is used 

to determine the mapping of disease populations 

based on disease statistics [18].  

According to previous research, geographical 

information system (GIS) technology was utilized 

through spatial analysis to identify groups of low or 

high for measles, mumps and rubella (MMR) 

immunization levels with spatial, temporal and 

spatial-temporal methods [19]. Bayesian regression 

spatial model was used to identify the risk of measles 

spread at the regional level using data series in 2005-

2014, the results obtained indicate the parameters of 

birth rate, number of measles cases, unemployment 

rate and the proportion of children immunized at 12 

months to be a determinant in prevention of measles 

[17]. Socio-economic disparity had become a 

separate problem in the success of measles 

immunization programs, using multiple spatial 

regression methods mapping is done to identify the 

distribution of immunization coverage based on 

socio-economic inequality. This was a step in 

mitigating the spread of measles virus [20]. Web-

based GIS technology was developed as a web-based 

health surveillance system [21]. However, the 

research that has been done has not used the approach 

and parameters that would be proposed in the 

discussion of this paper, that is, with a multi-criteria 

parameter approach to explore the need for 

supporting factors in the analysis process, interview 

experts in the field of disease prevention and control 

of the Indonesian East Java Provincial Health Office, 

and analyze the behavior of data to determine AI 

methods through mathematical modeling that is 

suitable for producing distribution multi-class 

classification vulnerable area. The results of measles 

data processing based on the AI method are still 

presented in graphical form [14-16], Multi-criteria 

parameters that will be proposed for spatial data 

modeling with SAW and WPM methods in the 

discussion of this paper, have not been used in 

previous studies [17, 18]. 

The purpose of this paper was to propose an 

approach through spatial data modeling to determine 

the distribution of measles-prone areas based on 

immunization status coverage. Multiple attribute 

decision making (MADM) was used in the modeling 

of spatial data because alternative results in regional 

coverage use multi-parameter criteria including 

diseases preventable by immunization (PD3I), 

epidemic and nutritional status of infants taken from 

basic data on the health profile book of East Java 

Province of Indonesia in 2011-2016 obtained at the 

regional level [22-27]. The multi-class classification 

was obtained from the results of spatial data modeling 

using the Simple Additive Weighting (SAW) and 

Weight Product Model (WPM) method in the form of 

immunization status coverage: good, average, fair, 

and poor.  

The spatial analysis produced spatial data 

modeling which was used to determine relationship 

between the basic data to be processed, with the 

parameters used as a factor of an area categorized in 

the classification of measles-prone areas based on 

immunization status coverage. Analysis and design 

of the built system have been described in advance 

according to the needs of spatial data that would be 

processed to become modeling [28]. 

The results of the spatial data modeling with the 

SAW method and WPM method obtained the 

preference value using The Guttman Scale 

Assessment. The alternative good category on the 

SAW method if the Vi preference value is above 

0,875, the average category with the Vi preference 

value between 0,75 to 0,875, the Vi preference value 

between 0,625 to 0.75 for the fair alternative category, 

and poor for the preference Vi below 0,625. The 
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Table 1. Description of the multi-criteria parameter spatial datasets measles diseases 

Spatial  

Datasets 

The Priority 

Value 

 

Weight 

Incidence rate 

(annually) 

 

Category of PD3I 

Level of 

importance 

PD3I 2 0.30 PD3I >12 months a year Poor 1 

PD3I <12 months a year Good 2 

Epidemic 3 0.15 Epidemic > 60 cases a year Poor 1 

Epidemic < 60 cases a year Good 2 

Epidemic = 0 cases a year Very good 3 

Spatial 

Datasets 

Value of the 

priority 

 

Weight 
The status 

Range 

Standard Deviation (sd) 

Level of 

importance 

Nutrition 

Status 

4 0.10 Very good nutrition sd ≥ 2 4 

Good nutrition sd < 2 && sd ≥ -2 3 

Less of nutrition sd < -2 && sd ≥-3 2 

Poor nutrition sd < -3 1 

Infant 

Immunization 

(IM) 

1 0.45 Good immunization IM > 90% 3 

Average immunization IM ≤ 90% && IM ≥ 80% 2 

Fair immunization IM < 80% 1 

 

Guttman Scale Assessment in the WPM method that 

is if the vector value Vi  more than 0,001488 for good 

category, an average category for value Vi between 

1,001274 to 0,001488, the value of Vi 0,00106 to 

0,001274 for the value category Vi and smaller value 

than Vi 0,00106 for the poor category. 

The results of trials which conducted on data 

layer (*.shp) coverage each district for the 657 sub-

district the East Java Province of Indonesia using the 

SAW method and WPM method for 2011-2016 data. 

Mapping the areas prone to measles by the SAW 

method, for the good category obtained 449, 488, 423, 

442, 409, and 432 regions, the average category was 

obtained 113, 79, 94, 134, 108, and 134 regions, the 

fair category was 82, 56, 117, 69, 125, and 77 regions, 

and the poor category obtained 13, 34, 23, 12, 15, and 

14 regions, respectively. In the WPM method, the 

results of mapping for regions with good categories 

were 299, 531, 494, 299, 306, and 315, the average 

category was 340, 92, 140, 337, 333, and 324 regions. 

from 12, 7, 13, 8, 5, and 5, and 6, 27, 10, 13, 13, and 

13 in the number of regions in the poor category, 

respectively.  

The results of this study could be part of disaster 

mitigation measures to prevent the spread of measles 

[1, 29] in developing countries with a tropical climate. 

The mapping results could provide a classification of 

prone red areas based on the coverage of poor 

immunization status. Policy makers such as the 

Health Office could make preventive measures based 

on the results of the classification. 

2. Spatial datasets 

Spatial data sets are used to classify parameters 

that affect the spread of measles [8]. Spatial datasets 

consist of two components: spatial data and attribute 

data. Both become parameters to determine the 

classification of measles-prone areas based on 

immunization status coverage factors as in Table 1, 

including PD3I, epidemic, nutritional status, and 

infant immunization.  

In each spatial datasets the weight value was 

given, to determine the level of importance/influence 

on the classification produced in each parameter 

criterion [30, 31], This weighting used the 

fuzzification process, consisting of fuzzy sets 

indicators in giving a level description in the 

classification results [32]. 

3. Methods 

Decision-making systems that involve GIS 

spatial data could be completed with MADM that be 

able to carry out integration in managing spatial data 

and attribute data to perform spatial data analysis [33]. 

Analysis of spatial data in the discussion of this paper 

resulted from spatial data modeling. the spatial 

datasets described in Table 1 be used as baseline data 

to produce a classification of measles-prone areas 

based on immunization status coverage. 

The process stages in spatial data modeling for 

classification of tropical disease prone areas based on 

immunization status coverage were shown in the 

flowchart Fig. 1. This stage gave a picture of how the 

system works. Starting from inputting or recording of 

all data needs, then the process of modeling spatial 

data by determining the AI method that matches the 

behavior of the data obtained from the recording 

process, and the final process was to display the 

results of spatial data modeling in accordance with 

the functions and objectives to be achieved in GIS 

software development.
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Joint layer *.shp for 2011 

to 2016 year

Spatial Data Modeling 

(Measles *.shp layer)

Start

Spatial Datasets (*.shp):

- PD3I

- Epidemic

- Nutrition Status

- Infant Immunization

Vi   0,875Good

Vi   0,75 && Vi < 0,875Average

Vi < 0,625Poor

True

False

True

False

End

Vi   0,625 && Vi < 0,75Fair

False

True

Determine the ranking value to 

classify using Guttman scale:

I=R/K

True

Vi   0,001488 Good

Vi   0,001274 && Vi < 0,001488 Average

Vi < 0,00106 Poor

True

False

True

False

Vi   0,00106 && Vi < 0,001274 Fair

False

True

True

Method Consistency Test 

Cohen's Kappa

 
Figure. 1 Flow of spatial data modelling with SAW and WPM method 

 

The first step, defining the spatial data 

requirements and layer attribute data in the spatial 

shapefile dataset (*.shp). The dataset includes a map 

of the East Java Province of Indonesia consisting of 

districts in each sub-district, including PD3I, 

epidemic, nutrition status, and infant immunization. 

The data used was qualitative [34] which was then 

cited [35] in each district with the concept of the 

overlay layer. This stage served to merge layers from 

31 districts with data layers per sub-district to become 

a single layer.  

The overlay layer results in one layer of measles 

(measles*.shp) for each year. This was called spatial 

interpolation. The SAW and the WPM method 

through the MADM method would process the 

results of the regulation's layer to get the preference 

value of Vi. The Guttman method was used for 

classification of values with immunization status 

coverage categories with good, average, fair, and 

poor conditions in each sub-district. 

The coverage of immunization status for the 

distribution of measles with the good category can be 

obtained if the Vi value increases compared to the 
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previous year. It can be concluded that the state of 

immunization status is reached or exceeded the target, 

indicated by the description of the green area. In 

regions with average immunization status coverage 

occurs if an area with immunization status reaches the 

minimum target which is represented by an area of 

orange color, where the value of Vi falls from the 

condition of the previous year. It could be seen from 

the value of Vi for the classification of regional 

categories with good immunization status. Fair 

classification occurs if in a region the value of Vi falls 

compared to the previous year in the area with the 

average category. This happened because the 

immunization target did not reach the minimum 

target with an orange description of the area. Regions 

with a Vi value below the average condition of good, 

average, and fair immunization status coverage, 

where the immunization target was not achieved, by 

mapping the red area. 

3.1 Multiple attribute decision making (MADM) 

MADM is part of the Multi-criteria decision 

making (MCDM) decision-making system, as well as 

multi-objective decision making (MODM) [36]. 

MODM was used for decision making that be 

sustainable, as in computing programming [37]. 

MADM and MCDM were used for discrete retrieval, 

where the alternative of the support system of the 

decision was predetermined [37].  

The Simple Additive Weighting Method (SAW) 

and the Weight Product Model (WPM) method is part 

of a decision-making system using multi-parameter 

criteria with a multiple attribute decision making 

(MADM) approach [38]. MADM describes the 

parameters/criteria that will be used to determine the 

best alternative based on several appropriate criteria, 

the characteristics of decision making using the 

MADM system will describe the attribute 

requirements in the spatial analysis process, make the 

decision weight from the data that has been described 

Table 1 to form a decision matrix produced [37, 39, 

40].  

Approach to the SAW method by giving a score 

on each alternative produced to be multiplied by the 

value weight for each parameter attribute [41], with 

the following steps: 

1. The SAW method produces the final value of Vi 

in the Eq. (1) to obtain an alternative value from 

the classification that will be generated in the 

decision-making system [40]. 

 

𝑉(𝐴𝑖) = 𝑉𝑖 = ∑ 𝑤𝑗𝑣𝑗(𝑥𝑖𝑗),      𝑖 = 1,2, … , 𝑚

𝑛

𝑗=1

 (1) 

 

where V(Ai)=Vi is the alternative result value in 

the classification generated in each attribute Ai, 

this value is obtained from the calculation of the 

preference value vj(xij) on V(Ai) and the wj weight 

in each parameter. The value of V(Ai) can also be 

calculated using Eq. (2), where rij is normalization 

from the calculation of the maximum value of the 

data on the parameter attribute. 

 

𝑉(𝐴𝑖) =
∑ 𝑤𝑗𝑟𝑖𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

 (2) 

 

2. Calculating the preference value vj(xij) on V(Ai) for 

each parameter attribute by finding the maximum 

value in each parameter attribute value using Eq. 

(3) and normalizing the maximum value obtained 

using the Eq. (4) [40]. 

 

𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐴𝑖𝑗) (3) 

 

where, the max value (Aij) is obtained from the 

parameter attribute, in this paper the parameter 

attribute value is described in Table 1 with the 

process on the spatial data input data *.shp as 

described in Fig. 1 which refers to Eq. (4). 

 
𝑚𝑎𝑥(𝑎𝑖) = 𝑚𝑎𝑥(𝑎𝑖𝑗) 

𝑚𝑎𝑥(𝑏𝑖) = max(𝑏𝑖𝑗) 

𝑚𝑎𝑥(𝑐𝑖) = 𝑚𝑎𝑥(𝑐𝑖𝑗) 

𝑚𝑎𝑥(𝑑𝑖) = 𝑚𝑎𝑥(𝑑𝑖𝑗) 

 

 

(4) 

 

where, to declare parameter attributes *.shp 

spatial dataset on all data aij, max (ai) for PD3I, 

max (bi) for epidemic, max (ci) for nutritional 

status, and max (di) for infant immunization. 

Normalize the value of each parameter attribute 

using Eq. (5), where Xj is the data value that is j 

and max is the value obtained from the calculation 

in Eq. (3) [40]. 

 
𝑟𝑖𝑗 = 𝑋𝑗/ max (5) 

 

In this spatial data modeling, normalization values 

refer to Eq. (5) with the implementation of spatial 

datasets using Eq. (6). 

 

𝑟(𝑎𝑖) =
𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖𝑗)
 ;  𝑟(𝑏𝑖) =

𝑏𝑖

𝑚𝑎𝑥(𝑏𝑖𝑗)
 

𝑟(𝑐𝑖) =
𝑐𝑖

𝑚𝑎𝑥(𝑐𝑖𝑗)
 ;  𝑟(𝑑𝑖) =

𝑑𝑖

𝑚𝑎𝑥(𝑑𝑖𝑗)
 

 

 

(6) 

 

3. Calculates the preference value vj(xij) on V(Ai) for 

all parameter attributes using Eq. (7) [40]. 
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𝑉𝑖 = ∑ 𝑤𝑗𝑟𝑖𝑗 ,       𝑖 = 1,2, … , 𝑚

𝑛

𝑗=1

 
 

(7) 

 

where, wj is the weight of the parameter attribute 

value and rij is the normalization value obtained in 

Eq. (5). The discussion in the trial in this paper 

uses Eq. (8) based on a literature study on Eq. (7). 

 
𝑣(𝑎𝑖) = 𝑁𝑜𝑟𝑚(𝑎𝑖) 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡(𝑎𝑖) 

𝑣(𝑏𝑖) = 𝑁𝑜𝑟𝑚(𝑏𝑖) 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡(𝑏𝑖) 

𝑣(𝑐𝑖) = 𝑁𝑜𝑟𝑚(𝑐𝑖) 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑖) 

𝑣(𝑑𝑖) = 𝑁𝑜𝑟𝑚(𝑑𝑖) 𝑥 𝑤𝑒𝑖𝑔ℎ𝑡(𝑑𝑖) 

𝑉𝑖 =  𝑣(𝑎𝑖) + 𝑣(𝑏𝑖) + 𝑣(𝑐𝑖) + 𝑣(𝑑𝑖) 

 

 

(8) 

 

Approach to the WPM method use multiplication 

to connect the attribute rating. rating each attribute 

must be raised first with the weight of the attribute 

[37, 42]. The steps of the WPM method normalize to 

find out the alternative preferences of Ai in Si vectors, 

according to Eq. (9) [37, 42]. 

 

𝑆𝑖 = ∏ 𝑥𝑖𝑗
𝑤𝑗

𝑛

𝑗=1

 (9) 

 

where, S variable is an alternative preference and is 

defined as a vector. Xij variable is the variable value 

from the alternative on each attribute. The criteria or 

sub-criteria weight values are accommodated in the 

Wj variable. The N variable is used to represent the 

number of criteria in the multi-criteria parameters 

declared. Variable i is the desired alternative value, 

and variable j is the criteria value in the data. The 

value of the ∑Wj variable is 1 with the rank positive 

for the profit attribute, and negative for the cost 

attribute. The relative preference of each alternative 

is calculated using Eq. (10) [37, 42]. 

 

𝑉𝑖 =
∏ 𝑋𝑖𝑗

𝑤𝑗
 𝑛

𝑗=1

∏ (𝑋𝑗
∗) 𝑛

𝑗=1

 
 

(10) 

 

where, Vi variable is an alternative preference defined 

as a vector with i-th data. Determine the weight value 

for each parameter used to set the priority value on 

the existing parameters that are accommodated in the 

Bpre variable, do the sum for all priority values 

Tbpre=Bprea+Bpreb+…n. Calculating the value of 

variable W, with the weight value in variable B 

divided by the number of values of the overall 

priority weight W=BA/Tb. Calculating the value of 

the variable S on each weight value in variable B is 

raised by the result of the variable W, with S=Ba^Wa. 

Calculating the value of Vs  by multiplying all values 

in variable S, with Vs=SaxSb x…n. calculating the total 

vector on variable V or Tvs by adding up all the values 

of Vs, with Tvs=V1+V2+V3+...+Vn, then the variable 

value of V= Vsa/Tvsa. 

3.2 The Guttman scale 

Measurement of the classification values 

generated in this paper uses the Guttman scale [43], 

This scale is the basis of measurement to draw 

conclusions on qualitative data [44], and is used to 

provide an estimate of the value of the classification 

results in an intervention value that is still ambiguous 

because of uncertainty [45]. In the type of dataset that 

uses a score/weight in the analysis process, provides a 

value based on the uncertainty factor of the variable 

class described, it can be measured using the Guttman 

scale [46] in the Eq. (11). 

 

𝐼 =
𝑅

𝐾
                                                                  (11) 

 

where I is the result of the interval value obtained 

from the variable R, is the range of data values and 

variable K with the number of alternative 

classifications that will be generated. 

In the discussion of this paper, the variable value 

R is obtained from the range of values between the 

maximum value of Vi and the minimum value of Vi. 

The K variable is the number of alternative 

classifications namely good, average, fair, and poor 

which refers to flow Fig. 1 and Table 2. Whereas, the 

determination of the scale for determining the 

classification value criteria for measles-prone areas 

based on the status of immunization coverage using 

Eq. (12) with SAW method and WPM method using 

Eq. (13). 

 

{

𝑔𝑜𝑜𝑑, 𝑖𝑓 𝑉𝑖 ≥ 0,875
𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑖𝑓 𝑉𝑖 ≥ 0,75 𝑎𝑛𝑑 𝑉𝑖 < 0,875

𝑓𝑎𝑖𝑟, 𝑖𝑓 𝑉𝑖 ≥ 0,625 𝑎𝑛𝑑 𝑉𝑖 < 0,75
𝑝𝑜𝑜𝑟, 𝑖𝑓 𝑉𝑖 < 0,625

 (12) 

  

{

𝑔𝑜𝑜𝑑, 𝑖𝑓 𝑉𝑖 ≥ 0,001488
𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑖𝑓 𝑉𝑖 ≥ 0,001274 𝑎𝑛𝑑 𝑉𝑖 < 0,001488

𝑓𝑎𝑖𝑟, 𝑖𝑓 𝑉𝑖 ≥ 0,00106 𝑎𝑛𝑑 𝑉𝑖 < 0,001274
𝑝𝑜𝑜𝑟, 𝑖𝑓 𝑉𝑖 < 0,00106

 (13) 
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Table 2. The Guttman scale assessment 

SAW Method WPM Method 

𝑅 = 𝑉𝑖𝑚𝑎𝑘𝑠
− 𝑉𝑖𝑚𝑖𝑛

= 1 − 0,5 = 0,5 

𝐾 = 4  

𝐼 =
0,5

4
= 0,125 

𝑅 = 𝑉𝑖𝑚𝑎𝑘𝑠
− 𝑉𝑖𝑚𝑖𝑛

= 0,001702 − 0,000846 = 0,000856 

𝐾 = 4  

𝐼 =
0,000856

4
= 0,000214 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑔𝑜𝑜𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    =  ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 − 𝐼 

    = 1 − 0,125 = 0,875 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎      
    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑔𝑜𝑜𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,875 − 0,125 = 0,75 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑓𝑎𝑖𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,75 − 0,125 = 0,625 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑝𝑜𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑓𝑎𝑖𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,625 − 0,125 = 0,5 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑔𝑜𝑜𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    =  ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 − 𝐼 

    = 0,001702 − 0,000214 = 0,001488 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑔𝑜𝑜𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,001488 − 0,000214 = 0,001274 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑓𝑎𝑖𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,001274 − 0,000214 = 0,00106 

𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑝𝑜𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

    = 𝑎𝑠𝑠𝑒𝑠𝑚𝑒𝑛𝑡 𝑓𝑎𝑖𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 − 𝐼 

    = 0,00106 − 0,000214 =0,000846 

3.3 Method consistency test (MCT) 

Method Consistency Test Cohen’s Kappa is used 

to test consistency in measuring two methods, this 

measurement can be done for qualitative data based 

Eq. (14) [47]. 

 

𝐾 =
Pr(𝑎) − Pr (𝑒)

1 − Pr (𝑒)
 (14) 

 

where, the variable K is the coefficient of the results 

of the measurement between methods. The variable 

Pr(a) is the percentage of the number of 

measurements that are consistent in making 

comparisons between methods, and the variable Pr(e) 

is the percentage change. 

Range of coefficient values in variable K [47], 

where if the variable value K <20,  the value K 0,21 

to 0,40, the value K is 0,41 to 0,60, the value K= 0,61 

to 0,80, dan K 0,81 to 1,00, then strength of 

agreement are poor, fair, moderate, good, and very 

good, respectively. 

4. Results and discussion 

From the results of trials that have been carried 

out in 657 sub-districts in 38 regencies in 2011-2016 

data obtained from the East Java Provincial Health 

Office of Indonesia [22-27]. The results of the 

modeling spatial data on the number of districts with 

categories of classification of measles-prone areas 

based on the status of immunization coverage with 

MADM in the SAW method as in Table 3, Fig. 2 and 

WPM method as in Table 4, Fig.3. 

 

Table 3. Distribution of mapping classification results 

with the SAW method 

Class 
Sub-District 

2011 2012 2013 2014 2015 2016 

Good 449 488 423 442 409 432 

Average 113 79 94 134 108 134 

Fair 82 56 117 69 125 77 

Poor 13 34 23 12 15 14 

 

Table 4. Distribution of mapping classification results 

with the WPM method 

 

The results of the SAW method in the area with 

more good categories were 66.5 (15%) compared to 

the results of the WPM method. The area in the 

average category for the results of the WPM method 

is 58% greater than the results of the SAW method. 

Regions with a fair category have more than 90% of 

the results of the WMP method rather than the results 

of the SAW method, and more than 26% of the results 

of the SAW method for regions with the poor 

category rather than the results of the WPM method. 

Class 
Sub-District 

2011 2012 2013 2014 2015 2016 

Good 299 531 494 299 306 315 

Average 340 92 140 337 333 324 

Fair 12 7 13 8 5 5 

Poor 6 27 10 13 13 13 
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Figure. 2 The results of the MADM classification with 

the SAW method 

 

 
Figure. 3 The results of the MADM classification with 

the WPM method 

 

The Results of the MADM Classification with the 

SAW Method in Fig.2. The layer value of datasets 

PD3I is 1 incidence rate (annually) to months a year, 

epidemic is 0 annually to months a year, nutrition 

status is good, and number of infant = 152 infants 

with infant in immunization status is 143 infant for 

94,079% infant immunization status, based on the 

level of importance referring to Table 1, the values 

are 2, 3, 3, and 3, so a =2 ; b =3; c =3; d=3, to get 

the max value in Eq. (3), the data input process is 

carried out based on Eq. (4), namely: 𝑚𝑎𝑥(𝑎𝑖) =
2;𝑚𝑎𝑥(𝑏𝑖) = 3; 𝑚𝑎𝑥(𝑐𝑖) = 3; 𝑚𝑎𝑥(𝑑𝑖) = 3. 

Normalization of the max value based on the 

theory in Eq. (5), the normalized value is obtained by 

dividing the value of the parameter variable with the 

max value of each variable referring to Eq. (6), 

namely: 𝑟(𝑎𝑖) =
2

2
= 1  ; 𝑟(𝑏𝑖) =

3

3
= 1  ; 𝑟(𝑐𝑖) =

3

3
= 1 ; 𝑟(𝑑𝑖) =

3

3
= 1. 

The preference value is obtained from the 

reference in Eq. (7), which is multiplying between 

normalization value and weight in each parameter 

variable in Table 1 using Eq. (8). 

𝑣(𝑎𝑖) = 1 ∗ 0,30 = 0,3 ; 𝑣(𝑏𝑖) = 1 ∗ 0,15 = 0,15; 

𝑣(𝑐𝑖) = 1 ∗ 0,10 = 0,1 ; 𝑣(𝑑𝑖) = 1 ∗ 0,45 = 0,45 

Then, the final value of the preference is: 

𝑉𝑖 = 𝑣(𝑎𝑖) + 𝑣(𝑏𝑖) + 𝑣(𝑐𝑖) + 𝑣(𝑑𝑖) 

     =  0,3 + 0,15 + 0,1 + 0,45 = 1 

Based on Eq. (12) which refers to Eq. (11), the value 

of Vi is 1 entered in the range of good classification 

category in the area with green mapping, where the 

value of Vi is greater than 0.875. 

Testing with the WPM method is based on Eq. 

(9) and Eq. (10) on Fig. 3 is done on the same spatial 

datasets as the SAW method. Epidemic scores were 

0, PD3I was 1, the category of nutrition status was 

good, and the number of infants in the Subdistrict was 

152 infants with immunization status of 147 infants 

or 94,079% of infants with immunization status. The 

level of importance includes 3, 2, 3, and 3, 

respectively. The priority value for each parameter 

includes 2, 3, 4, and 1, respectively. The number of 

priority value in the TbPre is 10, where the weight 

value in the W variable for each parameter is 0.2, 0.3, 

0.4, and 0.1, respectively. Calculation of the value of 

Vector in the S variable for each parameter variable, 

namely is 1,390389, 1,148698, 1,551846, and 

1,116123. Vs variable value is obtained by 

multiplying all TV values is 1670,478685, then the 

total Vs obtained from all calculated data is 2,766324. 

The value of vector V by dividing the value of Vs by 

the value of TVs, then the value of V is 0,001656, 

based on Eq. (13) and flow on Fig. 1, then the 

classification of regions with good categories 

The test results using Cohen's Kappa for the 

feasibility of using the SAW method and the WPM 

method for modeling spatial data on GIS for 

classification of measles-prone areas using MADM, 

obtained kappa coefficients from the K variable -0.42, 

0,67, 0,519367011, 0,15, 0,215627097, and 

0,253130142 for 2011-2016, respectively. 

5. Conclusion 

This paper examines the MADM technique in 

classifying multi-criteria parameters to produce 

spatial data modeling in its spatial process. The 

methods in MADM allows the results of comparative 

mapping in accordance with the level of importance, 

weight, and order of priority given to each of the 

parameter's multi-criteria variables in providing 

spatial sensitivity analysis.  

This study resulted in the preference value of Vi 

in the SAW method and WPM method by 

considering quantitative data and the calculation of 

the Guttman scale classification parameter value 

scale, this matter becomes very important in the 

decision-making system as a step-in planning to 

provide classification in identifying areas affected by 

tropical diseases in measles-like the results in Eq. (12) 

and Eq. (13).  

This finding provides a new direction for using 

the MADM technique with the SAW and WPM 

method as part of the planning for mitigation 

measures, this finding encourages further research to 
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use other quantitative data to influence the results of 

spatial data modeling. 

Regions that are classified as fair or poor are 

important for policymakers in the field of 

surveillance and immunization of the Health Office 

to take anticipatory steps as a form of mitigation 

measures [1] of disasters causing epidemics of 

measles. The results of this spatial data modeling 

answer the role of quantitative data types that can be 

used as a reference in displaying a mapping to 

produce a classification of vulnerable areas as part of 

decision making, for example providing 

understanding to communities in fair and poor 

categories to be more caring through self-awareness 

in order to immunize areas with high epidemics can 

be choked. This is important because prevention is 

not only the responsibility of the health sector, but the 

role of the socio-economic environment is also a 

driver of the spread of measles infectious diseases [7]. 

Based on the discussion on testing data with 

MTC, it was concluded that the SAW method and the 

WPM method can be used for time series data types 

in spatial data modeling that do not have 

measurement data in the field. Results from MTC 

have a moderate category strength of agreement for 

use in spatial data modeling on the GIS for 

classification of measles-prone regions using MADM. 

They have results that are not much different. 

Further research that can be developed is by 

collaborating the MADM method and data mining 

classification methods such as naïve Bayesian or 

decision tree, this function is to determine the 

comparison of the results of the classification given 

in each type of method used. Comparing the results 

of the classification of each method to be tested the 

level of accuracy of the method used through the 

method induction test. 
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