
Received: December 10, 2018 31

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Modified Alpha++ Algorithm for Discovering the Hybrid of Non-Free Choice and

Invisible Task of Business Processes

Lukman Hakim1 Riyanarto Sarno1* Kelly R. Sungkono1

1Department of Informatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

* Corresponding author’s Email: riyanarto@if.its.ac.id

Abstract: Process discovery is a concern in analyzing business processes. Process discovery methods handle many

aspects, e.g. a hybrid of non-free choice and invisible task. A hybrid of non-free choice and an invisible task is a

condition that needs additions of invisible tasks in non-free choice relationships. Process discovery methods, e.g.

Alpha++, Alpha#, Graphical method, Time-based Alpha Miner, cannot discover the hybrid of non-free choice and

invisible task, especially invisible tasks in the overlapping pattern. To modeling a hybrid of non-free choice and

invisible tasks, this research proposes an algorithm of adding invisible tasks, including invisible tasks of overlapping

pattern, automatically in the event log and processing the event log with the rules of Alpha++ algorithm. To test the

proposed algorithm, namely Invisible Task Log with Alpha++, the experiment compares it with Alpha++, Alpha#,

Graphical Method, Time-based Alpha Miner, Hidden Markov Model-Parallel, and Coupled Hidden Markov Model-

Invisible Task. The experiment results proved that Invisible Task Log with Alpha++ algorithm obtains higher

precision than the obtained precision by comparison methods.

Keywords: Event log, Invisible task, Non-free choice, Process discovery

1. Introduction

Process models have been widely utilized for

measuring the performance of processes in the

company and pointing issues related with those

processes [1]. Several areas of issues are deceptions

[2-3], communications [4], and environments [5].

Process models can be drawn manually by analysts

or can be generated based on the event logs. Many

kinds of research, such as Ontology Invisible Task

[6], Hidden Markov Model-Parallel (HMM-Parallel)

[1], Coupled Hidden Markov Model-Invisible Task

(CHMM-Invisible Task) [7], Alpha# [8], Alpha++

[9], Graphical method [10], and Time-based Alpha

Miner [11] already suggested methods for

discovering process models.

Most activities in a business process are run in

sequence. Thereafter, some activities are run in a

parallel way [12]. During activities execution, there

are several occurring problems, which are invisible

tasks and a hybrid of non-free choice and invisible

tasks. The primary task of invisible prime tasks is

the main task that does not appear in the activity log,

but it is added to illustrate the process clearly [12].

A hybrid of non-free choice and invisible tasks is a

condition that needs invisible tasks to detect a non-

free choice relationship.

Alpha++ algorithm [9] detects non-free choice

relation by describing activities of selected relation

that depend on other activities. However, in the case

of a hybrid non-free choice and invisible tasks,

Alpha++ cannot discover a non-free choice

relationship because this algorithm cannot detect

invisible tasks. There is an algorithm that detects

invisible tasks to describe the process completely,

i.e. Alpha# algorithm [8]. The kinds of invisible task

that can be detected by this algorithm are SKIP,

REDO, and SWITCH. However, Alpha# cannot

detect invisible tasks in overlapping patterns and

also cannot detect non-free choice construct.

Besides Alpha++ and Alpha#, other research

proposes several approaches to modeling business

processes. The first approach is Graphical Method

[10]. Graphical Method handles parallel cases of

Received: December 10, 2018 32

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

processes. The second approach is Time-Based

Alpha Miner [11]. Time-Based Alpha Miner is a

modification of the Alpha Miner [13] algorithm that

considers the sequence of activities and time interval

information from the event log to find parallel

business process models. Afterward, HMM-Parallel

[1] is another approach that uses the Baum-Welch

method and the double time-stamped event log to

discover parallel relationships. The development of

HMM-Parallel [14] has been able to find models of

processes related to the invisible task, but have not

been able to handle non-free choices. To sum up,

these four approaches cannot model the hybrid of

non-free choice and invisible tasks, especially

invisible tasks in the overlapping pattern.

To overcome the inability of those algorithms,

this study proposes an algorithm, namely Invisible

Task Log with Alpha++. Invisible Task Log with

Alpha++ algorithm adds invisible tasks, including

invisible tasks in overlapping patterns by adding it

automatically to the existing event log. This

algorithm proposes rules to find the location of

additional invisible tasks in the event log. Then, the

invisible tasks are inserted into the event log based

on the discovered location. The obtained event log is

called an event log with additional invisible tasks.

Then, the event log with additional invisible tasks is

processed by Alpha++ to discover a process model

which has a hybrid non-free choice and invisible

tasks.

To test Invisible Task Log with Alpha++

algorithm, this experiment compares this algorithm

with Graphical Method [10], Time-Based Alpha

Miner [11], HMM-Parallel [1], and CHMM-

Invisible [14]. The experiment uses an event log that

has a condition of a hybrid non-free choice and

invisible tasks and has a condition of invisible tasks

in overlapping patterns. SKIP invisible task and

overlapping patterns are the pattern of invisible

tasks which is used in this study.

To reaffirm, this study does the following things,

which are:

1) Proposing an algorithm of discovering a

hybrid non-free choice and invisible task

that creates rules to adds invisible tasks in an

event log automatically and processes the

event log with Alpha++;

2) Comparing the algorithm, namely Invisible

Task Log with Alpha++, with other

comparison methods to test the ability of

Invisible Task Log with Alpha++.

2. Research method

The research method explains the studies that

supports the proposed algorithm, namely Invisible

Task Log with Alpha++.

2.1 Event log

An event log contains a set of information

concerning the processes, such as the performer of

tasks, the name of the tasks, and the starting period

or ending period of tasks [2]. That information can

be used to build an improved system. The

techniques of process mining are helpful to

analysing the information since they collect

information about the actual events in accordance

with the event log of an organization [12].

The event log examples are shown in Table 1

and Table 2. There are three cases and three traces

on Table 1 while there are seven cases and seven

traces on Table 2. Cases are activity flows that are

recorded in the log and traces are variants of cases.

Because each case in those tables has different

sequence of activities, the number of traces is the

same with the number of cases. Then, in the log,

CaseId describes the identity of the case and

TaskName describes the running tasks.

Table 1. Log of Fig. 2

CaseId TaskName CaseId TaskName

P01 ActA P02 ActB

P01 ActB P02 ActE

P01 ActC P03 ActA

P01 ActE P03 ActD

P02 ActA P03 ActE

P02 ActC

Table 2. Log of Fig. 3

CaseId TaskName CaseId TaskName

P01 ActA P04 ActD

P01 ActB P04 ActF

P01 ActC P05 ActA

P01 ActF P05 ActD

P02 ActA P05 ActB

P02 ActB P05 ActF

P02 ActD P06 ActA

P02 ActF P06 ActD

P03 ActA P06 ActC

P03 ActC P06 ActF

P03 ActB P07 ActA

P03 ActF P07 ActE

P04 ActA P07 ActF

P04 ActC

Received: December 10, 2018 33

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Figure.1 A model of invisible task in skip condition by YAWL

Figure.2 A model of invisible tasks in overlapping pattern XOR gates and AND gates

2.2 Non-free choice

Non-free choice contains a mixture of

synchronization and choice. The non-free choice is

marked by additional arrows that show an activity

appointed by the arrowhead will be executed if an

activity appointed by the nock of the arrow is

executed. Alpha++ algorithm [11] is able to model

non-free choice. However, if there are specific

conditions, such as a skip condition, Alpha ++ have

difficulty to model non-free choice. Those specific

conditions can be handled by adding invisible tasks.

Therefore, this study provides a technique of adding

invisible tasks in the event log for handling those

specific conditions.

2.3 Invisible task in the case of skip and

overlapping pattern

Semantic measurements according to Gomaa

and Fahmy [15] are classified into three different

groups, namely String-based similarity measure,

Corpus-based similarity measure, and Knowledge-

based similarity measure. Semantic measurements

related to the utilization of information contained in

wordnet are included in the Knowledge-based

similarity measure group. The Knowledge-based

similarity measure group is divided into two

different parts, namely the semantic similarity

measure and the semantic relatedness measure [15].
An invisible task is a task that exists in the

model process for discovering the real case. It is

difficult to be detected because the task have never

been recorded in the event log. In the real case, an

invisible task is justified, because a condition

enables to skip several activities. Therefore, a

process model is required to model invisible tasks.

Alpha++ algorithm and Alpha# algorithm has

the same problem in modeling cases that have skip

condition or need parallel overlapping. The result of

Alpha++ algorithm and Alpha# algorithm are

different from the initial model when modeling

those cases. To fit the resulting model with the

initial model, it is necessary to add invisible tasks

when processing those cases.

Skip condition is a condition wherein some

activities are skipped deliberately. Fig. 1 illustrates

the condition through the activity in the trace. Skip

condition in Fig. 1 occurs when activity ActA goes

directly to activity ActD without going through

activities ActB and ActC. The black box in Fig. 1

denotes the invisible task for showing skip condition.

The overlapping pattern is a condition when two

patterns are modeled without any activities between

them. The patterns are XOR gates with AND gates

and XOR gates with OR gates. The XOR gate is

needed in a relationship that only chooses one path.

The OR gate describes a condition when the

executed path can be chosen flexibly while the AND

gate signifies all paths must be executed

simultaneously [1].

Fig. 2 illustrates the usage of invisible tasks in

the overlapping pattern XOR gates with AND gates.

This figure is modeled using YAWL. Triangles in

Received: December 10, 2018 34

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

box ActA and box ActE denote XOR gates and

triangles in invisible tasks (black boxes) denote

AND gates. In Fig. 2, invisible tasks of parallel

overlapping is needed because only two chosen

paths, ActA → ActD → ActE and ActA → ActB,

ActC → ActE. The chosen paths are based on the

log in Table 1. For the trace with first CaseId, the

subsequent activity of ActA is activity ActB and

then ActC. While on a trace with the second caseId,

the sequence of activities is activity ActA, then

activity ActC, and then activity ActB. In the last

trace, activity ActC and ActB are not executed, but

activity ActD is executed after activity ActA. This

condition needs invisible task in parallel overlapping

XOR gates with AND gates.

Fig. 3 illustrates the usage of invisible tasks in

the overlapping pattern XOR gates with OR gates.

In contrast to Fig. 2, triangles in invisible taks

denote OR gates. Fig. 3 is discovered by following

the log in Table 3. All cases on the table declare

ActB, ActC, and ActD can be chosen flexibly while

ActE can be chosen if those three activities are not

executed. OR gates illustrate the condition of ActB,

ActC, and ActD while XOR gates illustrate the

condition of ActE. In order for both kinds of gates

can be drawn in the model, invisible tasks are added.

Those invisible tasks are black boxes in Fig. 3.

2.4 Hybrid on non-free choice and invisible task

In Fig. 4, alpha++ algorithm cannot discover a

non-free choice relationship because this algorithm

cannot detect invisible tasks. This algorithm can

detect invisible tasks when invisible tasks are added

to overlapping patterns automatically in the event

log. Fig. 5, is the result of a hybrid non-free choice

and overlapping pattern with the addition of

invisible tasks.

2.5 Fitness and precision

Fitness measures how many cases that are

captured in a model, meanwhile precision measures

how many traces from the model that are captured in

the log. Fitness is obtained from a number of cases

discovered on the model divided by a number of

cases contained in the log while precision is

obtained from a number of traces recorded in the log

divided by a number of traces contained in the

model. For example, Fig. 2 is a model of a case with

an overlapping pattern of XOR gates and AND gates

with the inserted invisible task. In Fig. 2, the traces

discovered from the model are [ActA, ActB, ActC,

ActE], [ActA, ActC, ActB, ActE] and [ActA, ActD,

ActE] so that the number of traces of the model is

three. While the number of traces contained in the

model is also three, so the fitness value of the model

is 3/3=1.0 with a precision value of 3/3 =1.0. The

equation used for fitness is shown in Eq. (1),

whereas precision is shown in Eq. (2).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑛(𝐶𝑎𝑠𝑒_𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑_𝑖𝑛_𝑀𝑜𝑑𝑒𝑙

𝑛(𝐶𝑎𝑠𝑒_𝑜𝑓_𝐿𝑜𝑔)
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛(𝑇𝑟𝑎𝑐𝑒_𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑_𝑖𝑛_𝐿𝑜𝑔

𝑛(𝑇𝑟𝑎𝑐𝑒_𝑜𝑓_𝑀𝑜𝑑𝑒𝑙)
 (2)

Figure.3 A model of invisible tasks in overlapping pattern XOR gates and OR gates

Received: December 10, 2018 35

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Figure.4 The model of case hybrid non-free choice and overlapping invisible task by Alpha++ or Alpha# Algorithm

Figure.5 The model of case hybrid non-free choice and overlapping invisible task by Invisible Task Log with

Alpha++

Figure.6 Flowchart proposed algorithm (Invisible Task

Log with Alpha++)

2.6 Flowchart of the proposed algorithm

A workflow of Invisible Task Log with Alpha++

algorithm refers to Fig. 6. Firstly, original event logs

are processed using the algorithm. The algorithm

detects and adds additional invisible tasks in the

event log. After that, the new event log is modeled

by Alpha++ algorithm that is already existed in

Prom 6.6. The new event log is a generated event

log by Invisible Task Log with Alpha++ algorithm.

The event log is in excel format. Thus, it must be

converted to MXML format for Alpha++ algorithm

in Prom 6.6 to be able to model the log.

2.7 Pseudocode of the proposed algorithm

A pseudocode of Invisible Task Log with

Alpha++ refers to Table 3. The algorithm detects the

locations for the added invisible tasks in the log.

There are 16 lines in the pseudocode to determine

invisible tasks, especially invisible tasks of case skip

activity and invisible tasks of case overlapping

pattern. First, Invisible Task Log with Alpha++

algorithm counts a number of subsequent activities

namely quantity actAfter (QAF), a number of

foregoing activities namely quantity actBefore

(QBF), a number of activity appearances namely

quantity actAppear (QAP), a number of occurrences

of subsequent activity for each trace namely

quantity actAppearAfterwards (QAPA), and a

number of traces namely quantity Trace (QT) for

every activity. Then, the algorithm checks QAF. If

the QAF is more than one, the second line until the

seventh line will be executed. Based on those lines,

there are three conditions of adding an invisible task

between an activity and its subsequent activity. The

A

Complete

D

Complete

B

Complete

C

Complete

E

Complete

G

Complete

F

Complete

H

Complete

A

Complete

B

Complete

Invisible

1

G

Complete

F

Complete

H

Complete C

Complete

D

Complete

Invisible

2

E

Complete

Received: December 10, 2018 36

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

first condition is both of QAP and QAPA having

similar values to the value of QT. This condition is

for case skip activity. A second condition is QAP

has similar value to QT and QAPA has similar value

to QAP. The third condition detects case

overlapping pattern. Because there are two invisible

tasks that are added in the case overlapping pattern,

the eight until twelfth line determine the addition of

second invisible task for case overlapping pattern.

Table 3. Pseudocode for case study skip and overlapping

pattern

A Method of Obtaining Invisible Task for Skip and

Overlapping

1 if QAF > 1 then

2 if ((QAP == QT) && (QAPA == QT)) then

3

4

Add Invisible_Task

else if ((QAP == QT) && (QAPA == Q1)) then

5 Add Invisible_Task

6 Endif

7 Endif

8

9

10

if QBF > 1 then

if ((QAP == Q1) && (QAPA == QT)) then

Add Invisible_Task

11 Endif

12 Endif

where :

actAfter : subsequent activity

actBefore : foregoing activity

actFirst : first activity in a relation

actLast : last activity in a relation

QAF : quantity actAfter

QAP : quantity actAppear

QBF : quantity actBefore

QAPA : quantity actAppearAfterwards

QT : quantity Trace

Q1 : Number of Second Highest from QAP

Table 4. The union of activity after, before, appear, and

appear afterwards based on Table 1

Traces Activity QAF QBF QAP QAPA

T01 ActA 3 0 3 2

T01 ActB 2 2 2 2

T01 ActC 2 2 2 3

T01 ActE 0 3 3 3

T02 ActA 3 0 3 2

T02 ActC 2 2 2 2

T02 ActB 2 2 2 3

T02 ActE 0 3 3 3

T03 ActA 3 0 3 1

T03 ActD 1 1 1 3

T03 ActE 0 3 3 0

Table 5. Results of addition of invisible task based on

Table 1

CaseId TaskName CaseId TaskName

P01 ActA P02 ActC

P01 InvisibleTask P02 ActB

P01 ActB P02 InvisibleTask

P01 ActC P02 ActE

P01 InvisibleTask P03 ActA

P01 ActE P03 ActD

P02 ActA P03 ActE

P02 InvisibleTask

Table 4 is an example of QAF, QBF, QAP,

QAPA for every activity in each trace. Table 4 is

obtained based on the log illustrated in Table 1.

QAF is obtained by calculating the number of

subsequent activities. A subsequent activity is an

activity that is executed exactly after another

activity based on the log. ActA has ActB as its

subsequent activity based on the first trace, has

ActC as its subsequent activity based on the second

trace, and ActD as its subsequent activity based on

the third trace. Because of that, QAF of ActA is 3.

QBF is obtained by calculating the number of

foregoing activities. A foregoing activity is an

activity that is executed exactly before another

activity. ActB has two foregoing activities, ActA

and ActC. Because of that, QBF of ActB is two.

QAP is the number of activity appearance based on

traces of the log. Because ActA appears on the first,

second, and third traces, QAP of ActA is 3. QAPA

is obtained by calculating the occurrences of

subsequent activity in each trace. In the first trace,

QAPA of ActA is two because the number of

appearances of ActB is two. Then, in the last trace,

QAPA of ActA is one because the number of

appearances of ActD is one.

 Using Invisible Task Log with Alpha++

algorithm, the results of the addition of invisible

tasks can be seen in Table 5. Invisible tasks are

added between ActA and ActB and between ActA

and ActC because ActA fulfills a statement in the

fourth line of the pseudocode. It is proven by the

number of QAP of ActA is three, same as the

number of traces and the number of QAPA of ActA

is two, same as the second highest score of all QAPs.

For other invisible tasks, there are added because

ActC in the first case and ActB in the second case

fulfill the ninth line of the pseudocode.

3. Result and analysis

The experiments in this research are performed

using 1) the processes of Port Container Handling,

Received: December 10, 2018 37

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

and 2) simulation processes that describe a hybrid of

non-free choice relation and overlapping pattern.

The model of Port Container Handling processes is

illustrated in Fig. 7. Port Container Handling

processes contain the hybrid of non-free choice

relation and skip invisible tasks.

Fig. 4, Fig. 5, Fig. 8 until Fig. 10 show models

of a hybrid non-free choice and overlapping pattern

case XOR gates with AND gates. Then, Fig. 11 until

Fig. 15 show models of a hybrid non-free choice and

skip invisible tasks. Fig. 5 and Fig. 12 are depicted

by Invisible Task Log with Alpha++ algorithm. In

Fig. 4, the non-free choice relations are not well

illustrated by Alpha++ or Alpha# because of their

inability in discovering an overlapping pattern. On

the contrary, Fig. 8 until Fig. 10 show the other

comparison methods cannot depict non-free choice

relations.

For the case of Port Container Handling,

Alpha++ cannot depict non-free choice related to

Determine Dry because Alpha++ cannot discover

invisible tasks. It can be seen in Fig. 11. Based on

Fig. 13 until Fig. 15, other comparison methods, i.e.

Graphical method, Time-Based Alpha++, HMM-

Parallel, and CHMM-Invisible cannot depict non-

free choice relationships.

Figure.7 Port Container Handling event log modeling by

Disco

Figure.8 The model of case hybrid non-free choice and overlapping invisible task by Graphical Method or HMM-Parallel

Figure.9 The model of case hybrid non-free choice and overlapping invisible task by Time-Based Alpha Miner

Figure.10 The model of case hybrid non-free choice and overlapping invisible task by CHMM-Invisible Task

Received: December 10, 2018 38

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Figure.11 The model by Alpha++ of Port Container Handling

Figure.12 The model by Invisible Task Log with Alpha++ of Port Container Handling

Figure.13 The model by Graphical Method or HMM-Parallel of Port Container Handling

Figure.14 The model by Time-Based Alpha++ of Port Container Handling

Received: December 10, 2018 39

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Figure.15 The model by CHMM-Invisible of Port Container Handling

 Table 6. Result of evaluation on Fitness and Precision for all Cases

Cases Model Fitness Precision

Hybrid non-free choice and

overlapping invisible task

Proposed Algorithm (Invisible Task Log with

Alpha++)
1 1

Original Event Log with Alpha++ [9] or

Alpha#[8]
1 0.20

Graphical Method[10] 0.67 0.17

Time-Based Alpha Miner[11] 0.67 0.17

HMM-Parallel [1] 0.67 0.17

CHMM-Invisible [14] 1 0.50

Port Container Handling

Processes

Proposed Algorithm (Invisible Task Log with

Alpha++)
1 1

Original Event Log with Alpha++[9] 1 0.31

Graphical Method[10] 0.67 0.33

Time-Based Alpha Miner[11] 1 0.33

HMM-Parallel [1] 0.67 0.33

CHMM-Invisible [14] 1 0.33

4. Conclusion

This research proposes Invisible Task Log with

Alpha++ algorithm to discover the hybrid of

invisible tasks, including invisible tasks in an

overlapping pattern, and non-free choices. This

algorithm can discover overlapping patterns, which

are not described by Alpha#, the existing algorithm

of invisible tasks.

There are several steps in this research. Firstly,

Invisible Task Log with Alpha++ algorithm detects

the invisible tasks in an event log and adds invisible

tasks automatically in the event log. Then, the

inserted event log is processed by Alpha++ to

discover a process model containing the hybrid of

invisible tasks and non-free choices.

Invisible Task Log with Alpha++ will be

compared with Alpha++, Alpha#, Graphical Method,

Time-based Alpha Miner, HMM-Parallel, and

CHMM-Invisible in the evaluation. The results of

the evaluation show the model by Invisible Task

Log with Alpha++ algorithm gives better models

than those by Alpha++, Alpha#, Graphical Method,

Time-based Alpha Miner, HMM-Parallel, and

CHMM-Invisible. In the hybrid non-free choice and

overlapping pattern, Invisible Task Log with

Alpha++ algorithm has the highest precision

because other comparison methods have inabilities,

i.e. Graphical method, CHMM, HMM, Time-based

Alpha Miner cannot discover non-free choice,

subsequently Graphical method, HMM, Time-based

Alpha Miner, Alpha++ and Alpha# cannot discover

overlapping pattern. Afterward Invisible Task Log

with Alpha++ also has the highest precision among

those comparison methods. To sum up, the

evaluation proves that the precision of the model by

Invisible Task Log with Alpha++ is the highest

precision among the precisions by the others. The

concerns of the research are invisible tasks of skip

processes and overlapping patterns. Handling other

kinds of invisible tasks are addressed in future

research.

Received: December 10, 2018 40

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019 DOI: 10.22266/ijies2019.0630.04

Acknowledgments

Authors give a deep thank to Institut Teknologi

Sepuluh Nopember, the Ministry of Research,

Technology and Higher Education of

Indonesia, Direktorat Riset dan Pengabdian

Masyarakat, and Direktorat Jenderal Penguatan

Riset dan Pengembangan Kementerian Riset,

Teknologi dan Pendidikan Tinggi Republik

Indonesia for supporting the research.

References

[1] R. Sarno and K. R. Sungkono, “Hidden Markov

Model for Process Mining of Parallel Business

Processes”, International Review on Computers

and Software, Vol. 11, No. 4, pp. 290–300,

2016.

[2] D. Rahmawati, M. A. Yaqin, and R. Sarno,

“Fraud detection on event logs of goods and

services procurement business process using

Heuristics Miner algorithm”, In: Proc. of the

2016 International Conference on Information

Communication Technology and Systems, pp.

249–254, 2016.

[3] G. Baader and H. Krcmar, “Reducing false

positives in fraud detection: Combining the red

flag approach with process mining”,

International Journal of Accounting

Information Systems, Vol. 31, No. March, pp.

1–16, 2018.

[4] V. R. L. Shen, H.-Y. Lai, and A.-F. Lai, “The

implementation of a smartphone-based fall

detection system using a high-level fuzzy Petri

net”, Applied Soft Computing, Vol. 26, pp.

390–400, 2015.

[5] A. Sanaa, S. Ben Abid, A. Boulila, C.

Messaoud, M. Boussaid, and N. Ben Fadhel,

“Modeling hydrochory effects on the Tunisian

island populations of Pancratium maritimum L.

using colored Petri nets”, Biosystems, Vol. 129,

pp. 19–24, 2015.

[6] K. R. Sungkono, R. Sarno, and N. F. Ariyani,

“Refining business process ontology model

with invisible prime tasks using SWRL rules”,

In: Proc. of the 2017 11th International

Conference on Information Communication

Technology and System, pp. 215–220, 2017.

[7] R. Sarno and K. R. Sungkono, “Coupled

Hidden Markov Model for Process Discovery

of Non-Free Choice and Invisible Prime Tasks”,

Procedia Computer Science, Vol. 124, pp. 134–

141, 2018.

[8] L. Wen, J. Wang, W. M. P. Van Der Aalst, B.

Huang, and J. Sun, “Mining process models

with prime invisible tasks”, Data and

Knowledge Engineering, Vol. 69, No. 10, pp.

999–1021, 2010.

[9] L. Wen, W. M. P. Van Der Aalst, J. Wang, and

J. Sun, “Mining process models with non-free-

choice constructs”, Data Mining and

Knowledge Discovery, Vol. 15, No. 2, pp. 145–

180, 2007.

[10] R. Sarno, K. R. Sungkono, and R.

Septiarakhman, “Graph-Based Approach for

Modeling and Matching Parallel Business

Processes”, Information, Vol. 21, No. 5, pp.

1603–1614, 2018.

[11] Y. A. Effendi and R. Sarno, “Modeling parallel

business process using modified time-based

alpha miner”, International Journal of

Innovative Computing, Information and

Control, Vol. 14, No. 5, pp. 1565–1582, 2018.

[12] R. Sarno and K. R. Sungkono, “Coupled hidden

Markov model for process mining of invisible

prime tasks”, International Review on

Computers and Software, Vol. 11, No. 6, pp.

539–547, 2016.

[13] A. J. M. M. Weijters, W. M. P. Van Der Aalst,

and A. K. A. de Medeiros, “Process Mining

with the HeuristicsMiner Algorithm”, Cirp

Annals-manufacturing Technology, Vol. 166,

pp. 1–34, 2006.

[14] K. R. Sungkono and R. Sarno, “CHMM for

discovering intentional process model from

event logs by considering sequence of

activities”, In: Proc. of the 2017 4th

International Conference on Electrical

Engineering, Computer Science and

Informatics, pp. 1–6, 2017.

[15] W. H. Gomaa, “A Survey of Text Similarity

Approaches”, International Journal of

Computer Applications, Vol. 68, No. 13, pp.

13–18, 2013.

