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Abstract: This paper deals with the evaluation of the inductive coupling between an 

overhead finite length wire circuit and a buried wire circuit, both with earth return, in 

the range of Extremely Low Frequencies (ELF). In particular, the attention is focused on 

the key parameter for this kind of problems i.e. the per unit length (p.u.l.) mutual 

impedance between the two circuits. Starting from the exact formula involving a 

Sommerfeld’s integral, two new approximated analytical formulas, having different levels 

of approximation, are derived; the advantage of these formulas is that, in such a way, the 

p.u.l. mutual impedance is expressed only by means of elementary functions so avoiding 

numerical calculations of the Sommerfeld’s integral. Finally, a comparison between the 

two proposed formulas is made. 

 

 

 

1. INTRODUCTION 

 

It is known that the issue of Extremely Low Frequency electromagnetic interference 

from power lines/electrified railway lines on pipelines is an important topic related to the 

electrical safety for staff getting in touch with accessible parts of the pipeline. Risks for 

safety exist whether the power line/railway line is both in faulty condition or is in normal 

operating condition; moreover, overvoltage and overcurrent induced on the pipeline may 

produce damages to the pipeline itself (e.g. insulating coating perforation) or to devices and 

apparatuses connected to it (e.g. cathodic protection devices). Finally, one has not to forget 

the AC corrosion risk that is related to the electromagnetic induction generated on the pipe-

earth circuit under normal operating condition of the inducing line [1-2]. 
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This paper focuses on the inductive interference generated on long buried metallic 

structures such as pipelines, ducts, telecommunication cables; the frequencies considered 

are the typical ones used for transmission and distribution of electrical power i.e. 50-60Hz. 

The key parameter for the evaluation of the inductive coupling is the p.u.l. mutual 

impedance which is directly proportional to the inductive component of the electric field 

generated by the power line conductors. Such conductors, hung, between two consecutive 

towers, can be represented, in first approximation, as long horizontal and finite length wires 

parallel to the soil surface. 

In literature, only few contributions, concerning the approach to this problem by 

means of the finite length wires model, exist; in fact, most of the works are focused on the 

infinite length wires model whose progenitor is the famous paper by Carson published in 

1926 [3]. 

For a comparison between the two approaches (i.e. finite and infinite length wire 

models) one can have a look at [4]. 

It is also worth to mention alternative approaches involving the Finite Element 

Method [5-8], but they are out of the scope of the present paper.  

Among the papers, dealing with mutual coupling between finite length wires with 

earth return, one has to mention [9-14] where the mutual impedance is expressed by means 

of the so called “Neumann formulas” involving integrals along the wires path. A different 

technique is adopted in [15] where the author, by considering an overhead linear horizontal 

antenna and by applying the “complex image theory”, obtained approximated closed form 

formulas for electric and magnetic fields valid in the quasi-static range and in the upper 

semi-space. Nevertheless, no formulas were given for evaluating the field in the lower semi-

space i.e. in the soil. 

This paper proposes new closed form formulas, built up by means of elementary 

functions, for evaluating, the inductive component of the electric field in the soil in the ELF 

range. In particular, thanks to these formulas, one can avoid numerical integration of 

Sommerferld’s integral. 

 

 

2. DERIVATION OF THE FORMULAS 

 

2.1. General 

 

 The starting point is evaluating the inductive component of the electric field generated 

by a finite length overhead wire with earth return carrying a harmonic constant current given 

by the phasor Ipl. The overhead wire, assumed having constant height H over the soil, is a 

representation of a generic power line conductor hung between two consecutive towers (See 

fig.1). 
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Fig. 1. Representation of a power line conductor as an overhead finite wire length 

 

It is convenient to suppose the wire, having length L, as composed by infinitesimal 

horizontal electric dipoles each one of length dx’; thus, the field produced by the whole wire 

can be calculated as sum of all the contributions generated by the single dipoles. 

According to [16], the inductive x-component of the electric field produced in the soil 

(medium 2, z<0) in the generic point (x, y, z) by a single dipole placed in (x’, y0, H) is 

proportional to the x-component of the electric Hertz potential  i.e.: 

 

             𝑑𝐸2𝑥
𝑖𝑛𝑑(𝑥, 𝑦, 𝑧) = 𝑘2

2Π2𝑥(𝑥, 𝑦, 𝑧) =                     

                        =  
𝑗𝜔𝜇0𝐼𝑑𝑥

′

4𝜋
∫

2𝜆𝑒
−√𝜆2−𝑘1

2𝐻
𝑒
√𝜆2−𝑘2

2𝑧

√𝜆2−𝑘1
2+√𝜆2−𝑘2

2
𝐽0(𝜆√(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦0)2)𝑑𝜆

∞

0
      (1) 

 

Note that (1) is expressed by means of a Sommerfeld’s integral. In (1), j is the 

imaginary unit, J0 is the Bessel function of the first kind and order 0 and k1, k2 are respectively 

given by: 

 𝑘1
2 = −𝑗𝜔𝜇0(𝑗𝜔휀0) (2) 

 

 𝑘2
2 = −𝑗𝜔𝜇0(𝜎2 + 𝑗𝜔휀2) (3) 

 

In order to obtain the field produced by the wire, one has to integrate expression (1) 

over the whole wire length, i.e.: 

 

𝐸2𝑥
𝑖𝑛𝑑(𝑥, 𝑦, 𝑧)  

= ∫ [
𝑗𝜔𝜇0𝐼

4𝜋
∫
2𝜆𝑒

−√𝜆2−𝑘1
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𝑒
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2
𝐽0 (𝜆√(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦0)2) 𝑑𝜆

∞

0

]

𝐿
2

−
𝐿
2

𝑑𝑥′          (4) 
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2.2. Approximated formulas 

 

By introducing suitable hypotheses, it is possible to simplify (1), so that the field 

𝐸2𝑥
𝑖𝑛𝑑(𝑥, 𝑦, 𝑧) can be expressed by means of an analytical expression much simpler than (4).  

The simplifying assumptions can be listed as follows: 

 Neglecting displacement currents i.e.: k1  0 (in the air) and 𝑘2
2 = −𝑗𝜔𝜇0𝜎2 (in the 

earth) 

 Due to the extremely low frequencies considered (50-60Hz), to the typical range of 

values for the soil conductivity 2 ( i.e.: [10-4, 10-1]S/m) and to the typical range of 

values for the burial depth of pipes (i.e.: [0.5, 2]m), it is possible to write with good 

approximation: 

 

 𝑒
√𝜆2−𝑘2

2𝑧
≅ 𝑒𝜆𝑧 (5) 

 

Therefore, by defining 𝛾2 = 𝑘2
2, formula (1) can be simplified as follows: 

 

 𝑑𝐸2𝑥
𝑖𝑛𝑑(𝑥, 𝑦, 𝑧) =

𝑗𝜔𝜇0𝐼

4𝜋
∫

2𝜆𝑒−𝜆𝐻𝑒𝜆𝑧

𝜆+√𝜆2+𝛾2
𝐽0(𝜆√(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦0)2)𝑑𝜆

∞

0
 (6) 

 

In (6), according to [17] a further simplification can be introduced: 

 

 
2𝜆

𝜆+√𝜆2+𝛾2
= 1 − 𝑒

2
𝜆

𝛾 [1 +
1

3
(
𝜆

𝛾
)
3

+⋯] (7) 

 

By substituting (7) into (6) and after some algebric steps, that have been omitted for 

brevity, one obtains, by the help of certain identities, [18]: 

 

𝑑𝐸2𝑥
𝑖𝑛𝑑(𝑥, 𝑦, 𝑧) =

𝑗𝜔𝜇0𝐼𝑑𝑥
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+

+
−1

√(𝑥−𝑥′)2+(𝑦−𝑦0)2+(|𝑧|+𝐻+
2
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2
+
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(−1)3
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2

𝛾
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2
+(𝑦−𝑦0)
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2

𝛾
)
3

(√(𝑥−𝑥′)2+(𝑦−𝑦0)2+(|𝑧|+𝐻+
2

𝛾
)
2
)

7

}
 
 
 

 
 
 

               (8) 

 

In particular, the following identity has been used: 

 

1

3𝛾3
∫ 𝜆3𝑒

−(|𝑧|+𝐻+
2

𝛾
)𝜆
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∞

0
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2
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1
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2

𝛾
)
2
)                                    (9) 
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In order to obtain the total electric field produced by the overhead wire, one has to 

integrate expression (8), over whole wire length so obtaining: 

 

𝐸2𝑥
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(10) 

 

Also in this case, all the mathematical passages leading from (8) to (10) have been 

omitted for brevity. 

The p.u.l. mutual impedance between the overhead wire with earth return and a 

buried parallel wire with earth return evaluated in the generic point (x, y, z) belonging to the 

wire axis is defined by: 
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(11) 
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Thus, from (11) one gets a function Zm=Zm(x, y, z) that it is composed by four 

addends; the first and second addends represent the basic contribution (logarithmic terms) 

while the third and fourth ones may be considered as additional corrective terms; in 

particular, it can be interesting to estimate their influence on the results. 

To this aim, it is convenient to define the p.u.l. mutual impedance Zm’=Zm’(x, y,z) 

without additional terms, i.e.: 

 

𝑍𝑚
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                     (12) 

 

Note that formula (12) is obtained by considering only the first addend, inside square 

brackets, in formula (7). 

 

 

3. COMPARISON BETWEEN THE MUTUAL IMPEDANCE FORMULAS 

 

In order to calculate the influence of the corrective terms, it is useful to define the 

following quantities: 

 

∆𝑍𝑚 %(𝑥, 𝑦, 𝑧) =
|𝑍𝑚(𝑥,𝑦,𝑧)|−|𝑍𝑚

′ (𝑥,𝑦,𝑧)|

|𝑍𝑚(𝑥,𝑦,𝑧)|
100                                          (13) 

 

∆𝜙(𝑥, 𝑦, 𝑧) = 𝑎𝑟𝑔(𝑍𝑚(𝑥, 𝑦, 𝑧)) − 𝑎𝑟𝑔(𝑍𝑚
′ (𝑥, 𝑦, 𝑧))                            (14) 

 

Being Zm% the per cent relative difference between the modulus of Zm and Zm’ while 

 is the difference between their arguments. 

It is convenient to express the results by means of polar plots being the polar radius 

R=R(x, y) given by the formula: 

 

𝑅(𝑥, 𝑦) = √𝑥2 + (𝑦 − 𝑦0)2                                                  (15) 

 

The polar plots that follow have been obtained for y0 = 0, H = 20m, and hpipe = -1.5m 

(typical burial depth of a pipeline), L = 250m (typical distance between two consecutive 

towers for a High Voltage power line) and the polar angle is counter-clockwise measured 

starting from the positive x semi-axis. They have been drawn for different values of soil 
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conductivity and in correspondence of different values for the polar radius R, i.e.: /100, 

/10, /2, , 2, 3, 5. Being  the skin depth in the earth at the frequency f = 50Hz. 

For convenience, the formula for the skin depth in the earth is reported: 

 

𝛿 =
1

√𝜋𝑓𝜇2𝜎2
                                                             (16) 

 

Figures 2-4 show the polar plots of Zm% and  evaluated for different values of 

soil conductivity and it can be noticed that:  

 The per cent relative difference Zm% ranges approximatively in the interval [-20%, 

25%] 

 The difference  ranges approximatively in the interval [-30, 130] 

These differences occur essentially in the range [/2, 3] for the polar radius while, 

on the contrary they are negligible outside that range. Therefore, one has: 

 if R<< or R>>,  then the use of Zm or Zm’ is essentially equivalent 

 on the contrary, when R ~ , a certain not negligible difference between Zm and Zm’ 

can be noticed. 

 

 

Fig. 2a. Polar plot of Zm% for different values of polar radius; 2=2·10-2S/m 
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Fig. 2b. Polar plot of   for different values of polar radius; 2=2·10-2S/m 

 

 

Fig. 3a. Polar plot of Zm% for different values of polar radius; 2=2·10-3S/m 
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Fig. 3b. Polar plot of   for different values of polar radius; 2=2·10-3S/m 

 

 

Fig. 4a. Polar plot of Zm% for different values of polar radius; 2=2·10-4S/m 
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Fig. 4b. Polar plot of   for different values of polar radius; 2=2·10-4S/m 

 

 

4. INFLUENCE OF ADDITIONAL TERMS IN INTERFERENCE CALCULATIONS 

 

A typical and straightforward application of the proposed formulas consists in 

evaluating the p.u.l. electromotive force (emf) induced on a pipeline-earth circuit under the 

inductive influence of nearby power lines and then calculating the induced voltage and 

current on the circuit itself. 

Thus, it is interesting to check the influence in using Zm’ instead of Zm when 

calculating induced voltage and current on a buried pipeline subjected to the 50Hz inductive 

coupling from a power line. To this purpose, a simple example consisting of a parallelism 

between an overhead power line conductor 10km long and a pipeline 5km long is 

considered. See fig.5 for a simple sketch. The power line conductor-earth circuit carries a 

constant inducing current Ipl while the pipe-earth circuit is closed at its boundaries on the 

characteristic impedance. 
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By treating the pipeline-earth circuit as a transmission line circuit, the influence of 

the electromagnetic field produced by the power line is modelled by a p.u.l.  distributed emf 

generator applied along the pipeline-earth circuit. In the present example, being inducing 

and induced line parallel, such a generator is related to the above defined p.u.l. mutual 

impedances respectively by:  

 

𝑒(𝑥) = 𝑍𝑚(𝑥, 𝐷)𝐼𝑝𝑙                  𝑒
′(𝑥) = 𝑍𝑚

′ (𝑥, 𝐷)𝐼𝑝𝑙                           (17) 

 

The theory and the formulas for evaluating induced voltage and current on a 

transmission line circuit under the influence of external electromagnetic fields can be found 

in [19] and to it one can refer for details. 

 

 

Fig. 5. Sketch of power line and pipeline layouts 

 

In order to compare the results, it is worthwhile to define the following quantities: 

 U(x) and I(x) induced voltage and current obtained when applying the generator e(x) 

to the pipeline-earth circuit 

 U’(x) and I’(x) induced voltage and current obtained when applying the generator 

e’(x) to the pipeline-earth circuit 

 U%(x) the per cent relative difference relevant to the voltage that is: 

 

∆𝑈%(𝑥) =
|𝑈(𝑥)|−|𝑈′(𝑥)|

|𝑈(𝑥)|
100                                            (18) 

 

 I%(x) the per cent relative difference relevant to the current that is: 

 

∆𝐼%(𝑥) =
|𝐼(𝑥)|−|𝐼′(𝑥)|

|𝐼(𝑥)|
100                                               (19) 

 

In figures 6-8 the quantities U%(x) and I%(x) have been plotted versus pipeline 

progressive for different values of soil conductivity and in correspondence of different 

values for the lateral distance D (see fig. 5) between inducing and induced circuit i.e.: /100, 

/10, /2, , 2, 3, 5. 
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Fig. 6a. U% versus pipeline progressive for different values of D; 2=2·10-2S/m 

 

 

Fig. 6b. I% versus pipeline progressive for different values of D; 2=2·10-2S/m 
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Fig. 7a. U% versus pipeline progressive for different values of D; 2=2·10-3S/m 

 

 

Fig. 7b. I% versus pipeline progressive for different values of D; 2=2·10-3S/m 
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Fig. 8a. U% versus pipeline progressive for different values of D; 2=2·10-4S/m 

 

 

Fig. 8b. I% versus pipeline progressive for different values of D; 2=2·10-4S/m 
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Figures 6-8 show that, in case of parallelism between power line and pipeline, 

depending on the lateral distance D and on the earth conductivity, the relative per cent 

difference in evaluating the interference results by using formula (10) or (11) can range 

approximatively: 

 in the interval [-40%, 40%] for the induced voltage 

 in the interval [-10%, 20%] for the induced current 

Hence, in certain specific cases, depending on the lateral distance between power 

line and pipeline and especially with soil having low-medium conductivity, not negligible 

differences in using Zm’ instead of Zm can be found when calculating induced voltage and 

current. 

Furthermore, it is useful to notice that in [4] it is shown that the results obtained by 

using Zm are consistent with the ones coming from the application of the formulas reported 

in [9] and [11].  

The main advantage in using formulas (11) or (12) instead of the ones given in 

References [9-13] which are based on Neumann integrals, consists in their greater simplicity 

and in an easier evaluation of the induced emf on the pipeline-earth circuit. 

 

 

5. CONCLUSIONS 

 

In this paper two new and convenient closed form formulas for evaluating, in the 

ELF range, the p.u.l. mutual impedance between an overhead finite length wire and a buried 

wire, both with earth return, are proposed. The two different formulas yield values having 

per cent relative differences in the range [-20%, 25%]. 

Moreover, when evaluating the interference on the victim circuit (i.e. induced 

voltage and current), the use of the formula without corrective terms instead of the one with 

corrective terms may lead, in specific cases, to not negligible differences in the results.  

Thus, in applications, it is preferable to use the formula (12) instead of (11). 
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