
IADIS International Journal on Computer Science and Information Systems

Vol. 13, No. 2, pp. 109-123
ISSN: 1646-3692

109

EFFICIENT SNAPSHOT METHOD

FOR ALL-FLASH ARRAY

Miho Imazaki1, Norio Shimozono2, and Norihisa Komoda3

1Research & Development Division, Hitachi America, Ltd., California, the United States of America
2Research & Development Group, Hitachi, Ltd., Yokohama, Japan
3Osaka University, Osaka, Japan

ABSTRACT

An all-flash array (AFA) equipped with solid state drives (SSDs) is the high-reliability, high-performance
and large-capacity data storing system. Snapshot is used as a data backup function and one of existing

methods of snapshot is Copy on Write (CoW). However, CoW consumes the memory bandwidth of storage
controller (SC) because of chunk copies and isn’t suitable for a AFA. Therefore, we propose an efficient
snapshot method named Mapping Switching in Flash Translation Layer (MSiF). Instead of physical data
transfers by a SC, MSiF rewrites the SSD’s logical-physical address translation table using Flash
Translation Layer in SSDs. A difference occurs between current data and backup data due to an updating
data, and a SC can overwrite the current data by switching a mapping of the logical-physical translation
table in a SSD without physical data transfer. Therefore, the amount of data transfer to SSDs and paths in
SCs decreases. We estimate the performance right after taking snapshots using an evaluation model;

compared to CoW, MSiF reduce the time, which it takes to recover the temporary throughput degradation
due to taking a snapshot, by up to 76.9 %, and reduce the response time by up to 56.5 %, in the case of
chunk size 128 kBytes.

KEYWORDS

Storage System, All-flash Array, Snapshot, SSD, Flash Translation Layer

1. INTRODUCTION

For enterprise IT infrastructures, such as large enterprise data centers, improvement of

application performance and total cost reduction of system maintenance are required. Therefore,

there is a need for a high-performance storage system with high capacity, low latency, high

throughput, and easy performance design and performance tuning. As a storage system

satisfying these requirements, there is an All-flash Array (AFA) composed of all Solid-State

Disks (SSDs) instead of Hard Disk Drives (HDDs) (Yi, 2015). An AFA consists of Storage

IADIS International Journal on Computer Science and Information Systems

110

Controllers (SCs) and drive boxes that store many SSDs. Enough Central Processing Units

(CPUs) in the SC are mounted for the SSD performance to maximize the flash chip performance

of SSDs. However, SSDs have the problem that the endurance of flash devices is rapidly

decreasing and directly related to the number of program/erase cycles allowed to memory cells
(Kim & Ahn, 2008), therefore it’s important not to do useless write access to SSDs.

Furthermore, metadata to be accessed at the time of data processing are made to reside in a

Dynamic Random Access Memory (DRAM) of the SC, and this realizes further higher

performance.

Storage systems including AFAs have various functions for protecting data. One of them is

snapshot which stores data as a backup copy at an arbitrary time (Xiao et al, 2006). In AFA, it’s

important to reduce backup data copy, and there are Copy on Write (CoW) and Redirect on

Write (RoW) as existing snapshot technologies to reduce the data copy amount (Xiao et al,

2006). CoW and RoW manage the difference between the current data and the backup data as

metadata, this is because the current data and the backup data are the same if the data is not

updated from a host machine after taking a snapshot.
In RoW, after taking snapshot, the update data from a host machine is written to the pool,

which is the exclusive area for snapshot, in the order of receiving from a host machine. A DRAM

area managed by the address in the SC is allocated to the pool. Since small size update data may

be written from the host machine, it is necessary to manage the memory address in SC allocated

to the pool in small size units. Therefore, the large quantity of metadata for pool address

management in SC’s memory is needed. For this reason, RoW is not suitable for AFA where

metadata resides in SCs’ DRAM.

On the other hand, in CoW, the current data before update is copied to a pool after taking a

snapshot, and then the update data is overwritten on the current data. Current data is copied to

a pool in units of chunks which is data aggregates. Thus, the metadata capacity for chunk address

management can be saved by a large chunk size, and large capacity data can be stored without

significantly increasing DRAM capacity. However, the chunk copy is occurred in a unit of
chunk which is large size when update data is written from a host machine, and the chunk copy

to a pool may include non-updated data. Hence unnecessary writing occurs in SSD.

In this work, we propose the snapshot method that is optimal for AFA to reduce data copy,

based on CoW which can backup large capacity data. We focus on the point that consumption

of memory bands of SCs causes performance degradation, and discuss whether it is possible to

reduce the amount of data transfer in SCs by taking snapshots. Thus, in the proposed method,

instead of CPUs of SCs, CPUs of SSDs performs processing equivalent to data copy by Flash

Translation Layer (FTL) (Kim & Ahn, 2008).

The rest of this paper is organized as follows. Section 2 describes AFA’s architecture and

CoW problem in AFA. We present our proposal in Section 3, and Section 4 shows that the

throughput and response time of the proposed method are evaluated and the results are
considered. Section 5 shows related work, and Section 6 concludes the paper.

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

111

2. PERFORMANCE IMPACT DUE TO DATA UPDATE IN COW

2.1 AFA Configuration

Figure 1 shows the schematic view of AFA. There are frontend interface modules (FE I/Fs),

which communicate with host machine, back-end interface modules (BE I/Fs), which

communicate with host machine, CPUs and DRAM in SC. The DRAM is divided into the cache

area for storing data before transfer to the SSD, and the management area for storing metadata

necessary for volume and snapshot management. And SCs are duplicated in the AFA to prevent

a data loss. Upon receiving an update data write instruction from the host machine, for example,

after the update data is written in the cache area of SC 0, the update data is copied to the cache

area of SC 1. Therefore, even if one SC fails before data is written to the SSD, data is not lost

(Morishita et al, 2015). These components are wired with some cables to communicate with

each other. Connection between components are performed in paths called front-end path (path
FE), back-end path (path BE), path SC and path DRAM (path MEM).

Figure 1. AFA Architecture

Many SSDs are stored in the drive boxes, and each SSD is connected to the back-end

interface module of SC. A SSD is composed of a flash chip for storing data, CPUs, buffer area,

in which read/write data stored temporarily, and an SSD controller for controlling reading and

writing to flash chips. Furthermore, to recover data even if a part of SSDs fails, Redundant

Arrays of Inexpensive Disks (RAID) are applied: a disk array technology that allows multiple

Host machine

SC 0

Drive

box

DRAM

Front-end

Interface modules

Back-end

Interface modules

SSD

Flash Chips (Physical address)

CPUs

Buffer

area
Logical-physical

translation table

SSD controller

Logical

Address

Physical

Address

0x0010 0x1000
・
・
・

CPUs

Cache area

Management

area

(Logical address)

SC 1

Path FE Path

SC

Path BE

Path MEM

Memory

IADIS International Journal on Computer Science and Information Systems

112

SSDs, called disk group, to be virtually seen as one SSD (Menon, 1994). In RAID, data are

divided into blocks, which are called striping units, and stored in several disks in a block-based

data striping. There are several types of RAID, called RAID levels, and RAID5 is one of them.

RAID5 uses disk striping with a parity, and data and parity are striped across all the disks, and
the traditional RAID implementation requires a SC to construct a parity with SC’s CPUs for

each write from a host machine.

To access the data in the AFA from a host machine, volumes obtained by dividing the disk

group are allocated to a host machine. A host machine reads and writes data in units of blocks

in a volume. In the management area of SC’s memory, each block is given an address, which is

called a logical address (Gupta et al, 2009). On the other hand, data is written to and read from

flash chips in units of pages, which are given addresses called physical addresses (Gupta et al,

2009). The logical address to the physical address mapping information is stored in the logical-

physical translation table of SSD controller. The logical-physical translation table is used for

hiding the physical characteristics of the flash chip and providing a simple storage logical space

SCs. This mechanism is called FTL (Imazakai et al, 2016). When a SSD receives write requests,
FTL maps a logical address to a physical address in flash chip and the new data are stored in the

new flash chip areas, where the old data aren’t stored, before the old data are erased (Kim &

Ahn, 2008).

2.2 Snapshot Processing Overview

The CoW mechanism describes in Figure 2 (a). The volume that stores data to be accessed from
a host machine is called Primary Volume (PVOL). When a taking snapshot command is issued

from a host machine, Secondary Volume (SVOL) is created as PVOL’s backup data. It is

possible to create multiple SVOLs for one PVOL. PVOL and SVOL are managed in units of

chunks which are collections of blocks. A chunk No. assigned to the volume and the leading

logical address of the chunk are managed in PVOL/SVOL management tables. In the SVOL

management table, each chunk is managed with a share bit indicating whether it is shared with

PVOL. A chunk whose shared bit is ON is called a shared chunk. When the PVOL is updated

from a host machine, the shared bit of the chunk including the update target address is turned

OFF. Only the difference data between PVOL and SVOL are physically stored in SSD, hence

the SSDs’ capacity efficiency is good in CoW. Figure 2(b) shows the PVOL update processing

flow at the time of chunk copy occurrence. Metadata of snapshots are resident in the cache area
of DRAM.

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

113

Figure 2. CoW

2.3 Performance Problem

For example, if the chunk size is set to 256 kBytes to save the DRAM capacity in a SC and the

update data size from a host machine is 8 kBytes, the chunk copy processing occurs 32 times.

Because of this, the path MEM bandwidth is consumed due to data transfer increases, and the
neck point of the system limited performance becomes the Path MEM. When chunk copies

occur, performance of the system is greatly and temporally reduced as compared with the case

where chunk copies do not occur. Hence performance design and performance tuning are

required in anticipation of performance degradation. Therefore, the advantage expected of AFA

which is easy to perform performance design and tuning is lost. Especially immediately after

taking a snapshot, since all chunks are in a shared state, chunk copies occur at most data update

opportunities, and there is a problem that system performance greatly deteriorates.

On the other hands, the data size of DRAM access at the time of updating SVOL

management table is about several tens bytes, which is sufficiently smaller than the chunk size.

Therefore, the amount of data transfer through the SC’s path MEM by accessing the DRAM

from/to the CPU can be ignored.

(A) Access to a
shared chunk?

→ Yes

SC SSD

Time

(C) Receive update
data in SC0/SC1

(C) Issue a write
command of update

data

(C) Write Update
data

(A): SVOL management table processing
(B): Chunk copy processing (C):PVOL update processing

(B) Issue read a
chunk command

(B) Read a shared
chunk

(C) Good response to
host machine

(B) Write a shared
chunk in a cache area

(B) Copy shared
chunk to SC 0 / SC 1

(A) Update SVOL
management table

(B) Issue a write
command of shared
chunk

(B) Write a
shared chunk

(b) PVOL update with chunk copy in CoW.(a) CoW mechanism.

IADIS International Journal on Computer Science and Information Systems

114

3. PROPOSAL: MAPPING SWITCHING IN FTL

We propose Mapping Switching in FTL (MSiF) that uses SSD’s CPUs to perform processing

equivalent to chunk copies in SSDs. Figure 3. shows the details of MSiF. In MSiF, when the

PVOL is updated from a host machine and the chunk copy processing is occurred, the copy-to

physical address is set the original physical address and the copy-to physical address is set the

updated data’s physical address with FTL. Since no physical data copy occurs, the amount of

data transfer in the SSD can be reduced. Even when taking snapshots, MSiF updates just the

SVOL management table as CoW does, therefore no chunk copy occurs. The metadata in MSiF
is the same as in CoW, and DRAM capacity efficiency equivalent to CoW can be realized.

Figure 3. Proposal: MSiF

Figure 3 (a) shows the overview of PVOL update processing, and Figure 3 (b) shows the

processing of PVOL update. When the SC receives the PVOL update command from the host

machine, the SC’s CPU checks whether the shared bit of the chunk containing the update area

is ON or OFF. In the case of shared bit OFF, the SC overwrites the update data in the PVOL.

While in the case of shared bit ON, the SC’s CPU reserves the new logical address of the pool

(A) Access to a shared
chunk?

→ Yes

SC SSD

Time

(A) Update SVOL
management table

(C) Receive update
data in SC0/SC1

(C) Issue write
command

(C) Write Update
data

(A): SVOL management table processing
(B): Chunk copy processing (C):PVOL update processing

(B) Issue shared chunk
copy command

(B) Update FTL
mapping

(C) Good response to
host machine

(b) PVOL update with chunk copy in MSiF.(a) MSiF mechanism.

SC

Cache area

Management area

SSD

PVOL management table

PVOL SVOL0

Chunk No.
Logical

address

0 0x1000

・・・

DRAM

Pool

Chunk 0 Chunk 0’

Chunk 0’

Shared bit

ON→OFF

Chunk 0

MSiF

Flash

chips

SVOL0 management table

Chunk No.
Logical

address
Shared bit

0 0x1100 ON→OFF

・・・

Logical

address

Physical

address

0x1000
0x0020

→0x0100

0x1004 0x0050

0x1100
NULL

→0x0020

Update

chunk’s logical

address to

pool’s address

0x1000

0x1100

Host

machine Updated data

Overwrite

updated data

to Chunk 0

・・・

・・・

Chunk 0

mapping

information

Chunk 0’

mapping

information

Update to

updated data’s

physical address

Memory

Copy Chunk 0’

physical address

0x0020 0x0100

Write only

updated data

Logical-physical

translation table

FTL

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

115

as the copy destination (chunk 0’) for the current chunk (chunk 0), and updates the SVOL

management table. The pool exists to manage only the logical address of the chunk copy

destination. Therefore, it is unnecessary to allocate a cache area as an area for storing data like

CoW. Next, the SC sends the chunk copy command to the SSD. This command is a unique
command of Small Computer System Interface (SCSI) and is newly created for MSiF. The SSD,

which receives this command, newly registers the logical address of the chunk 0 ’in the logical-

physical translation table and sets the physical address of chunk 0 to the physical address of

chunk 0’. Then the SSD sends the complete response to the SC, and the SC implements PVOL

update processing in the same way as CoW.

In the logical-physical translation table, for example, the information of chunk size 256

kBytes can be represented by 128 Bytes and this size is small enough for PVOL update data

from a host machine. Thus, the DRAM access processing time by updating the logical-physical

translation table at the time of a chunk copy is sufficiently short.

4. EVALUATION

4.1 Precondition

We evaluated the performance improvement in MSiF using an analytical model. In MSiF, a

chunk copy is performed with SSD’s CPU, and furthermore a chunk copy is replaced with

address update using FTL. Therefore, to evaluate the effect on these two points, we compared

MSiF to CoW and Copy in SSD (CiS). CiS is a method in which the SSD’s CPU physically

copies chunk in the SSD instead of the SC’s CPU.

We described our evaluation precondition in Table 1. The SC internal network is based on

the information of Hitachi Virtual Storage Platform F 600 (www.hitachivantara.com/en-

us/pdfd/datasheet/vsp-f-series-datasheet.pdf). And SSDs’ spec is based on the information of

Hitachi Accelerated Flash FMD DC2 (www.hitachivantara.com/en-us/pdfd/datasheet/accele
rated-flash-datasheet.pdf). Furthermore, since the average system capacity of entry level

AFA is 30TByte, the system configuration capacity such as the number of SSDs is set

(www.purestorage.com/content/dam/purestorage/pdf/datasheets/ps_flasharray_ds6p_02.pdf).

Table 1. Analytical Model Definitions

Items Details

Storage system Entry-level AFA

Connection to host machine
Bandwidth of path in SC

Drive
Performance per SSD
RAID level
Configuration of snapshot

Operation of snapshot

PVOL size
Benchmark

Fiber channel 16 Gbits/s, 16 cables
Maximum 2 GBytes/s per cable,
Maximum 16 GBytes/s per path (= 16 cables)
16 SSDs, 1.6 Tbytes per SSD
Read: 2 GBytes/s, Write: 1 GBytes/s
RAID5 (7D+1P)
PVOL: SVOL=1:2, 8 PVOL / 8 SVOL per system

Create 1 SVOL for 1 PVOL and delete 1 SVOL at regular
intervals
1 TBytes per PVOL
SPC-1CTM

IADIS International Journal on Computer Science and Information Systems

116

We assumed the actual snapshot operation that reduces system performance degradation due

to snapshot processing; it distributes business data to multiple PVOLs and taking snapshot is

performed 1 PVOL at regular intervals. Moreover, this benchmark is based on a usual business

situation that the volumes to be accessed from the host machine is only PVOLs.
SPC Benchmark 1CTM 1is a sophisticated and practical performance measurement workload

for storage systems (Storage Performance Council, 2013). It simulates the behavior when AFA’s

main use case, online transaction processing, is applied to entry level storage systems. Table. 2

shows the input/output (I/O) patterns which we used for this evaluation based on SPC

Benchmark 1CTM public information (Storage Performance Council, 2013). Since the access

locality exists in the data access range, the ratio of the access range to the system capacity is set

based on the SPC - 1 CTM specification and it is described as “Access locality” in Table 2.

Table 2. I/O Patterns

I/O pattern Data size [kByte] Event probability
[%]

Access locality
[%]

Random read 4.0 28.9 13.9
Random write
Sequential read
Sequential write

4.0
14.4
14.4

32.5
10.5
28.1

13.9
18.0
7.0

The capacity allocated as the cache area is small in AFA, this is because the metadata is

mainly stored in the SC’s DRAM. Therefore, in this analytical model, the data which a host

machine overwrite is not in a cache area.

4.2 Analytical Model

4.2.1 Parameter Definition

Table 3 shows the processing list in a file copy. Since there is SVOLs in each PVOL, processing

type 1 is executed when there is no shared chunk, and processing type 2 or 3 or 4 is executed

when there is a shared chunk.

The definition of parameters is shown in Table 4. path i (i = FE, BE, SC, MEM) refers to

each internal network in the SC as shown in Fig 1. In path i, the maximum bandwidth of all
cables is Bi, and the maximum bandwidth per cable is bi. In the input / output processing k (k =

r, w), read processing is defined as r and write processing is defined as w. The data size a (a =

Df, Dc) indicates the data size to be processed, the input / output data size from the host machine

is Df, and the chunk size is defined as Dc.

Table 3. Processing pattern in a file copy

Processing type j Detail

1 Access to PVOL
2
3
4

Access to PVOL, with a chunk copy of CoW
Access to PVOL, with a chunk copy of CiS
Access to PVOL, with a chunk copy of MSiF

1 SPC Benchmark-1/Energy, SPC-1/E, SPC-1, SPC1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks

of the Storage Performance Council.

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

117

Table 4. Parameter definitions

Item Definition

S The number of SSDs

N
g

Bi

bi

Wk

P(t)

Ai(t)
Hi(t)
SAk(t)

SH(t)
H(t)
R
R(I)

Df

Dc

dija

Sdjak

m

λt

V(t)

Ta

The number of chunks in a PVOL
Bandwidth per channel cable connected to the host
machine [Byte / s]
Maximum bandwidth of path i [Byte / s]
Maximum bandwidth per cable of i path [Byte / s]
Maximum performance of input / output processing k
per SSD [Byte / s]
Chunk sharing probability at time t

Average occupancy time of path i at time t [s]
Maximum throughput in path i at time t [IOPS]
Average processing time of one input or output
processing k per SSD at time t [s]
Maximum throughput in all SSDs at time t [IOPS]
Maximum throughput of the system at time t [IOPS]
Response time to host machine in one processing [s]
Average response time to a host machine in
throughput I [s]

Input / output data size from a host machine [Byte]
Chunk size [Byte]
Access count of path i with data size a in processing
type j [times]
Number of SSD accesses in the processing type j,
input / output processing k and data size a [times]
The number of times of processing through the path
MEM until returning a completion response to the

host [times]
The average probability of occurrence of processing
through the path MEM at time t
Average time dispersion of processing through path
MEM at time t
Average processing time of processing through path
MEM [s]

4.2.2 Throughput Evaluation

In the AFA environment where RAID and snapshot are applied, the sufficient numbers of CPUs

are mounted and the amount of data transfer increases. Hence, the system performance is

evaluated by the data transfer amount in this evaluation. We define the initial state (time t = 0,

P (0) = 1) as the state where all chunks are not copied immediately after taking a snapshot.

The total number of occurrences of chunk copies is l (t) at time t, the chunk sharing

probability P (t) is expressed by Equation (1).

P(t) =

𝑁 − 𝑙(𝑡)

𝑁

(1)

IADIS International Journal on Computer Science and Information Systems

118

Differentiating the chunk sharing probability P(t) with respect to time t is 𝐝𝐥(𝐭)/𝐝𝐭, which is

the number of chunk copies occurred per second at time t. Therefore, since 𝐝𝐥(𝐭)/𝐝𝐭 is the same
as the maximum throughput Hi(t) multiplied by the chunk sharing probability P (t) at time t, it

can be expressed as Equation (2).

 𝑑𝑃(𝑡)

𝑑𝑡
= −

1

𝑁

𝑑𝑙(𝑡)

𝑑𝑡
= −

𝑃(𝑡)𝐻(𝑡)

𝑁

(2)

Ai(t), the average occupancy time of path i in the SC at time t, is the ratio of the amount of data

flowing in the i path to the maximum bandwidth of the path i, and the average occupancy time

Ai(t) is expressed by Expression (3).

𝐴𝑖(𝑡) =

𝐷𝑓𝑑𝑖1𝐷𝑓
(1 − 𝑃(𝑡))

𝐵𝑖

+
(𝐷𝑓𝑑𝑖𝑗𝐷𝑓

+ 𝐷𝑐𝑑𝑖𝑗𝐷𝑐
)𝑃(𝑡)

𝐵𝑖

(3)

Therefore, Hi(t), the maximum throughput in path i of the i path in the SC at the time t, is the

reciprocal of the occupation time in path i, and this becomes Expression (4).

𝐻𝑖(𝑡) =

1

𝐴𝑖(𝑡)

(4)

About SSDs, SAk(t), the average processing unit price per SSD at time t, is the ratio of the

amount of data flowing in the SSD to the maximum SSD performance, and this is expressed by

Equation (5).

𝑆𝐴𝑘(𝑡) =

𝐷𝑓𝑆𝑑1𝐷𝑓𝑘(1 − 𝑃(𝑡))

𝑊𝑘

+
(𝐷𝑓𝑆𝑑𝑗𝐷𝑓𝑘 + 𝐷𝑐𝑆𝑑𝑗𝐷𝑐𝑘)𝑃(𝑡)

𝑊𝑘

(5)

SH(t), the maximum throughput, in all SSD at time t, is obtained by multiplying the reciprocal

of the processing time per one input or output by the number of SSDs, and this is shown in

Expression (6).

𝑆𝐻 =

𝑆

𝑆𝐴𝑟(𝑡) + 𝑆𝐴𝑤(𝑡)

(6)

Therefore, H(t), the maximum throughput of the storage system at the time t, is the minimum
throughput value of all paths, and this is shown in the equation (7).

 𝐻(𝑡) = min (𝐻𝐹𝐸(𝑡), 𝐻𝐵𝐸(𝑡), 𝐻𝑆𝐶(𝑡), 𝐻𝑀𝐸𝑀 , 𝑆𝐻(𝑡)) (7)

4.2.3 Response Time Evaluation

As shown in Figure 2 and Figure 3, it is assumed that the storage system transmits a completion

response to the host machine at the timing when the update data is duplicated in the cache area

of SCs. In the case where the request processing from the host machine is executed once, the

response time R is the total amount of data flowing through one cable of each path i divided by

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

119

the maximum bandwidth of the cable. And this is shown in Expression (8). The time to create

the copy destination data on the memory in a host machine is sufficiently small as 0.5 µs or less,

and it is the time which is equivalent in the proposed method and the comparison target method.

Therefore, in this evaluation, the average response time does not include copy creation time in
the host machine.

𝑅 = ∑ 𝑆𝐴𝑘(𝑡)
𝑘

+ ∑ (
𝐷𝑓𝑑𝑖1𝐷𝑓

(1 − 𝑃(𝑡))

𝑏𝑖
𝑖

+
(𝐷𝑓𝑑𝑖𝑗𝐷𝑓

+ 𝐷𝑐𝑑𝑖𝑗𝐷𝑐
) 𝑃(𝑡)

𝑏𝑖

) +
2𝑔

𝐷𝑓

(8)

In the assumed benchmark, SPC-1CTM, the number of accesses to a cache area in a SC is

large, and path MEM becomes a performance bottleneck. Therefore, when read / write

processing is continuously issued from a host machine, it is necessary to consider the waiting

time of a Path MEM. On the other hand,16 paths connecting a host machine and a front-end

interface of a SC are sufficient, and the waiting time of other path i is not a performance

bottleneck, therefore this is not considered in this evaluation. Among the plurality of cables

constituting each path i, which cable is used is equally selected by round robin or the like. Since

the processing request from a host machine is issued at random, the waiting time of path MEM
is evaluated with the M/G/1 queue (Bhat, 1968), and the average response time R(I) is given by

Expression (9).

𝑅(𝐼) = 𝑅 +

𝑚𝜆𝑡(𝐼)(𝑉(𝑡) + 𝑇𝑎
2)

2(1 − 𝜆𝑡(𝐼)𝑇𝑎)

(9)

To smoothly process the number of processes requested from a host machine in a path MEM,

it is necessary that λt (I)Ta, the average traffic intensity of MEM path, indicating the degree of

processing inclusion should be 1 or less. As the average traffic intensity increases, the response

time also increases. Therefore, it is assumed that the whole system is optimized and λt(I)Ta is

0.9 or less in this evaluation.

4.3 Performance Evaluation after Taking Snapshot

We evaluated the changes in throughput and response time with elapsed time in the case where

the snapshot processing was taken for 1 out of 8 PVOLs. The processing requests from a host

machine were 2 patterns: the light load and the heavy load. A host machine had throughput

requirements of 30% as the light load and 70% as the heavy load against maximum throughput

of storage system in the assumed benchmark. We verified 2 patterns of chunk size Dc: 128

kBytes and 256 kBytes. The evaluation results in the heavy load are shown in Figure 4, and the

ones in the light load are shown in Figure 5.

IADIS International Journal on Computer Science and Information Systems

120

Figure 4. Performance stability in the heavy load after creating a snapshot

In CoW, the pass band in SC and the amount of data flowing in SSD increased and the

throughput decreased, since chunk copies always occurred immediately after taking a snapshot.

Therefore, as the chunk sharing rate decreased with elapsed time, the occurrence frequency of

chunk copy decreased and the throughput gradually recovered. On the other hand, in CiS and

MSiF, chunk copies don’t occur in the SC. Therefore, compared with CoW, the time taken to

recover the throughput of MSiF and CiS was shortened by 17.6% at the heavy load and 41.4%

at the light load at chunk size Dc=256 kBytes, and shortened by 15.1% at the heavy load and

76.9% at the light load at chunk size Dc=128 kBytes. The throughput of MSiF and CiS is the
same, since the number of accessed to path MEM in SC is large and it becomes a performance

neck.

0

0.5

1

1.5

2

2.5

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

R
es

p
o

n
se

 t
im

e
[m

s]

Th
ro

u
gh

p
u

t
[k

IO
P

S]

Elapsed time t [s]

CoW throughput (Dc=256k)

CiS throughput (Dc=256k)

MSiF throughput (Dc=256k)

CoW throughput (Dc=128k)

CiS throughput (Dc=128k)

MSiF throughput (Dc=128k)

CoW response time (Dc=256k)

CiS response time (Dc=256k)

MSiF response time (Dc=256k)

CoW response time (Dc=128k)

CiS response time (Dc=128k)

MSiF response time (Dc=128k)

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

121

Figure 5. Performance stability in the light load after creating a snapshot

On the other hand, in response time, CiS and MSiF are superior to CoW at the beginning.

However, the response time of CiS exceeds the one of CoW, this is because chunk copies in
SSD increases response time with a lapse of time. Table 5 shows the result of comparing the

response times (at the elapsed time t=0s, and t=800s) to confirm details of changes in response

times. In case of chunk size Dc=256 kBytes at the heavy load, the response time at time t=0s

decreased by 6.9% in CiS compared with CoW, and by 8.2% in MSiF compared with CoW.

Furthermore, the response time at time t=800s increased by 13.3% in CiS compared with CoW,

however it decreased by 29.4 % in MSiF compared with CoW. In the case of chunk size Dc=256

kBytes at the light load, the response time at time t=0s was the same as at the heavy load. On

the other hand, the response time at time t=800s increased by 22.9 % in CiS compared with

CoW, and it decreased by 40.0 % in MSiF compared with CoW.

We evaluated the case of other chunk sizes. As the result, the response time became smaller

as the chunk size Dc became smaller regardless of the method. For example, in the case of chunk

size Dc=128 kBytes at the light load, the response time at time t=800s increased by 17.4 % in
CiS compared with CoW, and it decreased by 56.5 % in MSiF compared with CoW. However,

the response time of MSiF, in which data transfer by chunk copy does not occur both at the

heavy load and the light load, didn’t exceed the response time of CoW / CiS.

0

0.5

1

1.5

2

2.5

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800

R
es

p
o

n
se

 t
im

e
[m

s]

Th
ro

u
gh

p
u

t
[k

IO
P

S]

Elapsed time t [s]

CoW throughput (Dc=256k)

CiS throughput (Dc=256k)

MSiF throughput (Dc=256k)

CoW throughput (Dc=128k)

CiS throughput (Dc=128k)

MSiF throughput (Dc=128k)

CoW response time (Dc=256k)

CiS response time (Dc=256k)

MSiF response time (Dc=256k)

CoW response time (Dc=128k)

CiS response time (Dc=128k)

MSiF response time (Dc=128k)

IADIS International Journal on Computer Science and Information Systems

122

Table 5. Response time stability (unit: ms)

 Method The heavy load The light load

Elapsed time t Elapsed time t

0s 800s 0s 800s

CoW Chunk size

Dc [Byte]

128k 0.943 0.058 0.943 0.023

256k 2.146 0.068 2.146 0.035

CiS

Chunk size
Dc [Byte]

128k 0.843 0.063 0.843 0.027

256k 1.997 0.077 1.997 0.043

MSiF Chunk size
Dc [Byte]

128k 0.829 0.048 0.829 0.013

256k 1.968 0.048 1.968 0.014

5. RELATED RESEARCH

There is ioSnap as one of the snapshot methods for AFA (Subramanian, 2014). A high-

performance requirement is stricter in AFAs than in conventional disk-based storage systems,

and the snapshot processing method adopted in the disk-based storage system cannot satisfy the

requirements of AFA. ioSnap uses the FTL mechanism based on RoW processing method. In

ioSnap, the generation number is assigned to the update data, and the snapshot tree where the

data sharing relationship between the PVOL and the multiple SVOLs is managed is created.
Thus, ioSnap reduces processing overhead at data access. However, ioSnap isn’t appropriate for

backup of large volume data since it is based on RoW.

6. CONCLUSION

We proposed snapshot method MSiF which is appropriate for AFA. We evaluated the
throughput and response time immediately after taking a snapshot. The benchmark is assumed

SPC-1CTM simulating online transaction processing. Resultantly, MSiF reduced throughput

recovery time by 76.9% and response time by 56.5% compared to CoW, when chunk size was

Dc=128 kBytes and the light load was required from a host machine. Furthermore, the

performance superiority of MSiF was confirmed regardless of chunk size and the load demand

from a host machines. Therefore, MSiF is the appropriated method for AFAs.

REFERENCES

Bhat, U.N., 1968. A study of the queueing systems M/G/1 and GI/M/1. Springer, Germany

Gupta, A. et al, 2009. DFTL: a flash translation layer employing demand-based selective caching of
page-level address mappings, Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, Washington, D.C., USA, Vol. 44, No. 3,
pp. 229-240.

Hitachi Vantara Corporation, 2018. Hitachi Vantara Storage Platform F Series, Retrieved July 13, 2018.
https://www.hitachivantara.com/en-us/pdfd/datasheet/vsp-f-series-datasheet.pdf

EFFICIENT SNAPSHOT METHOD FOR ALL-FLASH ARRAY

123

Hitachi Vantara Corporation, 2018. Hitachi Accelerated Flash: Speed Application Performance and Data
Center Efficiency, Retrieved July. 13, 2018. From https://www.hitachivantara.com/en-
us/pdfd/datasheet/accelerated-flash-datasheet.pdf

Imazaki, M. et al, 2016. Restorable Update Write by SSD Controller to Improve Destage Throughput in

Enterprise Storage System. Proceedings of Advanced Applied Informatics (IIAI-AAI), 2016 5th IIAI
International Congress, pp. 953-958.

Kim, H. and Ahn, S., 2008. BPLRU: A Buffer Management Scheme for Improving Random Writes in
Flash Storage. Proceedings of USENIX Conference on File and Storage Technology, USA, Vol. 8,
pp. 1-14.

Menon, J., 1994. Performance of RAID5 disk arrays with read and write caching. Distributed and Parallel
Databases, vol. 2, no. 3, pp.261-293.

Morishita N. et al, 2015, Storage system and storage control method, US Patent, US 2015/030713 A1.

Pure Storage Inc, (2017). FLASHARRAY, Retrieved July 13, 2018, from
https://www.purestorage.com/content/dam/purestorage/pdf/datasheets/ps_flasharray_ds6p_02.pdf

Storage Performance Council, 2013. SPC BENCHMARK 1CTM (SOC-1CTM) SPC BENCHMARK 1C/

ENERGYTM EXTENSION (SPC-1C/ETM) OFFICIAL SPECIFICATION, USA, version 1.5.0

Subramanian, S. et al, 2014. Snapshots in a flash with ioSnap, Proceedings of EuroSys’14, no. 23

Xiao, W. et al, 2006. Implementation and performance evaluation of two snapshot methods on iSCSI target
storages. Proceedings of NASA/IEEE Conference on Mass Storage Systems and Technologies, USA,
pp.101-110.

Yi, W. et al, 2015. A flash-aware intra-disk redundancy scheme for high reliable all flash array. IEICE
Electronics Express, 12(13), pp.1-11.

