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ABSTRACT 

The analysis of large amounts of data has become an important task in science and business that led to 
the emergence of the Big Data paradigm. This paradigm owes its name to data objects too large to be 
processed by standard hardware and algorithms. Many data analysis tasks involve the use of machine 
learning techniques. The goal of predictive models consists on achieving the highest possible accuracy to 
predict new samples, and for this reason there is high interest in selecting the most suitable algorithm for 
a specific dataset. Selecting the most suitable algorithm together with feature selection and data 

preparation techniques integrates the Full Model Selection paradigm and it has been widely studied in 
datasets of common size, but poorly explored in the Big Data context. As an effort to explore in this 
direction, this work proposes a framework adjustable to any population based meta-heuristic methods in 
order to perform model selection under the MapReduce paradigm.  
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1. INTRODUCTION 

In many fields of human activity there is a growing interest in storing and analyzing 

information. This information is quickly generated and in large amounts. With the advent of 

new technologies such as social networks, the quantity and variety of data has grown to 

unprecedented scales. In 2014, 2.5 quintillions of Bytes of information were daily created  

(Wu et al., 2014). Big Data became popular due to this phenomenon. A widespread definition 

of Big Data describes this concept in terms of three characteristics of information in this field: 

Volume, Velocity and Variety (del Rio et al., 2015). Subsequently other V’s have been added: 
Veracity and Value (Tili & Hamdani, 2014). In this regard, turning the information into a 
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valuable asset is carried out through machine learning techniques and choosing an appropriate 

learning algorithm is not a trivial task. This process requires finding the combination of 

learning algorithms together with their hyper-parameters to achieve the lowest 

misclassification rate in a wide search space (Thornton et al., 2013). In that same spirit, the 
Full Model Selection (FMS) paradigm proposed by Escalante et al. (2009) considers also the 

data preparation as the discretization or data normalization and the dimensionality reduction 

through a feature selection algorithm. FMS has been addressed as an optimization problem 

varying the search technique employed. As an example, Kaneko & Funatsu (2015) proposed a 

hybrid method based on grid search and the theoretic hyper-parameter decision technique 

(ThD) of Cherkassy and Ma for the algorithm SVR (Support Vector Regression). In Bergstra 

& Bengio (2012) evidence was obtained that random search can get similar or even better 

models than grid search in a fraction of the computing time. Escalante et al. (2009) tackled and 

defined the full model selection problem with the use of a particle swarm optimization 

algorithm (PSO), meanwhile Bansal & Sahoo (2015) proposed the use of the bat algorithm for 

solving FMS. Chatelain et al. (2010) presented a method for model selection based on a  
multi-objective genetic algorithm where the evaluation function takes into account sensitivity 

as well as specificity. Rosales-Perez et al. (2014) also tackled the search phase with a  

multi-objective genetic algorithm. They take into account the misclassification rate and the 

complexity of the models computed through the Vapnik-Chervonenkis dimension (VC). In 

2015 Rosales-Pérez et al. proposed the inclusion of surrogate functions in order to decrease 

the use of expensive fitness functions. All of the previous approaches for the model selection 

problem work with datasets that can be loaded in main memory, but if the amount of data is 

larger than a conventional personal computer can store, the model exhibiting the lowest error 

will not be found. This paper has the following organization. In section 2 we present some 

background on Big Data and MapReduce. Section 3 describes our proposed framework. 

Section 4 shows the experiments performed to test the validity of our proposal. Finally, 

section 5 presents conclusions and future work. 

2. BIG DATA AND THE MAPREDUCE PROGRAMMING 

MODEL 

MapReduce was introduced by Dean and Ghemawat in 2004 with the goal of enabling the 

parallelization and distribution of big scale computation required to analyze large datasets. 

This programming model was designed to work over computing clusters and it works under 

the master-slave communication model. MapReduce considers the following principles:  

1) Low-Cost Unreliable Commodity Hardware. MapReduce is designed to run on clusters of 

commodity hardware. 2) Extremely Scalable Cluster. Nodes can be taken out of service with 
almost no impact on the jobs. 3) Fault tolerant. MapReduce replicates data in order to keep 

processes running in case of failures. In the MapReduce programming model a computing task 

is specified as a sequence of stages: map, shuffle and reduce that works on a dataset 

                 . The map step applies a function μ to each value    to produce a finite set 

of key-value pairs      . To allow for parallel execution, the computation of function      , 
must depend only on   . The shuffle step collects all the key-value pairs produced in the 

previous map step, and produces a set of lists,                     where each of such lists 

consists of all values   , such that      for a key k assigned in the map step. The reduce 
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stage applies a function ρ to each list                    , created during the shuffle step, 

to produce a set of values             . The reduce function ρ is defined to work sequentially 

on    but should be independent of other lists   , where      (Goodrich et al., 2011). 

Despite being an extended definition, the 5 V’s of Big Data are a little ambiguous and do not 

provide rules to identify a huge dataset. In this work we propose an alternative definition but 

related to the model selection problem. For our definition we propose that a huge dataset for 

the model selection problem must accomplish two rules: 1) The dataset size is big enough that 

at least one of the considered classification algorithms in their sequential version cannot 

process it. 2) The dataset size is defined by its file size considering the number of instances  

(I) and features (F) as long as I » F. 

3. A FRAMEWORK FOR FMS UNDER MAPREDUCE 

This section describes our proposed framework for FMS. This algorithm was developed under 

Apache Spark 1.6.0, a framework based on MapReduce. We selected this framework because 

of its enhanced capacity to deal with iterative algorithms and the possibility to perform data 

processing in main memory (if memory capacity allows it). FMS was described in the 

previous sections, but Eq. 1 is given as formal definition. Given a set of learning algorithms A, 

data preparation techniques P and feature selection algorithms F, the goal of the FMS is to 

determine the combination of algorithms:    
    (a machine learning algorithm with an 

specific configuration in its hyper-parameter values),      and       with the lowest 

misclassification rate. The misclassification rate is estimated over the dataset D and this 

dataset is splited in two disjoint partitions (      
                  

               . The 

misclassification rate is calculated with the loss function 
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. The data partitions are previously transformed by p and 

f.  
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3.1 Representation  

The solutions encoded in a population based meta-heuristic method needs to be codified in a 

vector. Depending on the nature of the meta-heuristic method, the codification scheme of such 

vector varies between real and binary. In this work we choose a real codification scheme 

because their adaptability of a wide range of meta-heuristic methods. The solution vector 

      
    

         
   is encoded as follows: In position 1 the fitness of the potential models is 

stored. Position 2 allows to determine which operation will be done first: data-preparation or 

feature selection. Position 3 indicates if the data-preparation step will be done.  

Positions 4 to 6 are parameters for the data-preparation step (method identifier, parameter 1 
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and parameter 2). Position 7 determines if the feature selection step will be done. Positions  

8 and 9 are for the feature selection step (Method identifier and number of features to be 

selected respectively). Positions 10 to 16 are for the machine learning algorithm construction. 

The range of values that every element in the vector can take is as follows: [0-100]; [0,1], 

[0,1], [1,30], [1,NF], [1,50], [0,1], [1,5], [1,NF], [1,6], [1,2], [1,4], [1,100], [1,60], [1,400],  

[-20,20] with NF = Number of Features.   

3.2 Model Evaluation 

In this work Apache Spark is employed. Spark is an improvement over traditional MapReduce 

specially regarding to main memory use in order to reduce several reading/writing operations 

to disc. The cornerstone of Spark is the RDD or Resilient Distributed Dataset which is a 

collection of partitioned data elements that can be processed in parallel (Guller, 2015). In 

Algorithm 1 is shown the process to obtain an RDD from a text file. An analysis of the 

advantages of Spark over traditional MapReduce is out of the scope of this work, but we refer 

to Zaharia et al. (2016). 

 

 

 

 

 

Algorithm 1. Algorithm that obtain an RDD[Vector[Double]] from plain text 

 

 

 

 

 

 

 

Algorithm 2. Generic search algorithm for Full Model Selection 

Algorithm 1: Get the RDD 
 
getRDD(PathDataset,numparts) 
 RowRDD = Load(PathDataset,numparts) //Obtains RDD[String] 
 RDDcol = RowRDD.map(row->row.split(",")) /* obtains    
 RDD[Array[String]] */ 
 RDDVect = RDDcol.map(row->Vector(row.map(ColInR ->       
ColInR.toDouble))) 
 // Obtains RDD[Vector[Double]] 
Return(RDDVect) 
End 

Algorithm 2: Generic search algorithm 
 
SearchMethod(TestSet,TrainSet,NIt) 
 Population = CreateInitialRandomPopulation() 
 fitness = MRfitness(Population,TrainSet,labels) 
 /* MRfitness evaluates the performance of the solutions */ 
 ItCount=0; 
 While(GenCount < NIt) 
  UpdatedPop = updatesPopulation(Population) 
  fitness = MRfitness(Population,TrainSet,labels) 
  Population = replacement(Population,UpdatedPop) 
  /*Elitistic replacement by the solutions fitness */ 
  ItCount +=1 
 EndWhile 
 fModel = buildFM(Population)//Builds final model  
 finalFitness = evalFinalModel(fModel,TestSet)  
End 
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The function getRDD is employed to obtain the training and test RDDs that are used as 

parameters for the search algorithm based on the Spark's RDD for Full Model Selection. In 

Algorithm 2 a generic search procedure is shown. The models evaluation stage is comprised of 

the data preparation, feature selection, and training of a classification algorithm. In Algorithm 
3 this process is shown.  

 

 

 

 

 

 

 

 

 

 

Algorithm 3. Algorithm that obtain the fitness of every solution in the population 

The processes of data preparation, feature selection and classification are described in 

Algorithms 4 to 6. For greater ease of understanding the algorithms are commented  

(the comments are denoted with the symbols "// or /* */"). 

 

 

 

 

Algorithm 4. Algorithm that performs data-preparation 

In our proposal, the mean error over the 2-fold cross validation is used in order to evaluate 

the performance of every potential model. During the test stage in the development of the 

framework, different number of folds were evaluated (2,...,10) without significant differences, 

but adding to the computing time factor, the 2-fold cross validation was the best choice. Under 

another programming paradigm (other than MapReduce), the construction of a single model 

Algorithm 3: Fitness calculation 
 
MRfitness(Population,TrainSet) 
 fitness = Array[Double](Population.length) 
 For(i = 0; i < Population.length; i++) 
  solution = Population(i) 
  precedence = solution(2) 
  If(precedence == 0) 
   RDDPrep = DataPrep(TrainSet,solution)/*Performs data  
   Preparation */ 
   RDDFS = FeatSelection(RDDPrep,solution)/*Performs feature  
   Selection */ 
   fitness(i) = Classification(RDDFS,solution) /*Performs       
   classification */ 
  Else 
   RDDFS = FeatSelection(TrainSet,solution)/*Performs   
   feature selection */ 
   RDDPrep = DataPrep(RDDFS,solution)/*Performs data   

   Preparation */  
   fitness(i) = Classification(RDDPrep,solution)/*Performs    
   classification */ 
  EndIf 
 EndFor 
Return(fitness) 

Algorithm 4: Data preparation 
 
DataPrep(DataSet,solution) 
Return(DataSet.map(row->row.toArray.map(col 
>Transform(col,solution)))) 
 /*Transform function is applied to every column of each row in the 
RDD*/ 
End 
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with such large amount of data would have been impossible. The algorithms used in this work 

for data-preparation are: 1) Feature standardization, 2) Normalization, 3) Principal Component 

analysis, 4) Shift and scale and 5) Discretization. For feature selection, the algorithms are:  

1) Joint Mutual Information, 2) Minimum Redundancy Maximum Relevance, 3) Interaction 
Capping, 4) Conditional Mutual Information Maximization and 5) Informative Fragments. 

Finally the classification algorithms are: 1) Support Vector Machine (SVM), 2) Logistic 

Regression (LR), 3) Nave Bayes (NB), 4) Decision Tree (DT), 4) Random Forest (RF) and  

5) Gradient-Boosted Trees (GBT). 

 

 

 

 

 

Algorithm 5. Algorithm that performs feature selection 

 

 

 

 

 

 

 

 

Algorithm 6. Performs classification in the dataset 

 

 

Algorithm 5: Feature Selection 
 
FeatSelection(DataSet,solution) 
 numFeat = solution(9) 

 rankRDD = DataSet.map(row->RankingCalculation(row)) 
 /*RankingCalculation function obtains the ranking of the features 
*/ 
 reducedRDD = rankRDD.map(row->getF(row,numFeat)) /*function getF 
is applied 
 to rankRDD and returns a reduced dataset */ 
Return(reducedRDD) 
End 

Algorithm 6: Classification 
 
Classification(DataSet,solution) 
 kFolds=createFold(DataSet,NumFolds=2)/*createFold function   
  creates an RDD for k-Fold Cross validation */ 
  error=kFolds.map{ 
  case(Training,Validation)/*dataset is separated in  

  Training and Validation */ 
  model = createModel(Training, solution)/*creates a model 
  PredictedTargets=Validation.map(Instance-> 
  model.predict(Instance.features))/*Performs predictions in   
  validation set */ 
  accuracy= getAcc(PredictedTargets,Validation.targets) 
  //Obtains the accuracy in each fold 
  error = 100-accuracy 
 Return(error) } 
  meanError=error.sum/error.length 
 Return(meanError) 
End 
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4. EXPERIMENTS AND RESULTS 

With the purpose to evaluate the performance of the proposed framework, two population 

based meta-heuristic methods were tested: a Genetic Algorithm (GA) and the PSO based FMS 

algorithm proposed in Escalante et al. (2009) PSMS. We experimented with the datasets 

shown in Table 1 that have been used in several classification research works for Big Data  

(del Rio et al.,20014; del Rio et al., 2015; Lopez et al., 2014; Lopez et al., 2014a) . We also 

used two synthetic data sets generated with a tool for synthetic datasets generation in the 

context of ordinal regression: "Synthetic Datasets Nspheres" provided in Sánchez-Monedero 
et al. (2013). 

Table 1. Datasets used in the experiments 

Datasets Data  

points 

Attributes Samples  

by 

 class 

Type  
of  
variables 

File Size 

Fars 50164 52 (17,445; 32,719) Categorical 6.0 MB 

Census-income 1999523 40 (187,141; 12,382) Categorical 18.0 MB 

Covtype 495141 54 (283,301; 211,840) Categorical 61.6 MB 

RLCP 5749111 11 (5728197;20915) Real 261.6 MB 

KDD 4856150 41 (972780;3883369) Categorical 653 MB 

Synthetic 1 200000000 3 (100000000;100000000) Real 5.5 GB 

Higgs 11000000 28 (5170877;5829123) Real 7.5 GB 

Synthetic 2 49000002 30 (24500001;24500001 ) Real 12.7 GB 

 

The stopping criteria of both algorithms GA and PSMS were to perform 47 
generations/iterations and the swarm/population size was of 30 individuals/particles (1,410 

models). As both algorithms are population based we take advantage of that fact and the final 

model is an ensemble of all the best individuals. This ensemble is performed by a weighted 

voting scheme. The obtained results (mean error) in the datasets over 44 replications are 

shown in Table 2. 
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Table 2. Mean classification error obtained in the test dataset by the algorithms GA and PSMS over 44 
replications. The lowest mean errors are in bold 

Datasets GA PSMS 

Fars 0.166 ±0.025  0.162±0.025 

Census-income 5.751±0.154 5.718±0.397 

Covtype 6.685±0.218 5.328±0.356 

RLCP 0.009±0.001 0.052±0.001 

KDD 0.025±0.007 0.166±0.148 

Synthetic 1 15.862±0.004 15.864±0.004 

Higgs 29.507±0.143 28.304±0.064 

Synthetic 2 6.684±0.002 6.683±0.005 

Table 3. t-statistic obtained from the Student's t-test. The critical values at the 95% confidence level are 
2.016 with 43 d.f. Cases that exceed the critical value (absolute value) are considered as a difference that 

is statistically significant at the fixed level and are in bold 

Datasets t-statistic 

Fars 0.633 

Census-income 0.534 

Covtype 22.486 

RLCP -188.965 

KDD -6.276 

Synthetic 1 -1.7405 

Higgs 52.156 

Synthetic 2 0.996 

 

Each replication was performed with a particular random sample of the data points with 

different random samples among replications. For each experiment, the dataset was divided 

into two disjoint datasets with 60% of the data samples for the training set and 40% for the test 

set. The 44 replications were performed in order to obtain an statistical power of 90% in a 

Student's t-test and get evidences of significant differences in the performance of the GA and 
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PSMS. From Table 2, it can be seen that PSMS obtains the lowest error in five of the eight 

evaluated datasets.  From Table 3, the t-test shows that exists significant differences in four 

datasets, favoring to PSMS in two of them and favoring to GA also in two. The results 

showed that the performance of both search techniques is similar. In order to contrast the 
performance of both techniques, two well know classification/model-selection techniques 

were employed. The Kernel Nearest-Neighbour algorithm (K-NN) present in Yu et al., (2002) 

and a grid search  present in the librarys of Apache Spark AST for tuning machine learning 

algorithms (Apache org, 2017).  Referring to AST we set the number of models to be 

evaluated to 1,412 (in order to be similar to the number of models evaluated by PSMS) using 

the algorithms mentioned in section 3.2 and for K-NN we set k=9,999. 

Table 4. Mean classification error obtained in the test dataset by GA, PSMS  and the obtained by K-NN 
(K=9,999) and AST, over 20 replications. The best results are in bold 

Datasets GA PSMS AST K-NN 

Fars 0.166±0.025 0.159±0.020 0.157±0.042 7.586±0.154 

Census-income 5.751±0.154 5.771±0.444 6.727±1.018 6.408±0.093 

Covtype 6.685±0.218 5.321±0.339 23.625±0.090 42.791±0.088 

RLCP 0.009±0.001 0.052±0.001 0.001±0.000 0.500±0.098 

KDD 0.025±0.007 0.156±0.134 0.001±0.000 19.535±0.261 

Synthetic 1 15.862±0.004 15.862±0.004 17.011±0.120 50.088±0.028 

Higgs 29.507±0.143 28.299±0.057 30.955±0.228 46.916±0.408 

Synthetic 2 6.684±0.002 6.681±0.005 22.152±0.541 50.126±0.115 

 

Once again, in order to obtain an statistical power of 90% in an ANOVA test 20 

replications were made. Table 4 shows that GA gets the best performance in one of the eight 

datasets (Census) and PSMS obtains the lowest error in four (Covtype,Syntethic 1, Higgs and 

Syntethic 2) while AST in three (Fars, RLCP and KDD). 
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Table 5. F-statistic obtained from the ANOVA test and q-values from the Tukey HSD test for performing 
all possible pairwise comparisons among the proposed strategies for the final model construction. The 
critical values at the 95% confidence level for the ANOVA test are 3.16  (F(2,57)) for all datasets. The 
critical values at the 95% confidence level for the Tukey HSD test are 3.44  (57 degrees of freedom). 
Cases that exceed the critical value are considered as a difference that is statistically significant at the 

fixed level and are marked with an asterisk (*) 

Datasets Anova F PSMS 

vs 

AST 

PSMS 

vs 

K-NN 

Fars  42436.12* 0.082  356.76* 

Census-income  11.43*  6.642*  4.42* 

Covtype  160999.48*  391.98*  802.98* 

RLCP  470.34*  4.00*  35.40* 

KDD  87594.48*  4.10*  510.56* 

Synthetic 1  1482334.54*  71.95*  2143.80* 

Higgs  27501.97*  43.75*  306.60* 

Synthetic 2  95223.56*  216.80*  608.82* 

 

Table 5 shows that there are significant differences in all datasets respect to PSMS and K-

NN. Regarding to AST, there are significant differences in seven of the eight datasets and 

favoring to AST in two (RLCP and KDD). That means that PSMS obtained the best 

performance in six of the eight datasets. Regarding to the GA Table 6 shows that there are also 

significant differences in all datasets compared to K-NN and there are significant differences 

in five datasets favoring to GA compared to AST (Census, Covtype,Sytethic 1, Higgs and 

Syntethic 2). In the remaining datasets (Fars, RLCP and KDD) there are not statistical 

differences in the performance of AST and GA. The obtained results shows that both search 

techniques are competitive and in the case of the GA even though is not the best in seven of 

the eight datasets, the statistical tests provide evidence that GA has a good performance in all 

datasets even in those that was not the best because there were no statistically significant 

differences between the performance of GA and the performance of the base line algorithms. 

The performance of both search algorithms shows that the final user can choose, create or 
modify the most suitable technique to their necessities and therefore is not limited to one 

single search option. 
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Table 6. F-statistic obtained from the ANOVA test and q-values from the Tukey HSD test for 
performing all possible pairwise comparisons among the proposed strategies for the final model 

construction. The critical values at the 95% confidence level for the ANOVA test are 3.16  (F(2,57)) for 
all datasets. The critical values at the 95% confidence level for the Tukey HSD test are 3.44  (57 degrees 

of freedom). Cases that exceed the critical value are considered as a difference that is statistically 
significant at the fixed level and are marked with an asterisk (*) 

Datasets Anova F GA 

vs 

AST 

GA 

vs 

K-NN 

Fars  41758.60* 0.756  353.56* 

Census-income  11.88* 6.796*  4.396* 

Covtype  381028.72* 578.120*  1233.700* 

RLCP  509.53* 0.628  38.779* 

KDD  111462.85* 0.693  577.920* 

Synthetic 1  1482574.07*  71.957*  2144* 

Higgs  23910.89*  23.168*  278.660* 

Synthetic 2  95220.24*  216.77*  608.800* 

5. CONCLUSIONS AND FUTURE WORK 

In this work we proposed a framework to deal with the full model selection problem for very 

large datasets (Big Data). Our framework was implemented under the MapReduce 

programming paradigm. Experimental results shown that applying a model selection algorithm 

in order to analyze large and average size datasets is feasible. Our results show a significant 

predictive power improvement of the employed search algorithms compared with those in the 

base line (also designed for big data). The main advantages of our work is the adaptability of 

the framework to different population based meta-heuristic methods and therefore, the model 
selection can be plausible in datasets of a wide range of sizes and with a wide range of 

techniques (each one with its own strengths and weakness) according to the preferences of the 

final user. In future work we will look for the reduction of calls to expensive fitness functions, 

decrease the variance of the error rate produced by our framework, and find ways to control 

and penalize the complexity of the models obtained with this framework. 
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