
IADIS International Journal on Computer Science and Information Systems

Vol. 13, No. 1, pp. 1-13
ISSN: 1646-3692

1

A MAPREDUCE BASED FRAMEWORK TO

PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

Angel Díaz Pacheco, Jesús A. Gonzalez-Bernal and Carlos A. Reyes-Garcia

 , Óptica y Electrónica (INAOE), Computer Science Department.

 , Puebla, 72840, Mexico

ABSTRACT

The analysis of large amounts of data has become an important task in science and business that led to
the emergence of the Big Data paradigm. This paradigm owes its name to data objects too large to be
processed by standard hardware and algorithms. Many data analysis tasks involve the use of machine
learning techniques. The goal of predictive models consists on achieving the highest possible accuracy to
predict new samples, and for this reason there is high interest in selecting the most suitable algorithm for
a specific dataset. Selecting the most suitable algorithm together with feature selection and data

preparation techniques integrates the Full Model Selection paradigm and it has been widely studied in
datasets of common size, but poorly explored in the Big Data context. As an effort to explore in this
direction, this work proposes a framework adjustable to any population based meta-heuristic methods in
order to perform model selection under the MapReduce paradigm.

KEYWORDS

Model Selection, MapReduce, Big Data

1. INTRODUCTION

In many fields of human activity there is a growing interest in storing and analyzing

information. This information is quickly generated and in large amounts. With the advent of

new technologies such as social networks, the quantity and variety of data has grown to

unprecedented scales. In 2014, 2.5 quintillions of Bytes of information were daily created

(Wu et al., 2014). Big Data became popular due to this phenomenon. A widespread definition

of Big Data describes this concept in terms of three characteristics of information in this field:

Volume, Velocity and Variety (del Rio et al., 2015). Subsequently other V’s have been added:
Veracity and Value (Tili & Hamdani, 2014). In this regard, turning the information into a

IADIS International Journal on Computer Science and Information Systems

2

valuable asset is carried out through machine learning techniques and choosing an appropriate

learning algorithm is not a trivial task. This process requires finding the combination of

learning algorithms together with their hyper-parameters to achieve the lowest

misclassification rate in a wide search space (Thornton et al., 2013). In that same spirit, the
Full Model Selection (FMS) paradigm proposed by Escalante et al. (2009) considers also the

data preparation as the discretization or data normalization and the dimensionality reduction

through a feature selection algorithm. FMS has been addressed as an optimization problem

varying the search technique employed. As an example, Kaneko & Funatsu (2015) proposed a

hybrid method based on grid search and the theoretic hyper-parameter decision technique

(ThD) of Cherkassy and Ma for the algorithm SVR (Support Vector Regression). In Bergstra

& Bengio (2012) evidence was obtained that random search can get similar or even better

models than grid search in a fraction of the computing time. Escalante et al. (2009) tackled and

defined the full model selection problem with the use of a particle swarm optimization

algorithm (PSO), meanwhile Bansal & Sahoo (2015) proposed the use of the bat algorithm for

solving FMS. Chatelain et al. (2010) presented a method for model selection based on a
multi-objective genetic algorithm where the evaluation function takes into account sensitivity

as well as specificity. Rosales-Perez et al. (2014) also tackled the search phase with a

multi-objective genetic algorithm. They take into account the misclassification rate and the

complexity of the models computed through the Vapnik-Chervonenkis dimension (VC). In

2015 Rosales-Pérez et al. proposed the inclusion of surrogate functions in order to decrease

the use of expensive fitness functions. All of the previous approaches for the model selection

problem work with datasets that can be loaded in main memory, but if the amount of data is

larger than a conventional personal computer can store, the model exhibiting the lowest error

will not be found. This paper has the following organization. In section 2 we present some

background on Big Data and MapReduce. Section 3 describes our proposed framework.

Section 4 shows the experiments performed to test the validity of our proposal. Finally,

section 5 presents conclusions and future work.

2. BIG DATA AND THE MAPREDUCE PROGRAMMING

MODEL

MapReduce was introduced by Dean and Ghemawat in 2004 with the goal of enabling the

parallelization and distribution of big scale computation required to analyze large datasets.

This programming model was designed to work over computing clusters and it works under

the master-slave communication model. MapReduce considers the following principles:

1) Low-Cost Unreliable Commodity Hardware. MapReduce is designed to run on clusters of

commodity hardware. 2) Extremely Scalable Cluster. Nodes can be taken out of service with
almost no impact on the jobs. 3) Fault tolerant. MapReduce replicates data in order to keep

processes running in case of failures. In the MapReduce programming model a computing task

is specified as a sequence of stages: map, shuffle and reduce that works on a dataset

 . The map step applies a function μ to each value to produce a finite set

of key-value pairs . To allow for parallel execution, the computation of function ,
must depend only on . The shuffle step collects all the key-value pairs produced in the

previous map step, and produces a set of lists, where each of such lists

consists of all values , such that for a key k assigned in the map step. The reduce

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

3

stage applies a function ρ to each list , created during the shuffle step,

to produce a set of values . The reduce function ρ is defined to work sequentially

on but should be independent of other lists , where (Goodrich et al., 2011).

Despite being an extended definition, the 5 V’s of Big Data are a little ambiguous and do not

provide rules to identify a huge dataset. In this work we propose an alternative definition but

related to the model selection problem. For our definition we propose that a huge dataset for

the model selection problem must accomplish two rules: 1) The dataset size is big enough that

at least one of the considered classification algorithms in their sequential version cannot

process it. 2) The dataset size is defined by its file size considering the number of instances

(I) and features (F) as long as I » F.

3. A FRAMEWORK FOR FMS UNDER MAPREDUCE

This section describes our proposed framework for FMS. This algorithm was developed under

Apache Spark 1.6.0, a framework based on MapReduce. We selected this framework because

of its enhanced capacity to deal with iterative algorithms and the possibility to perform data

processing in main memory (if memory capacity allows it). FMS was described in the

previous sections, but Eq. 1 is given as formal definition. Given a set of learning algorithms A,

data preparation techniques P and feature selection algorithms F, the goal of the FMS is to

determine the combination of algorithms:
 (a machine learning algorithm with an

specific configuration in its hyper-parameter values), and with the lowest

misclassification rate. The misclassification rate is estimated over the dataset D and this

dataset is splited in two disjoint partitions (

 . The

misclassification rate is calculated with the loss function

 , training the algorithm
 in the partition

, and

evaluated in the partition

. The data partitions are previously transformed by p and

f.

(1)

3.1 Representation

The solutions encoded in a population based meta-heuristic method needs to be codified in a

vector. Depending on the nature of the meta-heuristic method, the codification scheme of such

vector varies between real and binary. In this work we choose a real codification scheme

because their adaptability of a wide range of meta-heuristic methods. The solution vector

 is encoded as follows: In position 1 the fitness of the potential models is

stored. Position 2 allows to determine which operation will be done first: data-preparation or

feature selection. Position 3 indicates if the data-preparation step will be done.

Positions 4 to 6 are parameters for the data-preparation step (method identifier, parameter 1

IADIS International Journal on Computer Science and Information Systems

4

and parameter 2). Position 7 determines if the feature selection step will be done. Positions

8 and 9 are for the feature selection step (Method identifier and number of features to be

selected respectively). Positions 10 to 16 are for the machine learning algorithm construction.

The range of values that every element in the vector can take is as follows: [0-100]; [0,1],

[0,1], [1,30], [1,NF], [1,50], [0,1], [1,5], [1,NF], [1,6], [1,2], [1,4], [1,100], [1,60], [1,400],

[-20,20] with NF = Number of Features.

3.2 Model Evaluation

In this work Apache Spark is employed. Spark is an improvement over traditional MapReduce

specially regarding to main memory use in order to reduce several reading/writing operations

to disc. The cornerstone of Spark is the RDD or Resilient Distributed Dataset which is a

collection of partitioned data elements that can be processed in parallel (Guller, 2015). In

Algorithm 1 is shown the process to obtain an RDD from a text file. An analysis of the

advantages of Spark over traditional MapReduce is out of the scope of this work, but we refer

to Zaharia et al. (2016).

Algorithm 1. Algorithm that obtain an RDD[Vector[Double]] from plain text

Algorithm 2. Generic search algorithm for Full Model Selection

Algorithm 1: Get the RDD

getRDD(PathDataset,numparts)
 RowRDD = Load(PathDataset,numparts) //Obtains RDD[String]
 RDDcol = RowRDD.map(row->row.split(",")) /* obtains
 RDD[Array[String]] */
 RDDVect = RDDcol.map(row->Vector(row.map(ColInR ->
ColInR.toDouble)))
 // Obtains RDD[Vector[Double]]
Return(RDDVect)
End

Algorithm 2: Generic search algorithm

SearchMethod(TestSet,TrainSet,NIt)
 Population = CreateInitialRandomPopulation()
 fitness = MRfitness(Population,TrainSet,labels)
 /* MRfitness evaluates the performance of the solutions */
 ItCount=0;
 While(GenCount < NIt)
 UpdatedPop = updatesPopulation(Population)
 fitness = MRfitness(Population,TrainSet,labels)
 Population = replacement(Population,UpdatedPop)
 /*Elitistic replacement by the solutions fitness */
 ItCount +=1
 EndWhile
 fModel = buildFM(Population)//Builds final model
 finalFitness = evalFinalModel(fModel,TestSet)
End

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

5

The function getRDD is employed to obtain the training and test RDDs that are used as

parameters for the search algorithm based on the Spark's RDD for Full Model Selection. In

Algorithm 2 a generic search procedure is shown. The models evaluation stage is comprised of

the data preparation, feature selection, and training of a classification algorithm. In Algorithm
3 this process is shown.

Algorithm 3. Algorithm that obtain the fitness of every solution in the population

The processes of data preparation, feature selection and classification are described in

Algorithms 4 to 6. For greater ease of understanding the algorithms are commented

(the comments are denoted with the symbols "// or /* */").

Algorithm 4. Algorithm that performs data-preparation

In our proposal, the mean error over the 2-fold cross validation is used in order to evaluate

the performance of every potential model. During the test stage in the development of the

framework, different number of folds were evaluated (2,...,10) without significant differences,

but adding to the computing time factor, the 2-fold cross validation was the best choice. Under

another programming paradigm (other than MapReduce), the construction of a single model

Algorithm 3: Fitness calculation

MRfitness(Population,TrainSet)
 fitness = Array[Double](Population.length)
 For(i = 0; i < Population.length; i++)
 solution = Population(i)
 precedence = solution(2)
 If(precedence == 0)
 RDDPrep = DataPrep(TrainSet,solution)/*Performs data
 Preparation */
 RDDFS = FeatSelection(RDDPrep,solution)/*Performs feature
 Selection */
 fitness(i) = Classification(RDDFS,solution) /*Performs
 classification */
 Else
 RDDFS = FeatSelection(TrainSet,solution)/*Performs
 feature selection */
 RDDPrep = DataPrep(RDDFS,solution)/*Performs data

 Preparation */
 fitness(i) = Classification(RDDPrep,solution)/*Performs
 classification */
 EndIf
 EndFor
Return(fitness)

Algorithm 4: Data preparation

DataPrep(DataSet,solution)
Return(DataSet.map(row->row.toArray.map(col
>Transform(col,solution))))
 /*Transform function is applied to every column of each row in the
RDD*/
End

IADIS International Journal on Computer Science and Information Systems

6

with such large amount of data would have been impossible. The algorithms used in this work

for data-preparation are: 1) Feature standardization, 2) Normalization, 3) Principal Component

analysis, 4) Shift and scale and 5) Discretization. For feature selection, the algorithms are:

1) Joint Mutual Information, 2) Minimum Redundancy Maximum Relevance, 3) Interaction
Capping, 4) Conditional Mutual Information Maximization and 5) Informative Fragments.

Finally the classification algorithms are: 1) Support Vector Machine (SVM), 2) Logistic

Regression (LR), 3) Nave Bayes (NB), 4) Decision Tree (DT), 4) Random Forest (RF) and

5) Gradient-Boosted Trees (GBT).

Algorithm 5. Algorithm that performs feature selection

Algorithm 6. Performs classification in the dataset

Algorithm 5: Feature Selection

FeatSelection(DataSet,solution)
 numFeat = solution(9)

 rankRDD = DataSet.map(row->RankingCalculation(row))
 /*RankingCalculation function obtains the ranking of the features
*/
 reducedRDD = rankRDD.map(row->getF(row,numFeat)) /*function getF
is applied
 to rankRDD and returns a reduced dataset */
Return(reducedRDD)
End

Algorithm 6: Classification

Classification(DataSet,solution)
 kFolds=createFold(DataSet,NumFolds=2)/*createFold function
 creates an RDD for k-Fold Cross validation */
 error=kFolds.map{
 case(Training,Validation)/*dataset is separated in

 Training and Validation */
 model = createModel(Training, solution)/*creates a model
 PredictedTargets=Validation.map(Instance->
 model.predict(Instance.features))/*Performs predictions in
 validation set */
 accuracy= getAcc(PredictedTargets,Validation.targets)
 //Obtains the accuracy in each fold
 error = 100-accuracy
 Return(error) }
 meanError=error.sum/error.length
 Return(meanError)
End

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

7

4. EXPERIMENTS AND RESULTS

With the purpose to evaluate the performance of the proposed framework, two population

based meta-heuristic methods were tested: a Genetic Algorithm (GA) and the PSO based FMS

algorithm proposed in Escalante et al. (2009) PSMS. We experimented with the datasets

shown in Table 1 that have been used in several classification research works for Big Data

(del Rio et al.,20014; del Rio et al., 2015; Lopez et al., 2014; Lopez et al., 2014a) . We also

used two synthetic data sets generated with a tool for synthetic datasets generation in the

context of ordinal regression: "Synthetic Datasets Nspheres" provided in Sánchez-Monedero
et al. (2013).

Table 1. Datasets used in the experiments

Datasets Data

points

Attributes Samples

by

 class

Type
of
variables

File Size

Fars 50164 52 (17,445; 32,719) Categorical 6.0 MB

Census-income 1999523 40 (187,141; 12,382) Categorical 18.0 MB

Covtype 495141 54 (283,301; 211,840) Categorical 61.6 MB

RLCP 5749111 11 (5728197;20915) Real 261.6 MB

KDD 4856150 41 (972780;3883369) Categorical 653 MB

Synthetic 1 200000000 3 (100000000;100000000) Real 5.5 GB

Higgs 11000000 28 (5170877;5829123) Real 7.5 GB

Synthetic 2 49000002 30 (24500001;24500001) Real 12.7 GB

The stopping criteria of both algorithms GA and PSMS were to perform 47
generations/iterations and the swarm/population size was of 30 individuals/particles (1,410

models). As both algorithms are population based we take advantage of that fact and the final

model is an ensemble of all the best individuals. This ensemble is performed by a weighted

voting scheme. The obtained results (mean error) in the datasets over 44 replications are

shown in Table 2.

IADIS International Journal on Computer Science and Information Systems

8

Table 2. Mean classification error obtained in the test dataset by the algorithms GA and PSMS over 44
replications. The lowest mean errors are in bold

Datasets GA PSMS

Fars 0.166 ±0.025 0.162±0.025

Census-income 5.751±0.154 5.718±0.397

Covtype 6.685±0.218 5.328±0.356

RLCP 0.009±0.001 0.052±0.001

KDD 0.025±0.007 0.166±0.148

Synthetic 1 15.862±0.004 15.864±0.004

Higgs 29.507±0.143 28.304±0.064

Synthetic 2 6.684±0.002 6.683±0.005

Table 3. t-statistic obtained from the Student's t-test. The critical values at the 95% confidence level are
2.016 with 43 d.f. Cases that exceed the critical value (absolute value) are considered as a difference that

is statistically significant at the fixed level and are in bold

Datasets t-statistic

Fars 0.633

Census-income 0.534

Covtype 22.486

RLCP -188.965

KDD -6.276

Synthetic 1 -1.7405

Higgs 52.156

Synthetic 2 0.996

Each replication was performed with a particular random sample of the data points with

different random samples among replications. For each experiment, the dataset was divided

into two disjoint datasets with 60% of the data samples for the training set and 40% for the test

set. The 44 replications were performed in order to obtain an statistical power of 90% in a

Student's t-test and get evidences of significant differences in the performance of the GA and

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

9

PSMS. From Table 2, it can be seen that PSMS obtains the lowest error in five of the eight

evaluated datasets. From Table 3, the t-test shows that exists significant differences in four

datasets, favoring to PSMS in two of them and favoring to GA also in two. The results

showed that the performance of both search techniques is similar. In order to contrast the
performance of both techniques, two well know classification/model-selection techniques

were employed. The Kernel Nearest-Neighbour algorithm (K-NN) present in Yu et al., (2002)

and a grid search present in the librarys of Apache Spark AST for tuning machine learning

algorithms (Apache org, 2017). Referring to AST we set the number of models to be

evaluated to 1,412 (in order to be similar to the number of models evaluated by PSMS) using

the algorithms mentioned in section 3.2 and for K-NN we set k=9,999.

Table 4. Mean classification error obtained in the test dataset by GA, PSMS and the obtained by K-NN
(K=9,999) and AST, over 20 replications. The best results are in bold

Datasets GA PSMS AST K-NN

Fars 0.166±0.025 0.159±0.020 0.157±0.042 7.586±0.154

Census-income 5.751±0.154 5.771±0.444 6.727±1.018 6.408±0.093

Covtype 6.685±0.218 5.321±0.339 23.625±0.090 42.791±0.088

RLCP 0.009±0.001 0.052±0.001 0.001±0.000 0.500±0.098

KDD 0.025±0.007 0.156±0.134 0.001±0.000 19.535±0.261

Synthetic 1 15.862±0.004 15.862±0.004 17.011±0.120 50.088±0.028

Higgs 29.507±0.143 28.299±0.057 30.955±0.228 46.916±0.408

Synthetic 2 6.684±0.002 6.681±0.005 22.152±0.541 50.126±0.115

Once again, in order to obtain an statistical power of 90% in an ANOVA test 20

replications were made. Table 4 shows that GA gets the best performance in one of the eight

datasets (Census) and PSMS obtains the lowest error in four (Covtype,Syntethic 1, Higgs and

Syntethic 2) while AST in three (Fars, RLCP and KDD).

IADIS International Journal on Computer Science and Information Systems

10

Table 5. F-statistic obtained from the ANOVA test and q-values from the Tukey HSD test for performing
all possible pairwise comparisons among the proposed strategies for the final model construction. The
critical values at the 95% confidence level for the ANOVA test are 3.16 (F(2,57)) for all datasets. The
critical values at the 95% confidence level for the Tukey HSD test are 3.44 (57 degrees of freedom).
Cases that exceed the critical value are considered as a difference that is statistically significant at the

fixed level and are marked with an asterisk (*)

Datasets Anova F PSMS

vs

AST

PSMS

vs

K-NN

Fars 42436.12* 0.082 356.76*

Census-income 11.43* 6.642* 4.42*

Covtype 160999.48* 391.98* 802.98*

RLCP 470.34* 4.00* 35.40*

KDD 87594.48* 4.10* 510.56*

Synthetic 1 1482334.54* 71.95* 2143.80*

Higgs 27501.97* 43.75* 306.60*

Synthetic 2 95223.56* 216.80* 608.82*

Table 5 shows that there are significant differences in all datasets respect to PSMS and K-

NN. Regarding to AST, there are significant differences in seven of the eight datasets and

favoring to AST in two (RLCP and KDD). That means that PSMS obtained the best

performance in six of the eight datasets. Regarding to the GA Table 6 shows that there are also

significant differences in all datasets compared to K-NN and there are significant differences

in five datasets favoring to GA compared to AST (Census, Covtype,Sytethic 1, Higgs and

Syntethic 2). In the remaining datasets (Fars, RLCP and KDD) there are not statistical

differences in the performance of AST and GA. The obtained results shows that both search

techniques are competitive and in the case of the GA even though is not the best in seven of

the eight datasets, the statistical tests provide evidence that GA has a good performance in all

datasets even in those that was not the best because there were no statistically significant

differences between the performance of GA and the performance of the base line algorithms.

The performance of both search algorithms shows that the final user can choose, create or
modify the most suitable technique to their necessities and therefore is not limited to one

single search option.

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

11

Table 6. F-statistic obtained from the ANOVA test and q-values from the Tukey HSD test for
performing all possible pairwise comparisons among the proposed strategies for the final model

construction. The critical values at the 95% confidence level for the ANOVA test are 3.16 (F(2,57)) for
all datasets. The critical values at the 95% confidence level for the Tukey HSD test are 3.44 (57 degrees

of freedom). Cases that exceed the critical value are considered as a difference that is statistically
significant at the fixed level and are marked with an asterisk (*)

Datasets Anova F GA

vs

AST

GA

vs

K-NN

Fars 41758.60* 0.756 353.56*

Census-income 11.88* 6.796* 4.396*

Covtype 381028.72* 578.120* 1233.700*

RLCP 509.53* 0.628 38.779*

KDD 111462.85* 0.693 577.920*

Synthetic 1 1482574.07* 71.957* 2144*

Higgs 23910.89* 23.168* 278.660*

Synthetic 2 95220.24* 216.77* 608.800*

5. CONCLUSIONS AND FUTURE WORK

In this work we proposed a framework to deal with the full model selection problem for very

large datasets (Big Data). Our framework was implemented under the MapReduce

programming paradigm. Experimental results shown that applying a model selection algorithm

in order to analyze large and average size datasets is feasible. Our results show a significant

predictive power improvement of the employed search algorithms compared with those in the

base line (also designed for big data). The main advantages of our work is the adaptability of

the framework to different population based meta-heuristic methods and therefore, the model
selection can be plausible in datasets of a wide range of sizes and with a wide range of

techniques (each one with its own strengths and weakness) according to the preferences of the

final user. In future work we will look for the reduction of calls to expensive fitness functions,

decrease the variance of the error rate produced by our framework, and find ways to control

and penalize the complexity of the models obtained with this framework.

IADIS International Journal on Computer Science and Information Systems

12

ACKNOWLEDGEMENT

The first author is grateful for the support from CONACyT scholarship no. 428581.

REFERENCES

Apacheorg (2017), `Ml tuning: model selection and hyperparameter tuning',
http://spark.apache.org/docs/latest/ml-tuning.html.

Bansal, B., Sahoo, A., Escalante, H. J., Montes, M. & Sucar, L. E. (2015), `o', pp. 1-4.

Bergstra, J. & Bengio, Y. (2012), `Random Search for Hyper-Parameter Optimization', Journal
ofMachine Learning Research 13, 281-305.

Chatelain, C., Adam, S., Lecourtier, Y., Heutte, L. & Paquet, T. (2010), 'A multi-model selection
framework for unknown and/or evolutive misclassification cost problems', Pattern Recognition
43(3), 815-823. URL: http://dx.doi.org/10.1016/j.patcog.2009.07.006.

Dean, J. & Ghemawat, S. (2008), 'MapReduce', Communications of the ACM 51(1), 107-113.

del Río, S., Lopez, V., Benítez, J. M. & Herrera, F. (2014), 'On the use of mapreduce for imbalanced big
data using random forest', Information Sciences 285, 112-137.

del Río, S., López, V., Benítez, J. M. & Herrera, F. (2015), 'A MapReduce Approach to Address Big
Data Classification Problems Based on the Fusion of Linguistic Fuzzy Rules', International Journal
of Computational Intelligence Systems 8(February), 422-437. URL:
http://www.tandfonline.com/doi/abs/10.1080/18756891.2015.1017377.

Escalante, H. J., Montes, M. & Sucar, L. E. (2009), 'Particle swarm model selection', Journal of Machine

Learning Research 10(Feb), 405-440.

Eshelman, L. J. (1991), 'The chc adaptive search algorithm: How to have safe search when engaging',
Foundations of Genetic Algorithms 1991 (FOGA 1) 1, 265.

Goodrich, M. T., Sitchinava, N. & Zhang, Q. (2011), Sorting, searching, and simulation in the
mapreduce framework, in `International Symposium on Algorithms and Computation', Springer, pp.
374-383.

Guller, M. (2015), 'Big data analytics with spark: A practitioners guide to using spark for large scale data
analysis. apress', URL: http://www.apress.com/9781484209653.

Guo, X. C., Yang, J. H., Wu, C. G., Wang, C. Y. & Liang, Y. C. (2008), 'A novel LS-SVMs hyper-
parameter selection based on particle swarm optimization', Neurocomputing, X. C. Guo, J. H. Yang,
C. G. Wu, C. Y. Wang, and Y.C. Liang, A novel LS-SVMs hyper-parameter selection based on
particle swarm optimization, Neurocomputing, vol. 71, pp. 32113215, 2008. 71, 3211-3215.

Haupt, R. L. & Haupt, S. E. (2004), Practical genetic algorithms, John Wiley & Sons.

Kaneko, H. & Funatsu, K. (2015), `Fast optimization of hyperparameters for support vector regression
models with highly predictive ability', Chemometrics and Intelligent Laboratory Systems 142, 64-69.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0169743915000039.

López, V., del Río, S., Benítez, J. M. & Herrera, F. (2014), 'Cost-sensitive linguistic fuzzy rule based
classification systems under the MapReduce framework for imbalanced big data', Fuzzy Sets and
Systems 258, 5-38. URL: http://dx.doi.org/10.1016/j.fss.2014.01.015.

López, V., Río, S. D., José Manuel Bentez & Herrera, F. (2014), 'On the use of MapReduce to build
Linguistic Fuzzy Rule Based Classification Systems for Big Data', IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE).

A MAPREDUCE BASED FRAMEWORK TO PERFORM FULL MODEL SELECTION IN VERY

LARGE DATASETS

13

Morales, A. K. & Quezada, C. V. (1998), A universal eclectic genetic algorithm for constrained
optimization, in 'Proceedings of the 6th European congress on intelligent techniques and soft
computing', Vol. 1, Citeseer, pp. 518-522.

Mukkamala, R. R., Hussain, A. & Vatrapu, R. (2014), Fuzzy-set based sentiment analysis of big social

data, in 'Enterprise Distributed Object Computing Conference (EDOC), 2014 IEEE 18th
International', IEEE, pp. 71-80.

Parmee, I. C. (2012), Evolutionary and adaptive computing in engineering design, Springer Science
& Business Media.

Robertson, S. P., Vatrapu, R. K. & Medina, R. (2010), 'Off the wall political discourse: Facebook use in
the 2008 us presidential election', Information Polity 15(1, 2), 11-31.

Roebuck, K. (2011), Information Privacy: High-impact Strategies-What You Need to Know Definitions,
Adoptions, Impact, Benefits, Maturity, Vendors, Tebbo.

Rosales-p, A. (2013), 'Surrogate-Assisted Multi-Objective Model Selection for Support Vector
Machines'.

Rosales-Perez, A., Gonzalez, J. a., Coello Coello, C. a., Escalante, H. J. & Reyes-Garcia, C. a. (2014),

'Multi-objective model type selection', Neurocomputing 146, 83-94. URL:
http://linkinghub.elsevier.com/retrieve/pii/S0925231214008789.

Sakr, S., Liu, A. & Fayoumi, A. G. (2013), 'The family of mapreduce and large-scale data processing
systems', ACM Computing Surveys (CSUR) 46(1), 11.

Sánchez-Monedero, J., Gutiérrez, P. A., Pérez-Ortiz, M. & Hervas-Martínez, C. (2013), An n-spheres
based synthetic data generator for supervised classification, in 'International Work-Conference on
Artificial Neural Networks', Springer, pp. 613-621.

Thornton, C., Hutter, F., Hoos, H. H., Leyton-Brown, K. & Chris Thornton, Frank Hutter, Holger H.

Hoos, K. L.-B. (2013), 'Auto-WEKA: Combined Selection and Hyperparameter Optimization of
Classification Algorithms', Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining pp. 847-855. URL:
http://dl.acm.org/citation.cfm?id=2487629.

Tlili, M. & Hamdani, T. M. (2014), Big data clustering validity, in 'Soft Computing and Pattern

Recognition (SoCPaR), 2014 6th International Conference of', IEEE, pp. 348-352.

Wu, X., Zhu, X., Wu, G.-Q. & Ding, W. (2014), 'Data mining with big data', IEEE transactions on
knowledge and data engineering 26(1), 97-107.

Yu, K., Ji, L. & Zhang, X. (2002), 'Kernel nearest-neighbor algorithm', Neural Processing Letters 15(2),
147-156.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M. J. et al. (2016), 'Apache spark: a unified engine for big data
processing', Communications of the ACM 59(11), 56-65.

