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1. Introduction

  Stroke remains a global public health problem nowadays[1]

It is known that innate and adaptive immune cells[2] promote 

inflammation and increase the infarct volume[3]. Regulatory T 

cells (Tregs) characterized by FOXP3 and CD25 expression[4] can 

promote the stroke progression in animal models by increasing 

thrombus formation 24 h after transient middle cerebral artery 

Objective: To evaluate the role of regulatory T cells (Tregs) at late stages of stroke. Methods: 
Anti-CD25 antibody (or PBS as a control) was injected to reduce the pool of Tregs in Wistar 
rats; then, ischemia was induced transiently by middle cerebral artery occlusion during 60 min 
and reperfusion was allowed for 7 d. Then, Treg frequency was analyzed in peripheral blood, 
spleen and lymph nodes. Neurological score (0-6) and infarct volume were also determined. 
Results: Nine days after injection, the CD4+CD25+ T cells were reduced by 70.4%, 44.8% and 
57.9% in peripheral blood, spleen and lymph nodes, respectively compared to PBS-treated rats. 
In contrast, the reduction of CD4+FOXP3+ T cells was lower in the same compartments (38.6%, 
12.5%, and 29.5%, respectively). The strongest reduction of CD25+CD4+ T cells was observed 
in those FOXP3-negative cells in blood, spleen and lymph nodes (77.8%, 52.8%, and 60.7%, 
respectively), most likely corresponding to activated T cells. Anti-CD25-treated transient 
middle cerebral artery occlusion rats had a lower neurological deficit and did not develop 
tissue damage compared with PBS-treated animals. Conclusions: These findings suggest that 
treatment with anti-CD25 in our model preferentially reduce the T cell population with an 
activated phenotype, rather than the Treg population, leading to neuroprotection by suppressing 
the pathogenic response of effector T cells.
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occlusion (tMCAO)[5,6] however, Tregs can accumulate in the 

brain and reduce the infarct size after anti-CD25 antibody or PBS 

injection[7,8].

  Most of the findings on the role of Tregs during ischemia have been 

performed in mouse models, that have been shown variable results 

with respect to the size and location of infarcts[9]. Unlike mice, the 

cerebral vasculature and physiology of rats are similar to that of 

humans, and also rats are easy to handle and relative homogeneity 

exists within strains[10]. Thus, we determined the role of an anti-

CD25 antibody treatment, and aimed to reduce the Tregs in rats that 

underwent tMCAO.

2. Materials and methods

2.1. Animals 

  Twenty four adult male Wistar rats between eight and nine weeks 

of age were randomly selected and maintained in pathogen-free 

environments. All animal procedures were conducted according to 

the ARRIVE guidelines. All procedures were approved by the ethical 

committee for animal experimentation from Antioquia University 

(2003/18084). The protocol was approved in act 70 (June 13-2011).  

2.2. Study design

  Eight rats were randomly assigned to receive an injection with an 

anti-CD25 antibody or with PBS two days after the animals were 

submitted to tMCAO. Eight rats were assigned to a sham surgery by 

using the same anesthesia and surgical procedures with the exception 

of MCA occlusion, those animals were also pre-treated with anti-

CD25 antibody or PBS as tMCAO ones.

2.3. Depletion of CD25+ T cells

  Two days before the induction of ischemia, the rats were injected 

intraperitoneally (i.p.) with 300 µg of mouse anti-rat CD25 IgG1 

monoclonal antibody (NDS61, Raleigh; 300 µg) to decrease the 

frequency of CD25+ T cells[11]. Since spleen constitutes an important 

reservoir of cells, the antibody doses were optimized to reduce at 

least more than 50% of splenic CD25+FOXP3+ T cells as suggested 

previously[12]. Additionally, since no reduction of CD25+T cells was 

observed between animals treated with 300 uL of phosphate buffered 

saline (PBS) and those treated with IgG control antibody (two rats 

in each group), thus we use PBS injection as control group in this 

study.

2.4. Middle cerebral artery (MCA) occlusion

  Rats were anesthetized and tMCAO was induced by inserting a 

monofilament for 60 min to occlude the origin of the middle cerebral 

artery as previously described[13], followed by 7 d of reperfusion. 

2.5. Neurological score

  Neurological deficit was determined after 6 h, 24 h, 48 h, 72 h, 

and 4 d, 5 d, 6 d and 7 d of reperfusion using a scale as follows: 

0, no spontaneous motion; 1, circling spontaneously toward the 

paretic side; 2, circling toward  the paretic side if pulled by the 

tail; 3, circling toward  the paretic side if pulled and lifted by the 

tail; 4, reduced resistance to lateral push toward the paretic side; 5, 

consistent flexion of the contralateral forelimb to ischemic injury 

and 6, normal extension of both forelimbs toward the floor when 

lifted[13].

2.6. 2, 3, 5-triphenyltetrazolium chloride (TTC) staining

  The volume of brain infarction was determined 7 d post-MCAO 

through staining with TTC (Sigma). Stained sections were 

photographed using a digital camera (Canon) and analyzed using 

Image J software (National Institute of Health, Bethesda, USA). 

Edema was corrected by using the formula: infarct size = 100 × [total 

contralateral hemisphere area-(total ipsilateral hemisphere area-

infarct area)/total contralateral hemisphere area], as described 

previously[14].

2.7. Flow cytometry 

  Single-cell suspensions from spleen, lymph nodes, and blood 

were obtained and stained with different antibodies for surface 

markers: Anti-rat CD3 (1F4; BD Pharmigen), anti-rat CD4 (W3/25; 

Biolegend), anti-rat CD8a (OX8) and anti-rat CD25 (OX39) 

from eBioscience. After extracellular staining, the cells were 

permeabilized (Foxp3 staining kit) followed by staining with anti-

rat FOXP3 (FJK-16s) from eBioscience. Isotype controls were used 

and data were acquired on a FACSCanto 栻 and analyzed with 

FACSDiva software (BD Biosciences). 

2.8. Statistical analyses

  The data are expressed as the mean ± standard deviation. Normal 

distribution was assessed by Shapiro-Wilk normality test and 

comparisons between the groups were done using an unpaired one-

tailed Student t-test or general linear model ANOVA, followed by 

Dunnett’s post hoc test to compare between study groups. Animals 

were coded by a technician and analysis was done by a different 

researcher. Statistical analyses were performed with Prism 8.0 

(GraphPad Software, La Jolla, CA, USA). A P<0.05 was considered 

statistically significant difference. 

3. Results

3.1. Partial depletion of CD4+FOXP3+ T cells in rats treated 
with an anti-CD25 antibody 
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  First, to ensure that the tMCAO were done on Treg-depleted 

rats, we evaluated the reduction of Treg percentage two days 

after anti-CD25 antibody or PBS injection on four naive rats. 

There was a 60.7% reduction of splenic CD4+CD25+ T cells, 

compared with the PBS-treated rats (Figure 1). Then, two days 

after anti-CD25 antibody injection, rats underwent tMCAO 

or sham surgery and hereafter all outcomes were determined 

seven days post-reperfusion. We observed a similar reduction 

in peripheral blood, splenic and lymphoid CD4+CD25+ T cells 

by 70.4% (P=0.050), 44.8% (P=0.023) and 57.9% (P=0.011) 

compared to PBS-tMCAO rats (Figure 2A). The CD25+FOXP3+ 

T cell populations were reduced by 65.3% (P<0.01), 67.7 % 

(P=0.006) and 57.8% (P<0.01) in blood, spleen and lymph 

nodes, respectively (Figure 2B). Moreover, there was a 38.6% 

(P=0.030) and a 29.5% (P=0.011) reduction of blood and 

lymphoid CD4+FOXP3+ T cells respectively, while in spleen 

the reduction was only of 12.5% (P=0.222) (Figure 2C). 

  The anti-CD25 treatment in our rat model failed to deplete 

a high proportion of FOXP3+ cells. A total of 52.1% of the 

peripheral blood FOXP3+ cells, and 44.8% of the splenic 

and 43.3% lymphoid FOXP3+ cells did not express CD25 

as observed in PBS-treated rats (Figure 2D). Interestingly, 

anti-CD25 treatment particularly reduced the population of 

CD4+CD25+ cells that do not express FOXP3, with 77.8% 

(P=0.028), 52.8% (P=0.049) and 60.7% (P=0.004) decreases 

in the blood, spleen and lymph nodes, respectively (Figure 

2E).  Similar  reduct ions  in  CD4 +CD25 +,  CD4 +FOXP3 +, 

CD25+FOXP3+, and CD25+ FOXP3- T cells were observed 

sham surgery rats ( Figure 3).

  No significant changes were observed between anti-CD25 

and PBS-treated tMCAO animals in their total cell counts in 

peripheral blood and spleen, nor the percentages of CD4+ and 

CD8+ T cells in peripheral blood, spleen and lymph nodes 

(Figure 4).

3.2. Effect of partial depletion of CD4+CD25+ cells on 
infarct volume and neurological deficit in rats after 
tMCAO 

  We determined the effect  of  the part ial  reduct ion of 

CD4+CD25+ on the infarct volume and neurological deficit 

after reperfusion in rats that underwent tMCAO or sham 

surgery. Anti-CD25-treated animals did not exhibit a detectable 

infarct in TTC-stained coronal slices compared to PBS-treated 

animals 7 d after reperfusion (Figure 5A), which developed 

larger infarcts [(71.8 + 27.1) mm3]. Similarly, anti-CD25 

injection significantly reduced the neurological deficit in rats 

24 h (P=0.004), 48 h (P=0.080), and 72 h (P=0.080) post-

reperfusion compared to PBS-treated animals (Figure 5B).
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4. Discussion

  In recent years there has been a controversy concerning the effect 

of Treg on ischemic stroke; however, several pieces of evidence 

point towards a neuroprotective effect by reducing infarct volume 

and inflammation around of infarcted tissue. Here, we found that 

the injection of an anti-CD25 antibody on Wistar rats partially 

eliminated the Treg population with no detectable infarct with TTC 

staining compared to PBS-treated counterparts. 

  Previous reports have shown a partial depletion of CD4+FOXP3+ 

T cells after anti-CD25 treatment, ranging from 40% to 70%[15-17]

along with a lower efficiency of Treg elimination in lymph nodes. 

Moreover, resistance to elimination of these cells in lymph nodes 

could be due to their ability to capture IL-2 in these niches more 

efficiently compared to conventional T cells[18]. We anticipate 

that higher doses could increase the efficiency of elimination in 

these compartments, but a single injection reduces the CD25+ 

cell population for over one week[19,20]. In addition, clone PC61, 

that is the most used antibody to deplete CD25+ T cells, induces a 

partial reduction of Tregs, similar to that obtained using the NDS61 

clone[11,21,22]. In addition, it is known that the use of the same 

antibody clone for both the cell depletion and detection leads to an 

overestimation of the reduction of CD25+ T cells[17]. 

  Similar to previous report in healthy rats[23], we found an important 

population of FOXP3+ cells that do not express CD25, thus those 

cells would not be targeted by the anti-CD25 antibody. Other authors 

have reported similar proportions of CD4+FOXP3+ T cells that do 

not express CD25[17,24,25], which could constitute a Treg reservoir 

that after activation could express CD25[26] along with their 

suppressive function[17,27]. However, a defect in their functionality 

cannot be ruled out, since the lack of expression of CD25 controls 

the expression of suppressive molecules, such as CTLA-4, CD39/

CD73[28,29] and FOXP3[30]. Interestingly, the major target of anti-

CD25 was CD4+CD25+ cells that do not express FOXP3, probably, 

this population represents activated T cells[31,32]. Futures studies 

are necessary to confirm the identity of those depleted cells. Taken 

together, these results suggest that the treatment with anti-CD25 

partially reduces CD25+FOXP3+ cells in rats along with a higher 

reduction of activated CD25+FOXP3- T cells.

  We found that the partial reduction of CD4+CD25+ cells was 

accompanied by non-detectable infarct by TTC staining on anti-

CD25-treated tMCAO rats compared to PBS-treated rats, which 

developed large infarcts. We do not rule out that a subjacent lesion 

could have occurred since TTC staining cannot efficiently detect the 

infarcted region at late stages of ischemia[33]. Other methodologies, 

such as magnetic resonance imaging, would allow detecting cerebral 

damage at late stages of cerebral ischemia, allowing to characterize 

the spatiotemporal evolution of stroke[34]. Similarly, anti-CD25 

injection also reduced the neurological deficit in rats 24 h and 

48 h post-reperfusion compared with PBS-treated animals. Our 
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results contrast with those reported by Liesz et al, probably due 

to the anatomical differences between mice and rats, the ischemia 

induction techniques and the variations in the efficiency of CD25+ 

T cells elimination[8]. Altogether, these results suggest that the use 

of an anti-CD25 antibody preferentially reduces a population of 

activated CD25+FOXP3- T cells, being more evident in lymph nodes, 

which could be associated with the reduction of infarct volume and 

neurological deficit. However, we cannot rule out that Treg cells 

that escape elimination are contributing to the protection observed. 

Although a protecting role of Tregs has been demonstrated in other 

pathological conditions, the role of Tregs during cerebral ischemia 

remains controversial[5,8,35]. Understanding the Treg-mediated 

immunomodulatory mechanisms underlying cerebral ischemia 

is essential for the development of novel therapies that limit the 

inflammatory response observed in cerebral ischemia.
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