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1. Introduction

  Diabetic retinopathy (DR) is a microvascular destructive 

disease and is one of the common consequences of diabetes[1]. 

Hyperglycaemia is a primary factor in the initiation and progression 

of vascular complications related to eye diseases in diabetes such 

as DR[2,3]. However, the mechanisms by which hyperglycaemia 

leads towards vascular dysfunction still require further investigation. 

Objective: To investigate the impact of the extracts of Gac fruit parts (peel, pulp, seed, and 

aril) on the cell viability and angiogenesis markers of human retinal pigment epithelial (ARPE-

19) cells under high glucose conditions. Methods: The effect of the extracts of Gac fruit peel, 

pulp, seed and aril on the ARPE-19 cells was determined using MTT viability assay, Trypan 

blue dye and morphological changes were observed using light microscopy. Enzyme-linked 

immunosorbent-based assay was performed to evaluate the effect of Gac fruit parts on the 

reactive oxygen species (ROS), vascular endothelial growth factor (VEGF) and pigmented 

epithelium-derived factor (PEDF) secretions. Results: High glucose (HG) at 30 mmol/L 

increased ARPE-19 cell viability and ROS and VEGF secretions. While, the exposure of ARPE-

19 cells in high glucose condition to Gac fruit extracts led to inhibition of cell viability, induced 

morphological changes, decreased ROS and VEGF secretions, and increased PEDF level. Gac 

pulp, seed, and aril at 1 000 µg/mL showed significant inhibition activities [(7.5 ± 5.1)%, (2.7 

± 0.5)%, (3.2 ± 1.1)%, respectively] against HG-induced ARPE-19 cell viability. The findings 

also demonstrated that Gac aril at 250 µg/mL significantly decreased ROS and VEGF levels 

[(40.6 ± 3.3) pg/mL, (107.4 ± 48.3) pg/mL, respectively] compared to ROS [(71.7 ± 2.9) pg/

mL] and VEGF [(606.9 ± 81.1) pg/mL] in HG untreated cells. Moreover, 250 µg/mL of Gac 

peel dramatically increased PEDF level [(18.2 ± 0.3) ng/mL] compared to that in HG untreated 

cells [(0.48 ± 0.39) ng/mL]. Conclusions: This study indicates that the extracts of Gac peel, 

pulp, seed and aril reduced cell viability, minimized ROS generations and showed angiogenic 

activities. Therefore, our findings open new insights into the potentiality of Gac fruit against 

HG-related diabetic retinopathy disease. 
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Notwithstanding, it has been established that chronic exposure to 

hyperglycaemia by the microvascular in the retina is associated with 

several pathological changes. Of these changes, the over-production 

of reactive oxygen species (ROS) and the loss of homeostasis in the 

angiogenesis process have been identified as the major contributing 

factors[4-6]. Chronic exposure of retinal cells to hyperglycaemia 

gives chances to increase ROS by activation of different enzymatic 

pathways[7,8]. ROS is a toxic-free radical with impaired electron, 

such as superoxide radical, hydroxyl radical and hydrogen peroxide 

radical. Over-production of ROS may lead to increased oxidative 

stress and this could be the main pathogenesis of DR[9]. Increased 

ROS production could be either from large excesses of free radicals 

and/or a failure of the antioxidant systems such as vitamin E, A and 

C, carotenoids, polyphenols, glutathione or other radical degrading 

mechanisms to destroy the number of free radicals being formed[9].

  Clinically, DR is categorised into two main classes, namely; non-

proliferative DR (NPDR) and proliferative DR (PDR)[10]. PDR is 

the final stage of DR characterised by the uncontrolled growth of 

abnormal blood vessels that leak and bleed into the retina, inevitably 

leading to blindness[11]. The process of growing new blood vessels 

from pre-existing vessels is known as angiogenesis which is a very 

accurate process, tightly controlled by inhibitor and stimulator 

angiogenic markers[12,13]. The vascular endothelial growth factor 

(VEGF) is one of the most studied markers that acts as a stimulator 

for the angiogenesis process and is found to be elevated in patients 

with PDR[14]. Whereas, the pigmented epithelium-derived factor 

(PEDF) has been shown to be an inhibiting factor in the angiogenesis 

process, and found at a lower level among patients with PDR[15,16]. 

Retinal pigment epithelial (RPE) cells play an important role in the 

visual function and DR development[17]. The major functions of RPE 

cells include nutrients, minerals, water, glucose and ions transport. 

Moreover, RPE plays a role in the generation of angiogenic markers, 

such as VEGF, PEDF, insulin growth factor (IGF), and fibroblast 

growth factor (FGF)[18,19].

  Natural sources (i.e. plants, vegetables, fruits) are rich in 

phytochemicals and bioactive constitutes that are widely reported 

to have health-promoting activities for human benefits[20]. Of these 

natural sources, carotenoids-rich fruits play an important role in the 

management of diabetes-related diseases[21,22]. Gac (Momordica 
cochinchinensis Spreng) is a tropical fruit, indigenous to Southeast 

Asian countries and reported to be a rich source of phytochemicals, 

especially carotenoids[23]. Carotenoids have been linked with the 

prevention of eyes disorders, such as age-related macular degradation 

and cataracts[24]. Furthermore, the consumption of carotenoids-rich 

foods has been associated with a decreased risk of DR development 

and visual acuity improvement through ROS neutralising, 

neuroprotective and anti-inflammatory functions[24-27]. Gac fruit 

extracts were acknowledged to have pharmacological activities 

via suppressing migration and invasion of breast cancer cells[28], 

reversing tert-butyl peroxide-induced cell damage[29], and reducing 

wet tumor weight in vivo[30]. However, limited information about the 

effect of extracts of Gac peel, pulp, seed and aril on the treatment 

of hyperglycaemia-related DR disease has been found. Therefore, 

this study aimed at investigating the impact of Gac fruit parts on the 

proliferation and angiogenesis activity of human retinal pigment 

epithelial (ARPE-19) cells in high glucose (HG) conditions.

2. Materials and methods

2.1. Chemicals and reagents

  In undertaking this study, the following chemicals and reagents 

were used; Dulbecco’s Modified Eagle’s Medium (DMEM), 

fetal bovine serum, phosphate buffer saline (PBS), penicillin 

and streptomycin, trypsin-EDTA (1伊), and Trypan blue dye, 

dimethyl sulfoxide (DMSO) (Sigma, St. Louis, MO USA), 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

(Sigma-Aldrich, Billerica, MA USA), human ROS, modulator 1 

ELISA kit (E1924h, EIAab, Wuhan, China), human VEGF and 

human EDF ELISA kits (CUSABIO, Wuhan, China). Other reagent 

analytical grade chemicals were also used along with pure distilled 

water for all experimental steps.

2.2. Collection of Gac fruit

  Gac (Momordica cochinchinensis Spreng) fruit Malaysian cultivar 

was supplied from the International Tropical Fruits Network, 

Selangor, Malaysia. Eleven ripe fruits were randomly collected 

during the harvesting season in October of 2017. Collectively, all 

fruits collected weighed 8 kg, and the average individual weight was 

about (755 ± 185) g. The fruits were then kept separately in sealed 

plastic bags and stored in -80 曟 for a few weeks until they were 

ready to use.

2.3. Fruit extract preparation 

  The Gac fruit was removed from storage and exposed to room 

temperature in order to completely thaw, followed by washing with 

tap water to remove any debris. The fruit was next separated into 

four parts; peel, pulp, seed, and aril. It was then cut into small slices 

and pieces, followed by each fruit part being lyophilised using a 

freeze dryer at -45 曟 for 3 d (BT2K, VirTis, Warminster, USA). 

The freeze-dried parts were then ground, mixed, extracted with 70% 

ethanol at the ratio of 1:20 (w/v), and vigorously shaken using an 

orbital shaker (SHO-2D, Daihan Scientific, Seoul, Korea) at 180 

rpm, for 2 h and filtered. Next, the obtained extract was evaporated 

using a rotary evaporator (R-210, Buchi, Flawil, Switzerland). The 

extract following evaporation (sticky and dark liquid extract) was 

then dried using a freeze dryer, and finally, the resulting dried extract 

was stored at a temperature of -20 曟 for further use.
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2.4. Cell culture

  Human RPE (ARPE-19) cells were purchased from the American 

Type Culture Collection (Rockville, MD, USA). In order to grow 

the cells, ARPE-19 was grown in DMEM complete media supplied 

in 1% penicillin/streptomycin and 10% fetal bovine serum (v/v). A 

humidified incubator at a temperature of 37 曟 in 5% CO2 condition 

was used to incubate the flasks containing the cells. The passage 

number used during all experiments was between P6 and P12.

2.5. Cell viability under different glucose conditions

  ARPE-19 cells were seeded in DMEM with low glucose (LG) 

(5.5 mmol/L) at a density of 5 000 cells/well using 96-well plate. 

On the second day, the media were replaced with 100 µL of media 

containing different glucose concentrations (5.5, 30, 50, 70, 100 

mmol/L). After 48 h, the media were removed and 20 µL of MTT 

(1 mg/mL) was added to each well and incubated for 4 h[31]. Then, 

the MTT was removed carefully and 100 µL of DMSO was added. 

The absorbance was read at 570 nm using a microplate reader 

(VersaMax, Sunnyvale, USA), and 630 nm was used as a reference 

wavelength. The results were expressed as percentage for three 

triplicates using the following formula:

Cell viability percentage (%) = OD570-630 of each HG (30, 50, 70, 100 

mmol/L) /OD570-630 of LG (5.5 mmol/L) 伊 100

Where OD = Optical density.

2.6. Cytotoxicity evaluation

  ARPE-19 cells were plated in 96-well plate at 5 000 cell/well 

density with 100 µL of DMEM with LG (5.5 mmol/L) media and 

were allowed to attach overnight. ARPE-19 cells were divided into 

groups including: ARPE-19 with LG (5.5 mmol/L) and HG (30 

mmol/L), ARPE-19 with different concentrations (31.2-1 000 µg/mL) 

of extracts obtained from freeze dried peel, pulp, seed and aril in HG 

(30 mmol/L). After 48 hours of incubation, all media were removed, 

20 µL of MTT (1 mg/mL) was added to each well and incubated for 4 

h[31]. MTT was then removed and 100 µL of DMSO was added. The 

absorbance was read at 570 nm using a microplate reader and 630 nm 

was used as a reference wavelength. The results were expressed as 

percentage for three measurements using the following formula:

Cell viability percentage (%) = OD570-630 of HG groups (treated and 

non-treated) /OD570-630 of LG group 伊 100

Where OD = Optical density.

2.7. Cell morphology examination

  Using 6-well plates, the ARPE-19 cells were seeded at a density of 

300 000 cells/well in LG media, allowing to attach overnight. Next, 

the medium of each well was removed, and the cells were washed 

twice with PBS (1伊). After that, the ARPE-19 cells were exposed to 

2 mL of HG (30 mmol/L) media containing different concentrations 

(62.5-1 000 µg/mL) of the Gac fruit extracts (peel, pulp, seed and 

aril). In this assay, the concentration of Gac extracts started from 

62.5 µg/mL because small concentrations might not be effective 

to induce morphology changes. The untreated cells with HG and 

LG media were also considered. Following 48 hours of incubation, 

a light-inverted microscope was used to observe the normal 

morphological changes.

2.8. Trypan blue dye assay

  For further determining the effects of Gac fruit extracts on ARPE-

19 cell viability, 6-well plates were used, and 300 000 ARPE-19 

cells were seeded with LG (5.5 mmol/L). After 24 h, the media were 

removed, then ARPE-19 cells were incubated with 2 mL of LG (5.5 

mmol/L) and HG (30 mmol/L), and with different concentrations 

(31.2-1 000 µg/mL) of extracts obtained from freeze dried peel, 

pulp, seed and aril dissolved in HG (30 mmol/L) respectively. After 

48 hours of incubation, the medium of each group was removed 

and the cells were detached using Trypsin-EDTA. After entirely 

detaching, the cells’ suspensions were centrifuged at 1 200 rpm, 4 曟 

for 5 min. Next, the supernatant was discarded, and the pellet was 

suspended with 1 mL of PBS. Finally, 10 µL of the resulting cell 

suspension was blended with 10 µL of 0.4 % Trypan blue solution, 

and then the ARPE-19 cells were microscopically counted using a 

haemocytometer chamber under a light-inverted microscope[32].

2.9. Measurement of ROS level

  Doses of Gac extracts used in the previous evaluations were to 

assess the IC50 and toxic doses, resulting in the usage of three (low, 

medium and high) non-toxic doses of Gac parts extracts in further 

experiments. To determine the level of ROS, 200 000 cells of ARPE-

19 were seeded in 6-well culture plate with LG (5.5 mmol/L). On 

the second day, all media were discarded and ARPE-19 cells were 

washed twice with 1伊PBS. Next, ARPE-19 cells were incubated 

with different groups of media including: ARPE-19 with LG (5.5 

mmol/L) and HG (30 mmol/L), and ARPE-19 in HG (30 mmol/L) 

with different concentrations (50, 100 and 250 µg/mL) of extracts 

from freeze dried Gac peel, pulp, seed and aril. In accordance to 

the protocol defined by the manufacturer (E1924h, EIAab, Wuhan, 

China), the medium of each group was collected in test tubes and 

centrifuged at 1 000 伊g, at 4 曟 for 10 min. Next, 100 µL of the 

sample’s supernatants and standards were added to the 96-wells 

plate coated with a specific antibody for ROS and incubated for 2 h 

at 37 曟. Next, the liquid of each well was discarded, and 100 µL of 

the detection reagent A was added. Following 1 hour of incubation 

at 37 曟, the liquid was removed, and the wells were washed 3 times 

with washing buffer, and 100 µL of detection reagent B was added. 

After 1 hour of incubation at 37 曟, the liquid was removed from 

the wells and washed five times with washing buffer. Then, 90 µL 
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of substrate solution was added to each well, protected from light 

and incubated at 37 曟 for 15-30 min. Finally, 50 µL of stop solution 

was added to each well, and the absorbance was read within 10 min 

at 450 nm using a microplate reader. The concentration of ROS was 

then calculated based on the standard curve of ROS.

2.10. Measurement of VEGF and PEDF levels

  To determine the VEGF and PEDF levels, ARPE-19 at 200 000 cells/

well density was seeded with LG (5.5 mmol/L) using a 6-well plate. 

After 24 hours of incubation, the media were discarded and the cells 

were washed twice with 1伊PBS. Next, ARPE-19 cells were incubated 

with different groups of media including: ARPE-19 with LG (5.5 

mmol/L) and HG (30 mmol/L); ARPE-19 with HG (30 mmol/L) 

containing different concentrations (50, 100 and 250 µg/mL) of extracts 

obtained from freeze dried peel, pulp, seed and aril and incubated for 

48 h. VEGF and PEDF levels were measured in each group according 

to the manufacturer’s protocol (CSB-E11718h VEGF, CSB-E088181h 

PEDF, Wuhan, China). The media were collected and centrifuged at 

1 000 伊g, at 4 曟 for 10 min. Next, 100 µL of the samples and standards 

were added to the 96-wells plate that was pre-coated with specific 

antibodies for VEGF and PEDF. After 2 hours of incubation at 37 曟, 

the liquid was removed, and 100 µL of Biotin-antibody (1伊) was added 

to each well. Following 1 hour of incubation at 37 曟, the liquid was 

carefully discarded, and the wells were washed 3 times with washing 

buffer (1伊). Next, 100 µL of HRP-avidin (1伊) was added to each well 

and incubated for 1 h at 37 曟. Then, the liquid was then discarded, 

and the wells were washed 5 times with washing buffer. After that, 90 

µL of TMB substrate was then added to each well, protected from light 

and incubated at 37 曟. Finally, 50 µL of stop solution was added, and 

the absorbance was read at 450 nm using a microplate reader within 5 

min. The concentrations were calculated based on the standard curve of 

VEGF and PEDF of three measurements.

2.11. Statistical analysis

  The data was presented as mean ± standard deviation (SD). The 

analysis of the significance and differences among the means 

was undertaken through One-way ANOVA and Tukey’s post hoc 
multiple comparison test. Differences in the means were considered 

statistically significant at P < 0.05. Notably, all experimental data 

values were statistically subjected using the GraphPad PRISM 

program version 6.01.

3. Results

3.1. Cell viability under different glucose concentrations

  As illustrated in Figure 1, LG group at 5.5 mmol/L had the 

lowest ARPE-19 cell viability. Among the groups with different 

concentrations higher than 5.5 mmol/L, there were no statistically 

significant differences. However, HG group at 30 mmol/L had the 

highest ARPE-19 cell viability. For this reason, HG at 30 mmol/L 

was used for further experiments with LG at 5.5 mmol/L as a control 

group.
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Figure 1. ARPE-19 cell viability incubated with different glucose 
concentrations (5.5, 30, 50, 70, 100 mmol/L) for 48 h using MTT assay. 
Results are expressed as mean 依 SD of three measurements. Bars having 
different letters are significantly different at P < 0.05 using Tukey’s test.

3.2. Effect of extracts from Gac fruit parts on ARPE-19 cell 
viability

  Gac fruit extracts (peel, pulp, seed and aril) at different concentrations 

were evaluated for cell toxicity against ARPE-19 cell line in HG 

condition at 30 mmol/L. ARPE-19 cell viability significantly increased 

in HG group (100 ± 9)% compared to LG group (64.3 ± 7.5)% (Figure 

2). The effect of Gac extracts on cell viability was dependent on the 

dose. Pulp, seed and aril at 1 000 µg/mL had the most cytotoxic effect 

towards ARPE-19 cell viability [(7.5 ± 5.1)%, (2.7 ± 0.5)% and (3.2 

± 1.1)% respectively]. In contrast, peel at 1 000 µg/mL appeared to 

have a moderate cytotoxic effect on ARPE-19 cell viability [(41.2 ± 

7.1)%]. In addition, Gac seed extract had the highest IC50 equivalent 

to 190 µg/mL.
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Figure 2. Effects of extracts from Gac fruit parts (peel, pulp, seed and aril) at 

different concentrations (31.2-1 000 µg/mL) on ARPE-19 cell viability in HG 

condition after 48 hours of treatment. 

Results are expressed as mean ± SD of three measurements. Bars not having 

the same letter are significantly different at P < 0.05. LG: low glucose (5.5 

mmol/L); HG: high glucose (30 mmol/L).
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3.3. Effect of extracts from Gac fruit parts on ARPE-19 
morphological changes

  It was noticed through inverted microscope that there were 

remarkable variations in the cell morphology of treated cells as 

shown in Figure 3. Elevated concentrations of the fruit peel, pulp, 

seed and aril extracts led to increasing morphology changes and 

decreased cell viability as clearly shown in 1 000 µg/mL of ARPE-19 

treated groups compared to other doses. These alterations included: 

cell detachments, floating, cell spherical and rounding shape, and 

cell shrinkage. Furthermore, the marked morphology chagnes were 

observed in the ARPE-19 cells treated with seed and pulp extracts, 

indicating their dramatic impact on the ARPE-19 cell viability and 

morphology. According to Figure 3, the Gac extracts appeared to 

arrest and slow the proliferation and duplications of ARPE-19 cells. 

However, there were no similar changes observed on the untreated 

cells. 

 

3.4. Trypan blue dye evaluation

  To further confirm the effects of Gac parts extract on ARPE-19 cell 

viability, Trypan blue dye was applied. The results were consistent 

with the morphological examinations, where the number of ARPE-

19 cells decreased when the extract dose increased. As seen in Figure 

4, there was a significant increase in the number of ARPE-19 cells 

in HG [(483 000.0 ± 4.2) cells], higher than that of LG [(345 000.0 ± 

4.3) cells] groups. Gac seed at 1 000 µg/mL dramatically decreased 

ARPE-19 cells number [(48 000.0 ± 1.2) cells], followed by 

(95 000.0 ± 1.2) cells of Gac pulp at the same dose. In contrast, 

Gac aril and peel at the highest dose showed the lowest reducing 

ability [(213 000.0 ± 3.5) cells, (168 000.0 ± 2.5) cells, respectively]. 

Collectively, seed and pulp parts at moderate and high doses showed 

more significant differences (P < 0.05) than Gac peel and aril in 

reducing ARPE-19 cell viability. 
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Figure 4. Effects of extracts from Gac fruit parts (peel, pulp, seed and aril) 

at different concentrations (31.2-1 000 µg/mL) on ARPE-19 cell viability by 

Trypan blue dye in HG conditions after 48 hours of treatment. 

Results are expressed as mean ± SD of three measurements. Bars not having 

the same letters are significantly different at P < 0.05. LG: low glucose (5.5 

mmol/L); HG: low glucose (30 mmol/L).

3.5. Effects of extracts from Gac fruit parts on ROS level

  Figure 5 shows level of ROS in different groups of ARPE-19 

cells. Comparatively, the level of ROS in HG [(71.7 ± 2.9) pg/mL] 

was significantly higher than in LG [(58.0 ± 4.3) pg/mL] group. 
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Figure 3. Effects of extracts of Gac fruit part (peel, pulp, seed, and aril) at different concentrations (62.5-1 000 µg/mL) on cellular morphology of ARPE-19 cells 
in HG conditions for 48 h. 
Cell detachment, abnormal shapes and condensation are pointed with light blue arrows, spherical and rounding cells are pointed with yellow arrows (Magnification 

100伊) under light-inverted microscope. Experiment was conducted in three independent observations.
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Furthermore, the Gac fruit parts were able to reduce the ROS level 

generated by the ARPE-19 cells in HG conditions, but the results 

varied concerning the extracts’ ability to minimise the ROS level. 

Gac aril at 250 µg/mL significantly reduced ROS level [(40.6 ± 3.3) 

pg/mL], followed by pulp [(49.9 ± 2.7) pg/mL], seed [(51.2 ± 5.7) 

pg/mL], and lastly peel [(55.3 ± 5.6) pg/mL].
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Figure 5. Effects of extracts from Gac fruit parts (peel, pulp, seed and 

aril) on ROS level of ARPE-19 cells in HG condition treated with different 

concentrations (50, 100 and 250 µg/mL) for 48 h. 

Results are expressed as mean ± SD of three measurements. Bars not having 

the letters are significantly different at P < 0.05. LG: low glucose (5.5 mmol/

L); HG: high glucose (30 mmol/L).

3.6. Effects of extracts from Gac fruit parts on VEGF Level

  Figure 6 demonstrates the level of VEGF produced by ARPE-

19 cells treated with different concentrations of Gac extracts in 

HG conditions. As illustrated, the level of VEGF produced by the 

untreated ARPE-19 cells in HG group [(606.9 ± 81.1) pg/mL] was 

significantly higher (P < 0.05) compared to the VEGF level produced 

in LG group [(307.9 ± 30.3) pg/mL]. Among the treated groups, Gac 

aril at 250 µg/mL reduced VEGF level most significantly. Gac pulp 

at 250 µg/mL and aril at 100 µg/mL also showed significant anti-

VEGF activity compared to the HG control. 
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Figure 6. Effects of extracts from Gac fruit parts (peel, pulp, seed and aril) 

on VEGF level of ARPE-19 cells in HG condition treated with different 

concentrations (50, 100 and 250 µg/mL) for 48 h. 

Results are expressed as mean ± SD for three measurements. Bars not having 

the same letters are significantly different at P < 0.05. LG: low glucose (5.5 

mmol/L); HG: high glucose (30 mmol/L).

3.7. Effects of extracts from Gac fruit parts on PEDF level

  As seen in Figure 7, there were no significant differences between the 

level of PEDF among LG and HG cells, even though the level of PEDF 

in the HG group [(0.48 ± 0.39) ng/mL] was less than that found in the 

LG group [(1.85 ± 0.21) ng/mL]. Gac peel at 250 µg/mL showed the 

highest level of PEDF [(18.2 ± 0.3) ng/mL] followed by seed [(13.9 

± 4.0) ng/mL] at 250 µg/mL. In contrast, Gac peel showed significant 

increase of PEDF level at all doses, while Gac pulp at both 100 and 

250 µg/mL doses as well as Gac seed and aril at only 250 µg/mL 

demonstrated the markedly increase. 
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Figure 7. Effects of extracts from Gac fruit parts (peel, pulp, seed and aril) 
on PEDF level of ARPE-19 cells in HG condition treated with different 
concentration (50, 100 and 250 µg/mL) for 48 h. 
Results are expressed as mean ± SD for three measurements. Bars not having 
the same letters are significantly different at P < 0.05. LG: low glucose (5.5 
mmol/L); HG: high glucose (30 mmol/L).

4. Discussion
  

  Gac fruit has been traditionally used in folk and ancestral medicine 

and treatments for several conditions. Newly, several biological 

effects and health benefits of Gac fruit have been revealed, such as 

antioxidant, anti-proliferative, anti-cancer, and antibacterial activities. 

In the present study, the effects of extracts from Gac fruit parts (peel, 

pulp, seed, and aril) on ARPE-19 cell viability, cellular morphology 

and ROS, VEGF, PEDF generations in high glucose conditions 

were investigated for the first time. The results revealed that Gac 

fruit parts reduced ARPE-19 cell viability, induced morphological 

changes, decreased ROS, VEGF productions, and increased PEDF 

levels.

  Chronic exposure to hyperglycaemia by the retina is one of the 

most threatening issues among diabetes patients which leads 

to PDR and lastly blindness. PDR is characterized by retinal 

neovascularization due to hypoxia that produces abnormal blood 

vessels which bleed and leak into the retina. RPE cells play a crucial 

role in the progression of such condition. A recently published report 

showed that HG induced abnormal activation of RPE cells which 

might be associated with PDR development[33].

  The results of this study revealed that HG increased ARPE-19 
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cell viability when compared to LG, which was consistent with a 

previous study that reported a 2-fold increase in cell viability in 

HG than LG condition[34]. Amongst the fruit parts, Gac seed at the 

highest concentration 1 000 µg/mL had the highest anti-proliferative 

activity tested by MTT and Trypan blue dye. This was in line with 

the results of some studies published earlier which demonstrated 

that Gac seed exhibited considerable suppression activity against 

the proliferation of breast cancer cells ZR-75-30[28], normal HaCat 

and melanoma D24[35], and  lung cancer cell A549[36]. In this study, 

Gac seed and pulp induced noticeable morphological changes, such 

as cells condensation, floating, detachments, spherical and rounding 

shapes, and these characteristics might be due to the cytotoxic effect 

of high doses. Recently, studies reported that Gac seed water extract 

also induced morphological changes and cytotoxic effect against 

normal HaCat, melanoma D24 and C1 cell lines[35]. However, the 

molecular mechanisms, such as apoptotic and necrotic pathways 

underlying Gac extracts-induced ARPE-19 morphological changes, 

need to be further studied. Gac aril in this study also inhibited 

ARPE-19 cell viability which was consistent to another study which 

revealed that water extract taken from Gac aril significantly reduced 

MCF-7 and melanoma with a rate of 60% and 70%, respectively[37]. 

In addition to the seed and aril parts, this study has also showed that 

Gac peel and pulp reduced ARPE-19 cell viability, but the biological 

and anti-proliferative potentiality of Gac pulp and peel has not been 

studied well. 

  One of the essential initiators of DR development is ROS, which 

has been noticed to be elevated by chronic hyperglycaemia[38,39]. 

High concentrations of glucose were found to stimulate ROS 

production in RPE in vitro[33,40]. This finding was in agreement 

with the result of this study which revealed that HG (30 mmol/L) 

led to an increase in ROS level produced by ARPE-19 compared to 

a lower level in LG (5.5 mmol/L). This increment can be naturally 

avoided by the antioxidant defence system. However, in some 

conditions such as chronic hyperglycaemia, the balance between 

ROS and the antioxidant system is disrupted[41]. Thus, it is necessary 

to support and recover the balance and decrease the level of ROS 

in the management of PDR. Furthermore, the results of this study 

showed the ability of extracts from Gac fruit parts to reduce ROS 

production. This proved the role of phytochemicals and natural 

sources as antioxidants and their potential ability in the management 

of DR[42,43]. Amongst all of the Gac fruit parts, Gac aril exhibited the 

highest anti-ROS ability which could be due to the rich carotenoids, 

phenolics and other bioactive compounds found in this part as 

revealed by previous studies[24,44]. Gac seed and peel were also 

found to possess anti-oxidant activities which might be due to rich 

trypsin inhibitors compounds, saponins, and phenolics content[35,45]. 

  Retinal neovascularisation as mentioned earlier is the last stage of 

DR which is characterized by abnormal proliferation and this process 

is tightly controlled by inhibitors and stimulators of angiogenic 

factors[46]. Therefore, one of the main strategies to treat PDR is to 

modulate angiogenesis process by either suppressing angiogenic 

stimulators, such as VEGF and/or stimulating angiogenic inhibitors, 

such as PEDF. Current treatment patterns of this process include 

anti-VEGF drugs injection in addition to laser photocoagulation 

and surgery[47,48]. These strategies are extremely expensive and 

accompanied with undesired results, such as retinal detachments, 

retinal damage, and vitreous haemorrhage[49,50]. In this study, HG-

induced secretions of VEGF were about 2-fold higher than that in 

LG group which was consistent with the results of previous studies. 

It was previously shown that VEGF secretion was highly responsive 

to the change in glucose concentration, which increased when the 

glucose dose increased[51]. It was also reported that the VEGF level 

produced by the ARPE-19 cells increased under HG conditions[52,53]. 

HG-stimulated VEGF secretion in ARPE-19 cells as illustrated 

in this study was reversed when treated with Gac parts extracts. 

Amongst all of the Gac fruit parts, the aril extract dramatically 

decreased VEGF secretions, which might be attributed to the rich 

content of phytochemicals, especially carotenoids. The role of 

carotenoids in the modulation of angiogenesis markers has been 

well established[54]. A previous study confirmed the anti-angiogenic 

activity of lycopene via decreased VEGF production, inhibited 

tube formation, and migration in human umbilical vein endothelial 

cells[55]. 

  During this study, the PEDF level was evaluated by using the 

extracts of Gac fruit parts. The results revealed that the PEDF 

level of HG group reduced compared to that of LG group, whereas 

Gac fruit parts boosted the production of PEDF by the ARPE-

19 cells. In PDR, the increase in the level of PEDF is essential in 

order to balance the high concentration of VEGF that is stimulated 

by HG thus modulating the angiogenesis process. Although one 

study showed that the PEDF level was enhanced when treated with 

xanthatin as a medicinal component from Xanthium[56], limited 

information has been found regarding the role of phytochemicals in 

PEDF secretions. 

  To the best of our knowledge, this study is the first to investigate 

the effects of Gac fruit extracts on HG-induced PDR biomarkers in 
vitro. The data revealed anti-proliferative, anti-ROS, angiogenesis 

biomarkers regulating activities of Gac fruit extracts. Therefore, the 

current findings suggest that Gac fruit could potentially be utilized 

as a therapeutic agent in the treatment of HG-related eye disease. 

However, additional studies are highly needed to explore the active 

compounds and their mechanisms of actions underlying potential of 

Gac parts extracts.  
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