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Abstract 
This paper examines the leverage effect and the information flow interpretation of 

heteroskedasticity – from a sample of daily Bitcoin return data from 3/19/2016 to 7/24/2018 – 
using the framework of Lamoureux and Lastrapes (1990). The results show that the Bitcoin return 
variance cannot be effectively explained by GARCH (1, 1), GJR-GARCH or EGARCH models given 
the stationarity of variance of return. The leverage effect is not observed by the estimate of 
EGARCH model. ARCH effect vanishes and the coefficient becomes highly statistically insignificant 
when the volume—as a mixing variable—is included in the conditional variance equation of 
IGARCH model. These findings suggest that the Bitcoin price changes are generated from an 
independent stochastic price increment process of which the increments are subordinated to 
stationary ARCH errors. As such, the Bitcoin can be classified as a class of speculative assets in the 
cryptocurrency exchange.  
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1. Introduction  
Until 2009, a little was known about carrying out a commercial transaction over the Internet 

(i.e. electronic communication network) without a trusted party. A virtual affiliated paper by 
Nakamoto, 2008 proposes an electronic payment system based on cryptographic proof which 
creates a highly efficient electronic marketplace for goods and services. The central idea of the 
paper has been further developed and implemented in January 2009. Since then, economic agents 
could carry out settlement of commercial transactions on this platform anonymously without going 
through financial intermediaries. Bitcoin as a virtual currency has grown significantly over the past 
few years and are quoted against a number of national currencies of the world. Equilibrium Bitcoin 
price changes quoted against national currencies of different countries may contain valuable 
information about the demand and supply. As presented in Figure 1, USD Bitcoin price changes 
have been subject to high volatility and volume trades over the last three years. A. Urquhart finds 
that the price and volume of Bitcoin tend to cluster together—which implies that—the large errors 
are followed by large errors and vice versa (Urquhart, 2017: 145). These clusters of price changes 
are likely to persist over a long run (Kurihara, Fukushima, 2018: 8). This suggests that the variance 
of this market price (i.e. Bitcoin price) may change over time and can be predicted by the past 
forecast errors in the sense of R.F. Engle (Engle, 1982: 987).  

 

                                                 
*
 Corresponding author 

E-mail addresses: chamil@whut.edu.cn (C.W. Senarathne) 

 

 

http://www.ejournal2.com/


European Journal of Economic Studies, 2019, 8(1) 

78 

 
 
Fig. 1. Bitcoin Price vs. Volume 

 
Trades carried out through electronic communication networks (ECN) offer a number of 

advantages. M. Balcilar examines the competitive advantages for an equity trader trading through 
ECNs and Nasdaq market makers, and find that it offers the advantages of anonymity and speed of 
execution (Barclay et al., 2003: 2637). They also find that the trades carried out though ECNs are 
more informed than trades carried out through market makers—traders often carry out trades 
through ECNs when trading volumes and return volatility are high*. The scholars such as M. 
Buchholz, L. Kristoufek, D. van Wijk, show that the Bitcoin price is determined by ( ) supply-
demand interactions, ( ) Bitcoin’s attractiveness for investors and ( ) the global macroeconomic 
and financial developments, respectively (Buchholz et al., 2012: 312; Kristoufek, 2013: 3415; van 
Wijk, 2013). What factually drives the Bitcoin price has however been debated among recent 
scholars. Using Empirical Mode Decomposition techniques, M. Buchholz, M demonstrates that the 
price of Bitcoin is driven by the long-term fundamentals rather than the speculative behavior of 
investors (Bouoiyour., 2016: 843). Contrarily, Buchholz et al., 2012: 312; Grinberg, 2012: 159; 
Kristoufek, 2013: 3415; Ciaian et al., 2016: 1799; Glaser et al., 2014; Yermack, 2015:31; Baek, 
Elbeck, 2015: 30; Cheah, Fry 2015: 32; Bouoiyour, Selmi 2015: 449; Dyhrberg, 2016: 85; Baur et 
al., 2018: 177 show that the Bitcoin is a speculative asset† rather than a currency or long-term 
investment. Unlike other exchange instruments, the Bitcoin price is not determined by the 
underlying value of an asset (e.g. futures). Hence, it is difficult to ascertain as to how the Bitcoin 
price evolves over time.  

On the other hand, a number of scholars attempt to understand the predictability of Bitcoin 
price. M. Balcilar employs a non-parametric causality-in-quantiles test to identify any causal 
relationship between trading volume, volatility and returns, and find that the volume is useful in 
forecasting return but not the volatility of Bitcoin (Balcilar et al., 2017: 64). They however detect 
nonlinearity and structural breaks in the return and volume. S. Nadarajah, J. Chu test Bitcoin 
returns for random walk behavior (under Efficient Market Hypothesis (EMH)) and find that it does 
not follow the rules of EMH (Nadarajah, Chu, 2017: 6)‡. A. Urquhart uses battery of tests to study 
the informational efficiency of Bitcoin market and finds that the market is a weak form inefficient 
(Urquhart, 2016: 80). However, A.F. Bariviera, A.K. Tiwari find the existence of efficient conditions 
in the Bitcoin market (Bariviera, 2017: 1; Tiwari, 2018: 106). P. Ciaian et al. find that the 
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† Some identify it as a speculative asset while others as a speculative bubble.  
‡ However, the power transformation tests reveal that the Bitcoin market is efficient.  
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attractiveness of Bitcoin for investors and users has a significant impact on the price discovery 
(Ciaian et al 2016: 1799).  

Although there has been a voluminous literature on the efficiency and drivers of Bitcoin 
price, only a handful of scholars have studied about the speculative behavior of Bitcoin prices and 
volume using a common framework (e.g. Lamoureux, Lastrapes, 1990: 221)*. The objective of this 
paper is to examine the leverage effect in the Bitcoin market and the impact of information flow 
attached to Bitcoin trading volume† on equilibrium price formation in the speculative USD Bitcoin 
quotes, using the framework of C.G. Lamoureux, W.D. Lastrapes (Lamoureux, Lastrapes, 1990: 
221). The paper is organized as follows. Section 2 provides the methodological framework. Section 
3 describes data set including its empirical properties. Section 4 discusses the findings and section 
5 provides the concluding remarks. 

 
2. Theoretical Specification  
Following Lamoureux, Lastrapes, 1990: 221; Sharma et al., 1996: 337; Choi et al 2012: 584 

and Zhang et al., 2014:70 define  denote the  intraday equilibrium market price increment‡ 
in day  summed up over a daily data horizon.  

 

 
Where  is a stochastic random variable (i.e. the mixing variable) which reflects the 

aggregate amount of new information arrival at the Bitcoin market. Assume that the new 
information arrival process is sequential rather than simultaneous§ which could be expressed as;  

 

 
Where  is serially correlated and the evolution to the mixing variable is accounted for by 

the lag polynomial operator  of order  and  is a non-negative random error with zero mean 

and unit variance. In the sense of C.G. Lamoureux, W.D. Lastrapes assume that  is subordinated 

to , so that  where Ω is the persistence of conditional variance estimated by an 

EGARCH** model. Since the mixture model is invoked,  and | ∼  
(Lamoureux, Lastrapes, 1990: 221). 

For the variance estimation in the sense of D.B. Nelson, the following specification which 
accounts for asymmetric effect of innovations on volatility is given (Nelson, 1991: 347),  

 

 
 

 
 
where  is a constant and  is the conditional variance at time .  is the coefficient of prior 

period’s volatility or the coefficient corresponds to ARCH and   is the coefficient applicable to 
leverage effect in the Bitcoin market, if applicable.  is the coefficient of long-term volatility or the 
GARCH coefficient. The coefficient  is expected to be negative and statistically significant, if a 
negative shock has a greater impact on volatility than the positive shocks of the same magnitude. 
Under the null hypothesis of Bitcoin market price change variance is characterized by the type of 
Asymmetric GARCH model (i.e. EGARCH) described above, the coefficient γ should be negative 

                                                 
* See e.g. Naik et al., 2018: 99. This paper extends their sampling period.   
† Exchanges against USD. 
‡ A random variable from a stationary price change process (see also Senarathne, Jayasinghe, 2017: 1; 
Senarathne, Jianguo 2018; Senarathne, 2018;  Senarathne, 2019  for a similar preposition).  
§ Such postulation is in line with Copeland, 1976: 1149 and Smirlock, Starks, 1988: 31. 
** Exponential generalized autoregressive conditional heteroskedasticity.  



European Journal of Economic Studies, 2019, 8(1) 

80 

and statistically significant and the sum of EGARCH coefficients (except intercept term) should be 
less than unity.  

If the null hypothesis is accepted, the time dependence of Bitcoin volume in the rate of new 
information arrival at the market is tested by introducing the Bitcoin volume*  into the 
conditional variance equation (5) as, 

 

 

 
If the null hypothesis is rejected, the time dependence is tested by estimating an Integrated 

GARCH Model (mean specification and distributional assumptions of errors remain same) as;  
 

 

 
Where, the condition  usually prevails and the impact of volatility shocks 

 for  on  is assumed to persist over time,† in which, the information set is 
relevant for the forecasts of the conditional variance.  

 
The Bitcoin volume  is included in the variance equation (9) as, 

 
If volume is a manifestation of time dependence in the rate of new information arrival at the 

Bitcoin market, the coefficient  of the IGARCH model‡ should be negligible when accounting for 
uneven flow of information arrival under serial correlation in the presence of ARCH in the 
IGARCH.   

 
3. Data and Empirical Results  
Daily USD Bitcoin price quotes (BTC-USD) and volume data are obtained from Yahoo 

webpage§ covering a sampling period from 3/19/2016 to 7/24/2018. This period reflects the first 
and the largest clustering of price changes (See Figure 1) in the Bitcoin market. The descriptive 
statistics of the sample data are as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
* In order to eliminate possible simultaneity bias, lag volume is considered as Lamoureux, Lastrapes, 1990: 221 suggest.  
† See Tsay, 2005. 
‡ Especially, the ARCH effect in the sense of Lamoureux, Lastrapes, 1990: 221 
§ Available at https://finance.yahoo.com/quote/BTC-USD/history?p=BTC-USD 
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Table 1. Empirical Description of the Sample Data 
 

 
 

Bitcoin return and volume data are highly nonnormal as the test statistic exceeds the critical 
value of 5.99 under Jarque–Bera test. Although the volume series is nonstationary, the return 
distribution is stationary as null hypothesis of data having a unit root is rejected at 5 percent 
significance level under Augmented Dickey–Fuller test. ARCH effect in return data exists for 3 lags 
under ARCH-LM test. The test statistic exceeds the critical value of 7.815 at 2 (3) distribution at 5 
percent significance level. However, Ljung-Box Q statistic for serial correlation upto 20 lags accepts 
the null hypothesis of no serial correlation as the test statistic is below the critical value of 31.41. 
However, volume series is highly serially correlated.  

The coefficients  , and  of EGARCH model are statistically significant at 5 percent 
significance level. However, the coefficient  applicable to leverage effect is negative but highly 
statistically insignificant. As such, the leverage effect does not appear to have been presented in the 
Bitcoin market for the period considered. Leverage effect often observes in financial markets with 
diversifiable individual firms, where the information flow on both market factors (e.g. market risk 
premia (Bollerslev et al., 2011: 31) and firm-specific factors (e.g. financial leverage (Figlewski, 
Wang 2000) are presented. Index specific leverage effect can be observed when the volatility of 
individual stocks is greater than index volatility (Bouchaud et al., 2001)*. As such, the Bitcoin 
market is not characterized by such distinguishable features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
* Observed mostly in the case of investor panic.  
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Table 2. Maximum Likelihood Estimation of GARCH Models 
 

 
On the other hand, the coefficients ,  and  of EGARCH – summing up to greater than one 

– is an indication of a stationary GARCH process* which may not fit the time series data well. 
The symmetric effect† of information arrival on volatility is therefore lumped up into the intercept 
term  which is negative and statistically significant at 5 percent significance level. Note that the 
estimates of GARCH (1, 1) and GJR-GARCH model (not reported) produced results with same 
issue. Hence, the natural choice would be to consider an Integrated GARCH model which would 
suit the nature of the time series behavior of Bitcoin data. Both ARCH and GARCH terms as 
measured by  and  are positive and statistically significant as estimated by equation (9) of 
the IGARCH model. However, the ARCH effect vanishes and becomes highly statistically 
insignificant at 5 percent significance level, when the volume is introduced into the conditional 
variance equation of IGARCH as in (10) above‡. This provides strong evidence for the hypothesis 
that the ARCH residual variance is a reflection of time dependence in the rate of information 
arrival at the Bitcoin market. Thus, the behavior of Bitcoin price changes is speculative—as a 
standalone asset class§ in the cryptocurrency market could exhibit—where the equilibrium price is 
determined by an independent stochastic price increment process under stationary ARCH-type of 
residual heteroskedasticity (see especially Nelson, 1990: 318).  

 
4. Conclusion 
The current literature is ambiguous as to whether the Bitcoin price change behavior is 

speculative and only a handful of scholars attempt to identify the mixed distribution properties of 
Bitcoin price changes. An examination on the type of heteroscedasticity in Bitcoin return data 
would help identify the price change behavior of Bitcoin market. The framework of C.G. 
Lamoureux, W.D. Lastrapes offers a more realistic methodology for resolving this puzzle 
(Lamoureux, Lastrapes, 1990: 221). 

The leverage effect cannot be observed in the Bitcoin market during the sampling period** as 
estimated by the EGARCH model and, as such, the nature of data cannot be explained by an 

                                                 
* Which may well be characterized by a deterministic increment (i.e. a liner trend) in the conditional volatility 
(See Kontonikas, 2004: 525) 
† Due to stationarity of variance. 
‡ See Lamoureux, Lastrapes, 1990: 221). 
§ I.e. a single instrument.  
** I.e. the period with the largest cluster  
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asymmetric GARCH process in the presence of stationarity of conditional variance. When 
interpreted with reference to information arrival hypothesis in the presence of ARCH*, Bitcoin 
price formation process could well be characterized by a stochastic process with independent 
increments, driven by the information content of past (lagged) volume data (i.e. the mixing 
variable)†. The form of persistence of new information arrival is therefore a reflection of stationary 
ARCH variance type of heteroscedasticity in the Bitcoin return data. These findings provide 
evidence for the argument that Bitcoin price changes are speculative as they are likely to be 
generated from stochastic and stationary variance process. 
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