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Abstrat

Intensive broiler prodution requires of aurate ontrol systems aimed to maintain

ideal onditions inside the failities. The ahievement of an appropriate environ-

ment guarantees good performane and sustainability of the prodution. Control

and monitoring of temperature is a key fator during the prodution yle. In

ountries with tropial and subtropial limate, suh as Brazil, high values of tem-

peratures an a�et negatively the broiler prodution. Based on a temperature

ontrol model developed by the authors, this researh is foused on the determina-

tion and �tting of the intrinsi parameters of the model. Conseutive exeutions
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of the model and hanges in the failities suggest adapting parameters onstantly

under the perspetive of real-time systems. Four strategies of derivative-free opti-

mization were applied to adjust the parameters of the model. Experiments were

onduted with data olleted from a pilot farm in South-eastern Brazil. Results

demonstrated that the proess of updating parameters needs to be implemented on

the temperature ontrol model. BOBYQA method resulted to be the best strategy

to be taken into onsideration for the improvement of the system.

Keywords: Parameter optimization, broiler prodution, ontrol of temperature,

derivative-free methods, real-time.

1 Introdution

Livestok prodution requires ontrol, monitoring and surveillane of oper-

ating onditions in order to guarantee good performane, produtivity, sus-

tainability and animal omfort. Basially, these operating onditions are re-

lated to thermal variables: temperature, relative humidity, air veloity/wind

speed amongst other fators and their interation with automated or semi-

automated devies inside the failities (ventilation systems and ontrollers).

Temperature is one of the key variables to be kept under ontrol during a

rearing proess [1℄. For intensive broiler prodution (hiken meat), temper-

ature inside the failities (broiler houses) is a ruial fator that needs to be

ontrolled and monitored almost in real-time [2, 3℄.

Brazil is one of the top three broiler produers in the world together with

United States of Ameria and China. In ountries where limate is tropial

and subtropial, suh as Brazil, variations of temperature a�ets the rearing

proess by putting at risk the thermal omfort of the animals. Disomfort

produes heat stress and high rates of mortality [4℄; in onsequene, produ-

tion is a�eted negatively in terms of weight onversion, feed e�ieny and

animal welfare [5℄. Therefore, an e�ient ontrol of thermal onditions is

neessary to maximize the prodution and guarantee its sustainability.

An e�ient ontrol of thermal onditions is ommonly supported by ven-

tilation systems and ontrollers inside the failities. The ahievement of ideal

onditions is assoiated to the interation with automated ontrollers and op-

erating poliies whih respond to the urrent onditions (thermal variables)

by swithing on or o� devies (exhaust fans, ooling pads and humidi�ers).

The hallenge is to guarantee the most omfortable mirolimate inside the

broiler houses. Keeping a good mirolimate is a omplex problem. Some
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approahes deal with quantitative methods in data-driven models whih use

Computation Fluid Dynamis (CFD), Statistis, Data Mining, Arti�ial In-

telligene and Applied Mathematis in order to understand, ontrol and sup-

port aurately the thermal onditions at the failities by interating with

automated devies. All these approahes are alled as preision livestok

farming (PLF). Some interesting researhes an be found in [6�10℄.

Reently, authors of this researh developed a temperature ontrol model

aimed to support thermal onditions inside broiler houses. The model om-

bines applied mathematis, optimization and some empirial onsiderations

in order to equilibrate auray with fast exeution for real-time pratie.

The developed model, desribed in details in [11℄, uses a one-dimensional

representation of the broiler house, with left and right walls, in whih the

temperature is propagated by a di�usion proess, subjet to boundary on-

ditions given by external temperature and initial onditions provided by sev-

eral sensors plaed along the house. The ventilation system (Exhaust fans)

is modeled as heat soures that ontribute to balane the temperature in-

side the failities. This model would require of the determination/ �tting of

three parameters assoiated to it for its orret use as a supporting tool. The

�tting proess is neessary when hanges or strutural modi�ations of the

broiler house are evidened. These hanges and the real-time approah ould

produe signi�ant variations of the oe�ients, so the update of parameters

beomes a key task to be implemented.

In this researh, the determination and �tting of the parameters assoi-

ated to the temperature ontrol model [11℄ is managed by using ontinuous

derivative-free optimization. This family of optimization methods tries to

ahieve the optimal value of an objetive funtion without evaluating or ap-

proximating its derivatives. They are used, for example, when a blak-box

objetive funtion is present, i.e., when the atual equation of the objetive

funtion is not available, so its derivatives are also not available. Parameter

optimization problems usually �t in this family of problems.

Some related problems are ited in Audet and Orban [12℄. They proposed

an objetive funtion to optimize the parameters of a trust region method in

terms of the proessing time of the method. Cervelin [13℄ proposed some vari-

ations of the objetive funtion and optimized the parameters of a derivative-

free method in relation to the number of funtion evaluation performed by

it. These two works fous more in the optimization proess than the applia-

tion of the tehniques in real-world problems. Wild [14℄ used derivative-free

tehniques to solve the parameter estimation of problems related to nulear
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physis, and Mukherjee [15℄ enuniates some derivative-free tehniques that

are implemented for metal utting proesses.

Under these premises, the paper is aimed to desribe how ontinuous

derivative-free optimization is applied to the temperature ontrol model. Pa-

rameters assoiated to the model orrespond to the di�usion oe�ient inside

the house, the di�usion oe�ient in the walls and the e�et of eah exhaust

fan on the variation of the temperature in one unit of time. Fitting these o-

e�ients to atual data is a task that may be aomplished by minimization

algorithms. The temperature model is part of a ontrol model and, sine it

an be modi�ed in order to improve the ontrol model e�ieny, the merit

funtion that measures the quality of the approximation an hange. So,

even if it is not impossible to ompute the derivatives of the merit funtion,

the neessity of hanging the model struture led us to the use of derivative-

free methods. These methods allow taking advantage of enough �exibility

and satisfatory speed of exeution for real-time situations.

The struture of the paper is presented as follows: Setion 2 desribes a

summarization of the temperature ontrol model obtained from [11℄ together

with the ontrol proess and its relation with derivative-free tehniques, Se-

tion 3 gives a basi desription with �owharts of the ontinuous derivative-

free optimization tehniques used in the researh. In Setion 4 the ase

study for a Brazilian broiler house is detailed with its orresponding results

and disussion. Finally, the paper is losed in Setion 5 with the onlusions.

2 The temperature ontrol model

2.1 Basis of the model

The Broiler House is represented as a segment [0, L], where L represents the

length of the house, the segments [−a, 0] and [L, L+a] represent the left-wall
and the right-wall respetively. Thus, a may be thought as the thikness of

eah wall. The ontrol devies have the property of dereasing the internal

temperature (T ) u Celsius degrees per time unit, where u = u(x, t) is a

funtion that depends on the ontrol deisions. So, the Partial Di�erential

Equation (PDE) problem is given by:

∂T

∂t
(x, t) = p2

∂2T

∂x2
(x, t) if x ∈ [−a, 0],
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∂T

∂t
(x, t) = p1

∂2T

∂x2
(x, t)− u(x, t) if x ∈ [0, L],

∂T

∂t
(x, t) = p2

∂2T

∂x2
(x, t) if x ∈ [L, L+ a],

T (x, 0) given for all x ∈ [−a, L+ a],

T (−a, t) = T (L+ a, t) given for all t ≥ 0,

∂2T

∂x2
(0, t) =

∂2T

∂x2
(L, t) = 0 for all t ≥ 0.

The ontrol funtion will be assumed to depend on the ontrol devies

(here, the ventilation system or exhaust fans). Moreover, it is assumed that

the ontrol devies have a �nite number of possible states d0, d1, . . . , dN . For
example, dj indiates that the number of onneted exhaust fans is j. To

eah possible state of the ontrols dj a funtion udj(x, t) is assoiated and

de�ned as follows:

udj (x, t) = α− 0.05jp3.

So, in the absene of onneted exhaust fans, the internal temperature

inreases α degrees per time unit but the ativation of eah fan dereases the

temperature 0.05p3 degrees per time unit.

The one-dimensional PDE model desribed has three parameters that

need to be �tted to real data before (or during) the exeution in broiler

houses. As mentioned before, the three parameters orrespond to the di�u-

sion oe�ient inside the house, the di�usion oe�ient in the walls and the

e�et of eah exhaust fan on the variation of the temperature in one unit of

time. Fitting of these parameters is performed by derivative-free algorithms.

2.2 The Control Proess and Fitting of Parameters

The PDE desribed in Setion 2.1 predits the temperature inside the broiler

house using preditions of the external one. To do so, the PDE uses some

internal parameters (di�usion oe�ients and fans e�ets). These parame-

ters were previously estimated for a partiular broiler house, but, sine they

depend on several other parameters that are not onsidered in the model

(quantity and size of the birds, broiler house wall material, the maintenane

of the exhaust fans and other spei� parameters of the house), they should be

adjusted for eah broiler house. And more, sine some of the non-onsidered

parameters are time dependent, it is reasonable to realibrate the parameters
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during the simulation. The parameters are updated if the predited internal

temperature is very di�erent from the observed one.

During the rearing proess, a set of sensors are strategially positioned

inside the broiler house. These sensors provide the temperature in real time.

Human operator or an automated operator (ontroller) reads these urrent

temperatures. In addition, an external sensor ollets the outside tempera-

ture and its foreasted values for a next period. These values are also trans-

mitted and read by the operator. Aording to the values of the registered

temperatures the operator deides to swith on or o� the orret number of

exhaust fans in order to approximate the internal temperature to the ideal

one whih depends basially on the infrastruture of the faility, age and

breed of the animal. For that purpose, the operator foreasts the internal

temperature for a period of (say) one hour and, based on this predition,

deides how to proeed with the exhaust fans.

To make the deision, the operator ompares the results of onneting or

disonneting every ombination of the exhaust fans along the period under

onsideration and hooses the ombination that, aording to the predition,

produes the best pro�le of internal temperatures in terms of animal omfort.

The proess of hoosing the on�guration of onneted fans is a ombi-

natorial optimization problem where a omfort funtion, represented by the

di�erene between the ahieved temperature and the ideal one is optimized.

In turn, the evaluation of the omfort-like funtion involves the experiene

of the operator (if human), the onsolidated advie in some operation sheet

(also re�eting human experiene) or the exeution of a predition model, in

the ase that the ontrol is automati.

In the temperature ontrol model, the predition is given by the solution

of the one-dimensional PDE system brie�y desribed in Setion 2.1. As said

above, the parameters of the PDE may be modi�ed during the proess, and

for appliability of the temperature ontrol model, it must be done in real-

time.

In fat, the whole system involves permanent olletion of data and par-

allel �tting of the parameters to updated data. This self-orreting sheme

should improve the suess of the operation as far as time goes on in a single

broiler house. However, strutural modi�ations of the broiler house may

produe signi�ant variations of the �tted oe�ients. Therefore, it is im-

portant to implement e�ient and reasonably fast �tting algorithms to the

parameters of the temperature ontrol model.

In onsequene, the main goal is to minimize a measure funtion m. This
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funtion gives the performane of the method. In this spei� ase, it will be

represented by the 2-norm of the di�erene of the predited temperature and

the observed one at several instants of times. Usually this kind of problem has

a blak-box objetive funtion, i.e., the equation that de�nes the objetive

funtion is not known. Sine there is no aess to its expression, then there

is no aess to its derivatives, so derivative-free methods an be used to

optimize the funtion.

It also supposed that funtion m depends on some parameters p of the

method and the set of problems used to �nd the optimal parameters is alled

training set. In this researh, the measure funtion m is the error performed

by the �rst order PDE when solving the problems on the training set. The

main parameters of the PDE model are the di�usion of temperature in the

broiler house (p1), the di�usion temperature in the walls (p2), and the e�et

of eah exhaust fan on the variation of temperature in one time unit (p3). For
instane, if the predited variation of temperature aording to the di�usion

model at the position x from time t to t+1 in the absene of exhaust fans is

α, the predited variation with one onneted exhaust fan will be α−0.05p3.
The optimization problem whih tries to �nd the values of parameters

that best �ts the data is:

minimize m(p) ≡
‖TS(p)− Tr‖

2
2

n
such that 0 ≤ pi ≤ 40 i = 1, 2, 3,

(1)

where n is the number of simulated temperatures, p is the vetor with the

parameters in whih we are interested, TS(p) is a vetor with simulated tem-

peratures for di�erent instants of time using the parameters p and Tr is a

vetor with the observed temperatures at the same times. Note that the

upper limit 40 for p3 means that eah exhaust fan dereases the temperature

2 degrees Celsius per unit of time.

Three main strategies were seleted to solve the problem: the �rst one

uses BOBYQA [16�18℄ that optimizes the objetive funtion using a trust

region model based on quadrati interpolation; the seond one uses Pattern

Searh [19℄ whih tries to �nd the optimal point moving through a positive

generating set of diretions, and �nally the third strategy uses SID-PSM

[20℄ whih ombines the Pattern Searh approah with trust regions based

on simplex derivatives. These strategies are able to deal with multidimen-

sional derivative-free problems, as it happens in this researh. An optional

(the fourth one) strategy was also inluded whih deals with Golden Setion
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Searh [21℄. Although, this last method is appliable only for one-dimensional

problems, it was used by optimizing the parameters in a sequential way, i.e.,

eah parameter at a time.

Results found by eah of the four strategies will help to determine the

�nal deision about the type of minimization method that should be used

in pratial situations from now on. This deision is made by establishing a

omparison/benhmarking proess within the whole set of strategies.

3 Basi bakground of ontinuous derivative-free

optimization tehniques

3.1 BOBYQA

BOBYQA (Bound Optimization BY Quadrati Approximation) was pre-

sented in [18℄. Some theoretial properties are desribed in [16, 17℄. As its

name states, it tries to optimize a problem approximating the objetive fun-

tion by quadrati models, whih are built using interpolation points. These

points are the ones where the objetive funtion was already evaluated at

previous iterations.

In eah iteration we build a model, optimize it in a trust region and

verify if the minimizer of the model dereases the value of the objetive

funtion. If it happens, we aept this point as the new approximation to

the minimizer and update the points of the interpolation and the trust region

size; otherwise, we update the points of the interpolation and derease the

trust region size.

Figure 1 shows the BOBYQA proess.

3.2 Pattern searh

Pattern Searh [19℄ is a derivative-free optimization method that tries to

�nd the optimal point of an objetive funtion f moving through some �xed

diretions of a set D.

D must be a positive spanning set, i.e., any vetor of the work spae an

be desribed as a positive linear ombination of the diretions in D.

For eah iteration, there is an approximation xk of the minimizer and it is

updated by evaluating f(xk+αdi) where di is a vetor of D and α is the step

parameter of the method. If this funtion value is less than f(xk), then set
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Fig. 1: Flowhart of the BOBYQA method.

xk+1 = xk+αdi and it is possible to update the step parameter inreasing its

size, otherwise, another diretion in D should be used. If all the diretions

were used and there is no improvement in the funtion value, then the step

parameter sizeshould be dereased.

Usually, the stop riteria of this method is the step parameter, if it is

smaller than a value at iteration k, then xk is an approximation of the mini-

mizer of f .
Figure 2 shows a �owhart desribing the method.

3.3 SID-PSM

The SID-PSM (Simplex Derivatives in Pattern Searh Method) method was

presented at [20℄. It is a ombination of Pattern Searh with trust region

method.

In eah iteration the points in whih the funtion is evaluated are stored.

Then, given an approximation xk for the minimizer of f and a positive span-

ning set D, the method an be desribed in three steps:

1. Look for a subset of the stored points with a good geometry to approx-
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Fig. 2: Flowhart of the pattern searh method.

imate the objetive funtion;

2. If there is a set of points with good geometry, we build a model m, and

minimize it. If its minimizer dereases the objetive funtion value,

we aept this point as the new approximation for the minimizer of f .
Else, go to step 3.

3. In the last step we perform the Pattern Searh. Also, one an try to

improve the behavior of the Pattern Searh by adding some diretions

using data from the model.

As in the Pattern Searh method, if the iteration is suessful we an

inrease the step size parameter; otherwise, we must derease it.

Figure 3 desribes the �owhart of the method.

3.4 Golden Setion

The Golden Setion Searh method is an one-dimensional derivative-free op-

timizationmethod [21℄. This method shrinks an initial interval [a, b], in whih
it is known to have a loal minimizer of the objetive funtion f .
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Fig. 3: Flowhart of the SID-PSM method.

At eah iteration, we ompute the points c and d (where c < d) that

divides the original interval by the golden ratio, then if c gives a better

objetive funtion than d, we set b = d, and restart the proess, otherwise

we update a making it equals to c.

The reason to use the golden ratio is that the point not used in the

update proess will be the c or d of the next iteration, so we must evaluate

the objetive funtion in only one point at eah iteration. The stop riterion

for this method is usually used as the distane between a and b.

As mentioned before, this method is used to optimize one-dimensional

problems. Here, our target refers to multidimensional problems. However,

the method was used as an alternative strategy. In order to apply this

method, we optimized eah variable at a time. Also, it is important to notie

that there is no mathematial guarantee that this strategy will onverge to

a stationary point.
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4 Case study

4.1 Material & Methods

Experiments were arried out in a pilot farm situated near the ity of Cabreuva,

State of São Paulo, South-eastern Brazil. The broiler house has the following

spei�ations: 150 m of length, 15 m of width and 2.5 m of height. 24, 000
birds (Cobb breed) in average are rearing there in a prodution yle with

an estimated duration of 42 days. The faility has ventilation system whih

ontains 9 exhaust fans, an automati ontroller and other devies whih help

on the environmental ontrol inside the house.

Four temperature/relative humidity sensors are strategially plaed in

the faility, three of them to register the inside temperature and one of them

to register the outside temperature, respetively. These sensors transmit

the temperature values at eah 5 minutes whih are reorded in a simple

datasheet of type sv or txt.

For this researh a total of 10803 valid values were used to perform the

experiments. The datasheet has 3 olumns labeled as: Number of exhaust

fans (number of fans), average of temperature in Celsius degrees from the

three inside sensors (int temp

◦C) and outside temperature in Celsius de-

grees (ext temp

◦C). The information orresponding to eah instant t (rows)
involves the average number of exhaust fans turned on in the interval be-

tween t and t + 5 minutes, the average internal temperature onsidering 3
di�erent positions of sensors in the house, and the external temperature at

instant t. Table 1 presents a view of the data onsidering a sample of 6 rows.

Tab. 1: A Datasheet sample.

Number of fans int. temp.

◦C ext. temp.

◦C
0.57 29.57 23.12
0.23 29.26 22.12
0.13 29.49 21.80
0.13 29.74 21.50
0.12 29.89 21.50
0.14 30.11 21.86

For instane, in the �rst line, Table 1 presents the average internal tem-

perature 29.57 ◦C, the external temperature 23.12 ◦C and one of the exhaust
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fan was turned on 57% of the time (2 minutes, 51 seonds).

Due to that ideal thermal onditions (ideal temperature) depend on the

infrastruture of the faility, age and bird breed, the original datasheet was

divided into three subsets as follows: Matrix A (datasheet A) with 3601 rows
whih orresponds to the �rst third of the broilers' life, Matrix B with 3601
rows whih orresponds to the seond third of the broilers' life and, �nally,

Matrix C with 3601 rows whih orrespond to the last third of the broilers'

life. Therefore, eah of the matries A, B and C involve 300 hours (or 12.5
days).

Three sets of parameters were estimated orresponding to the three peri-

ods of the bird's life.

Therefore, the four strategies of derivative-free optimization are imple-

mented in the three datasets. The proess began by giving trial values of

the parameters p1, p2, p3. Then, the �rst objetive funtion was evaluated in

the following way: We ran the PDE (Partial Di�erential Equation) model

desribed in [11℄ from t = 0 to t = 60 minutes employing the real internal

temperature at t = 0 as initial ondition, and we all Tmodel(60) as the av-

erage temperature at minute 60. Then, we ran the PDE model from t = 60
to t = 120 using the real internal temperature at t = 60 as initial ondition,

alling Tmodel(120) as the average temperature omputed by the model at

minute 120. The observed average internal temperature provided by ma-

trix A at minutes 60 and 120 are alled Tobs(60) and Tobs(120), respetively.
We proeed in the same way in the interval times [120, 180], [180, 240], . . . ,
[17940, 18000].

For these alulations we used the trial parameters, the data given by

external temperatures, and the exhaust fan information given in A. The

objetive funtion value is the sum of squares of the di�erenes between

the predited temperatures Tmodel(t) and the observed temperature Tobs(t),
divided by the number of predited temperatures, in this ase 300. In a

similar way we omputed the objetive funtions that orrespond to the

seond and third part of the data.

Even though the temperatures for every 5 minutes were available, only

the temperatures at eah hour were used at the objetive funtion. This

hoie was made onsidering that the PDE model is proposed as a tool to

predit the internal temperatures for a reasonably large time interval. If the

parameters are optimized using the preditions for every 5 minutes, they an

be not properly �tted for preditions of larger time intervals.

Let us emphasize that the PDE model is restarted for every 60 minutes
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of simulation, that is, to predit the internal temperature at instant 60, we
use the real internal temperature at instant 0, to predit the temperature

at instant 120 we use the real one at instant 60, and so on. Finally, we

estimated another set of parameters, orresponding to the whole broilers'

life. The orresponding data set was stored at matrix D.

Pattern Searh was exeuted by using the routine �patternsearh� (default

parameters, exept for tolerane) in MatLab. �SID-PSM version 2.0� (default

parameters, exept for tolerane and the step of the inremental parameter,

in this ase value of 2) in MatLab for the SID-PSM method. BOBYQA was

exeuted in FORTRAN (default parameters, exept for the tolerane) and

Golden Setion was implemented in MatLab by setting the distane between

onseutive points to de�ne the stopping riterion. For the whole set of

strategies, the parameter that de�nes the stopping riterion was set to 10−8
.

4.2 Results and disussion

Results of the optimization for eah training set and eah method are pre-

sented in Tables 2 to 5. The improvement with respet to the initial ap-

proximation given by p1 = 1, p2 = 0.5, p3 = 1, is also shown. The initial

approximation has been obtained from [11℄ by trial and error.

Tab. 2: Optimization of m(p) using A. This table shows the funtion opti-

mal value, the optimal parameters obtained, the improvement with

respet to the initial approximation (%) and the number of funtion

evaluations performed by eah method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 1.50 1.00 0.50 1.00 0.0 −
Pattern Searh 1.29 4.39 40.00 1.19 14.1 491

SID-PSM 1.29 4.39 40.00 1.19 14.1 513
BOBYQA 1.29 4.39 40.00 1.19 14.1 103

Golden Setion 1.33 2.48 40.00 2.04 11.7 144

From Tables 2 to 5 we derive the following onlusions.

1. All the optimization methods were suessful in terms of improving the

approximation given by trial-and-error.
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Tab. 3: Optimization of m(p) using B. This table shows the funtion opti-

mal value, the optimal parameters obtained, the improvement with

respet to the initial approximation (%) and the number of funtion

evaluations performed by eah method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 2.13 1.00 0.50 1.00 0.0 −
Pattern Searh 1.06 18.76 40.00 0.34 50.2 1140

SID-PSM 1.06 18.76 40.00 0.34 50.2 716
BOBYQA 1.06 18.76 40.00 0.34 50.2 184

Golden Setion 1.09 16.67 40.00 0.47 48.7 144

Tab. 4: Optimization of m(p) using C. This table shows the funtion opti-

mal value, the optimal parameters obtained, the improvement with

respet to the initial approximation (%) and the number of funtion

evaluations performed by eah method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 4.00 1.00 0.50 1.00 0.0 −
Pattern Searh 1.99 13.07 40.00 0.31 50.2 1088

SID-PSM 1.99 13.07 40.00 0.31 50.2 577
BOBYQA 1.99 13.07 40.00 0.31 50.2 107

Golden Setion 2.02 11.20 40.00 0.39 59.7 144

2. All the methods found the same solutions, exept Golden Setion, that

obtained poorer approximations.

3. BOBYQA was the most e�ient method sine it always obtained the

lowest funtional values and the smallest number of funtional evalua-

tions.

4. The optimal parameter p2 always reahed its upper bound. This means

that, in the best ase, the model runs essentially �without walls�. This

is a limitation of the one-dimensional formulation.

Using the fourth training set (D) as an example, the funtion values
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Tab. 5: Optimization of m(p) using D. This table shows the funtion opti-

mal value, the optimal parameters obtained, the improvement with

respet to the initial approximation (%) and the number of funtion

evaluations performed by eah method.

Method m(p) p1 p2 p3 % fevals

Initial approx. 2.54 1.00 0.50 1.00 0.0 −
Pattern Searh 1.50 9.43 40.00 0.35 41.2 903

SID-PSM 1.50 9.43 40.00 0.35 41.2 506
BOBYQA 1.50 9.43 40.00 0.35 41.2 153

Golden Setion 1.51 8.76 40.00 0.43 40.7 144

versus the number of iterations for eah method was plotted (Figure 4).

In Figure 4, it is possible to observe that the optimal point is obtained at

the beginning of the iterative proesses; most iterations are used to on�rm

that the point is optimal.

In order to improve the understanding of the results, some pro�les of

the objetive funtions were plotted. For this, we �xed two variables as the

optimum values found by SID-PSM and let one to vary. In Figure 5, the

pro�les using A are presented while in Figure 6, pro�les using Matrix B are

shown.

These pro�les show that m, as a funtion of p2, tends asymptotially to a

horizontal line and the unonstrained optimization problem has no (global)

minimizer. Also, it an be seen that m is well-behaved and seems to have

no stationary points other than the solution of the problem. Although these

graphis were plotted using the �xed variables as the optimal values found

using SID-PSM, similar behavior is obtained when they are �xed as the

optimal values found by Pattern Searh or BOBYQA.

5 Conlusions

The real-time features of the temperature ontrol model make it neessary

to selet the fastest method for parameter estimation and �tting. Corretion

of the parameters (p1, p2 and p3) should our during the operation of the

system and onsequently, speed (omputing time) is ruial for ompatibility
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(a) Pattern Searh. (b) SID-PSM.

() BOBYQA. (d) Golden Setion.

Fig. 4: Graphis of the funtion value per iteration for di�erent methods

using the fourth training set.

with the growing, rearing and dynamis proess of the broilers by itself. As

was mentioned before, the ontrol of thermal environment inside the broiler

houses is a omplex problem. A strategy related to impose �xed param-

eters for onseutive exeution in real-time of the model is unfeasible and

unreliable. So, self-optimization and inorporation of the estimation/�tting

software into the ontrol model is ruial for the e�etive and aurate re-

sponse of the system.

In this sense and after being evaluated the results of the four strategies

with derivative-free methods, Powell's software BOBYQA seems to be the

most adequate tool for this type of parameter estimation. The reason for the

superiority of BOBYQA is that, as shown in �gures 5 and 6, the objetive

funtion is well-behaved and does not seem to present attrative stationary
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points, other than the solutions of the problem. BOBYQA proeeds inter-

polating quadrati models, so its omparative performane improves when

the funtion is smooth and presumably unimodal. The derivatives of the

objetive funtion with respet to the parameters are omputable, either by

hand-alulation or by automati di�erentiation. However, the human ost

of these tasks are rather disouraging, espeially at a level of development

in whih one hanges frequently the struture of the model. The friendliness

of derivative-free software makes it preferable to more sophistiated alter-

natives. Moreover, the ommerial feasibility of temperature ontrol model

imposes that our own solver for real time optimization must be developed.

Thus, the present researh allowed deteting the best type of software and

adjustments that should be implemented.

In addition to the deision on the best solver for parameter estimation, the

present numerial study provided the understanding of the struture of the

problem. The fat that the best wall di�usion parameter is in�nity revealed

that something is inadequate in the formulation of the PDE model. This is

not surprising beause the PDE model omes from a radial one-dimensional

simpli�ation of a Fluid Mehanis problem whose solution in real time is

impossible, at least subjet to the budget restritions of this projet in terms

of omputing time. Sine 3D models are ertainly una�ordable, it an be

onjetured that 2D models should be developed. Our present feeling is that

models based on a parallel plane to the �oor ould re�et adequately the

di�usion through di�erent types of walls.
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(a) The average squared error as

funtion of p1 has a unique minimizer

at p1 = 4.39.

(b) The average squared error as

funtion of p1 in a smaller interval,

p1 varying from 3 to 5.

() The average squared error as

funtion of p2 has no minimizer, it

tends asymptotially to a horizontal

line.

(d) The average squared error as

funtion of p2 in a larger interval

showing how the error tends to an

horizontal line.

(e) The average squared error as

funtion of p3 has a unique minimizer

at p3 = 1.19.

(f) The average squared error as

funtion of p3 in a smaller interval,

p3 varying from 0 to 2.

Fig. 5: Pro�les using Matrix A, these graphis have two variables set as the

optimum value found by SID-PSM and the other one is free. They

show how the average error behaves when we hange just one of the

variables.
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(a) The average squared error as

funtion of p1 has a unique minimizer

at p1 = 18.76.

(b) The average squared error as

funtion of p1 in a smaller interval,

p1 varying from 18 to 20.

() The average squared error as

funtion of p2 has no minimizer, it

tends asymptotially to a horizontal

line.

(d) The average squared error as

funtion of p2 in a larger interval

showing how the error tends to an

horizontal line.

(e) The average squared error as

funtion of p3 has a unique minimizer

at p3 = 0.34.

(f) The average squared error as

funtion of p3 in a smaller interval,

p3 varying from 0 to 1.

Fig. 6: Pro�les using Matrix B, these graphis have two variables set as the

optimum value found by SID-PSM and the other one is free. They

show how the average error behaves when we hange just one of the

variables.


