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Abstrat

In this work, we proposed a ombine form of a positive spetral gradient-like

method and projetion method for solving nonlinear monotone equations. The

spetral gradient-like oe�ient is obtained using a onvex ombination of two

di�erent positive spetral oe�ients. Under the monotoniity and Lipshitz on-

tinuity assumptions, the method is shown to be globally onvergent. We show the

numerial e�ieny of the method by omparing it with the existing methods.

Keywords: Non-linear equations, monotone equations, spetral gradient method,

projetion method.

1 Introdution

Consider the problem of solving nonlinear system of equations

F (x) = 0, (1)

where F : Rn → R
n
is ontinuous and monotone. That is

(F (x)− F (y))T (x− y) ≥ 0 ∀x, y ∈ R
n. (2)
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Systems of monotone equations have many pratial bakgrounds suh as

the �rst-order neessary ondition of the unonstrained onvex optimization

problem [1℄ and the subproblems in the generalized proximal algorithm with

Bregman distanes [2℄. Some monotone nonlinear omplementarity prob-

lems and variational inequality problems an be transformed into monotone

nonlinear equations [3, 4℄.

Among the basi iterative methods for solving (1) inludes Newton's

method, Quasi-Newton methods, and variants (see for example, [5�13℄).

These methods are attrative beause of their fast onvergene rates. How-

ever, they are not suitable for solving monotone equations beause they re-

quire omputation of Jaobian matrix or approximation of it, and solving a

linear system of equations in every iteration.

Solodov and Svaiter [14℄, ombine Newton's method and projetion strat-

egy to develop a global onvergent inexat Newton method for system of

monotone equations. A remarkable property of the method is that without

the regularity assumption, the whole sequene of iterates onverges to a so-

lution of the system. Zhou and Toh [15℄ improved the work by Solodov and

Svaiter and obtained a Newton-type method with superlinear onvergene.

A quasi-Newton's method that employ the projetion strategy was presented

by Zhou and Li [16℄. Zhang and Zhou [17℄ proposed a ombination of the

spetral gradient method [18℄ with the projetion method. Their method is

globally onvergent provided that the nonlinear equations to be solved are

monotone and Lipshitz ontinuous. Iterative methods for solving monotone

equations are now reeiving more attention, just reently, La Cruz [19℄ pro-

posed a variant of the so alled DF-SANE [20℄ method for solving large-sale

monotone equations.

Inspired by the above developments and due to the simple implemen-

tation, some onjugate gradient based methods for large-sale systems of

monotone equations have been introdued, see for example [21�28℄ and ref-

erene therein.

Basially, iterative sheme for solving (1) has the general form: given the

initial approximation x0, a sequene of iterates {xk} is obtained via

xk+1 = xk + sk, (3)

where sk = αkdk, αk is the step length obtained by a suitable line searh and
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dk is the searh diretion whih is given by

dk =

{
−F (xk), if k = 0,

−θkF (xk) + βkdk−1, if k ≥ 1,
(4)

where θk and βk are parameters whih are to be determine.

If θk = 1 and βk 6= 0 in (4), then we get the lassial onjugate gradient

algorithms aording to the value of the parameter βk. Else if βk = 0, then
another lass of algorithm is obtained aording to the hoie of θk. Either

θk is a positive salar or a square matrix. If θk = 1 we have the steepest

desent algorithm. If θk = (F ′(xk))
−1

the inverse Jaobian matrix or an

approximation of it, then we get the Newton or the quasi-Newton algorithms,

respetively. A speial ase in whih

θk = λkI, where λk =
sTk−1sk−1

yTk−1sk−1
, yk−1 = F (xk)− F (xk−1), (5)

I is the identity matrix and λk orresponding to the inverse of the Rayleigh

quotient is the spetral gradient (or Barzilai and Borwien) method. Therefore

we an see that in general ase, when θk 6= 0 is seleted in a quasi-Newton

manner and βk 6= 0, then equation (4) is a ombination of onjugate gradient

method and quasi-Newton methods.

Motivated by the work of Zhang and Zhou [17℄ and the positive Barzilai-

Borwein-like step-size used by Dai et al. [29℄ to solved symmetri linear sys-

tems, we present a modi�ed positive spetral oe�ient whih is the onvex

ombination of the default spetral oe�ient [18℄ and the positive spetral

oe�ient [29℄. The remarkable future of our approah is that the spetral

oe�ient is always positive and if F is a gradient vetor of a real-valued

funtion f : Rn → R then the diretion is a su�iently desent diretion of

f at xk.
The remaining part of this paper is organized as follows. In setion 2 we

desribed the proposed method and its algorithm. The global onvergene

is established in setion 3 and numerial results are reported in setion 4.

Throughout this paper ‖.‖ stands for the Eulidean norm.

2 Algorithm

In this setion, we �rst reall the spetral gradient method for unonstrained

optimization by Barzilai and Borwein [18℄. In this method the iterative
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sequene is obtained via

xk+1 = xk − λkgk, (6)

where λk is given in (5) and gk is the gradient of the funtion f : Rn → R.

Seondly, we reall the hyperplane projetion method by Solodov and

Svaiter [14℄. Let xk be the urrent iterate, by performing some kind of

line searh proedure along the diretion dk a point zk = xk + αkdk an be

omputed suh that

F (zk)
T (xk − zk) > 0.

By the monotoniity of F,

F (zk)
T (x∗ − zk) ≤ 0,

for all x∗ suh that F (x∗) = 0.
It follows that, the hyperplane

Hk = {x ∈ R
n|F (zk)

T (x− zk) = 0}

stritly separates xk from the solution set of Equation (1).

One the separating hyperplane is onstruted, the next iterate xk+1 an

be omputed by projeting xk onto it. That is,

xk+1 = xk −
F (zk)

T (xk − zk)F (zk)

‖F (zk)‖2
. (7)

We now formally present our algorithm as follows:

Algorithm 1 (PSG)

Step 0. Given x0 ∈ D ⊂ R
n, β, σ, τ ∈ (0, 1), stopping tolerane ǫ > 0,

Set k = 0.

Step 1. Compute F (xk). If ‖F (xk)‖ ≤ ǫ stop.
Step 2. Compute dk = −λkF (xk), d0 = −F (x0), where

λk = (1− τ)θ∗k + τθ∗∗k , (8)

where

θ∗k =
sTk−1sk−1

yTk−1sk−1

, θ∗∗k =
‖sk−1‖

‖yk−1‖
, yk−1 = F (xk)−F (xk−1)+rksk−1, rk =

1

(k + 1)2
.
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Stop if dk = 0.

Step 3. Determine αk = βmk
with mk being the smallest nonnegative

integer m suh that

−F (xk + βmdk)
Tdk ≥ σβm‖F (xk + βmdk)‖‖dk‖

2. (9)

Step 4. Compute zk = xk + αkdk. If ‖F (zk)‖ = 0 stop.

Step 5. Compute xk+1 using Equation (7).

Step 6. Let k = k + 1 and go to Step 1.

Remarks

1. In Step 2 of Algorithm 1, the de�nition of yk−1 is di�erent from the

one given in (5) and by the monotoniity of F , it is not di�ult to see

that yTk−1sk−1 > 0.

2. The spetral oe�ient λk is positive ∀k ∈ N ∪ {0}.

3. Sine F (xk)
Tdk ≤ −c‖F (xk)‖

2. ∀k, c > 0, it is lear that the line

searh (9) holds for all su�iently small αk > 0. Therefore, Algorithm
1 is well-de�ned.

3 Convergene Results

In order to prove the global onvergene results of Algorithm 1, we need the

following preliminaries:

Lemma 1. [14℄ Suppose that x∗ ∈ R
n
satis�es F (x∗) = 0. Let {xk} be

generated by Algorithm 1. Then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖
2. (10)

Lemma 2. Suppose F is Lipshitz ontinuous. Let {dk} be the sequene of

diretions generated by Algorithm 1, then there exists a onstant M > 0 suh

that ‖dk‖ ≤M ∀k ∈ N ∪ {0}.
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Proof. Lemma 1 implies that the sequene {‖xk−x
∗‖} is non-inreasing and

onvergent, therefore bounded. Also, {xk} is bounded and

lim
k→∞

‖xk+1 − xk‖ = 0. (11)

From (7) and line searh (9)

‖xk+1 − xk‖ =
|F (zk)

T (xk − zk)|

‖F (zk)‖2
‖F (zk)‖

=
|αkF (zk)

Tdk|

‖F (zk)‖

≥
σα2

k‖F (zk)‖‖dk‖
2

‖F (zk)‖

= σα2
k‖dk‖

2 ≥ 0.

(12)

By (11) and (12) it follows that

lim
k→∞

αk‖dk‖ = 0. (13)

Let x∗ be any point in R
n
suh that F (x∗) = 0, Lemma 1 implies ‖xk−x

∗‖ ≤
‖x0 − x∗‖.
Now, sine F is Lipshitz ontinuous,

‖F (xk)‖ = ‖F (xk)− F (x∗)‖

≤ L‖xk − x∗‖

≤ L‖x0 − x∗‖.

Taking M1 := L‖x0 − x∗‖, we have ‖F (xk)‖ ≤ M1, ∀k ∈ N ∪ {0}. From
Step 2 of Algorithm 1,

‖d0‖ = ‖F (x0)‖ ≤ M1,

and

‖dk‖ = |λk|‖F (xk)‖

≤ |λk|M1

Equation(13) implies, there exists a positive integer k0 suh that

αk−1‖dk−1‖ ≤ ǫ0, ∀k > k0,
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for an arbitrary onstant ǫ0. TakingM = max{‖d0‖, ‖d1‖, ..., ‖dk0‖, |λk|M1},
we have

‖dk‖ ≤M ∀k ∈ N ∪ {0}.

The following theorem establish the global onvergene of Algorithm 1.

Theorem 1. Let {xk} and {zk} be sequenes generated by Algorithm 1. Then

lim
k→∞

inf‖F (xk)‖ = 0. (14)

Proof. If lim inf
k→∞

‖dk‖ = 0, we have lim inf
k→∞

‖F (xk)‖ = 0. By ontinuity of F ,

the sequene {xk} has some aumulation point x̃ suh that F (x̃) = 0. Sine
{‖xk − x̃‖} onverges and x̃ is an aumulation point of {xk} it follows that

{xk} onverges to x̃.
If lim inf

k→∞
‖dk‖ > 0, we have lim inf

k→∞
‖F (xk)‖ > 0. By (13), it holds that

lim
k→∞

αk = 0.

From the line searh (9),

−F (xk + βmk−1dk)
Tdk < σβmk−1‖F (xk + βmk−1dk)‖‖dk‖

2.

Using the boundedness of {xk}, {dk}, we an hoose a subsequene suh that

allowing k to go to in�nity in the above inequality results

F (x̃)T d̃ > 0. (15)

On the other hand, allowing k to approah ∞ in (9), implies

F (x̃)T d̃ ≤ 0. (16)

Therefore, (15) and (16) annot hold onurrently. Hene, it is not possible

to have lim inf
k→∞

‖F (xk)‖ > 0 and the proof is omplete.

4 Numerial Results

In this setion, we perform some numerial experiment to investigate the

e�ieny of the proposed method. All algorithms were implemented using

MATLAB R2010a and run on a PC with Intel COREi5 proessor with 4GB
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of RAM and CPU 2.3GHZ. We test problems 1 to 10 with di�erent initial

points X1 = (1, 1, ..., 1), X2 = (−1,−1, ...,−1), X3 = (−0.1,−0.1, ..., 0.1),
X4 = (0.1, 0.1, ..., 0.1), X5 = (1, 1

2
, ..., 1

n
), X6 = (1 − 1

n
, 2 − 2

n
, ..., 0), X7 =

(10, 10, ..., 10) and X8 = (−10,−10, ...,−10). For problems 1 to 8 we used

uniform dimensions ranging from 1000 to 10000, while we used perfet square

dimensions ranging from 900 to 12100 for the rest of the problems. In our

experiment we use the symbol

′−′
to report the failure of a method when the

number of iterations is greater than or equal to 1000.

In PSG algorithm, we set σ = 0.01, β = 0.8, τ = 1
e(k+1)(k+1) , exept for

problem 7 where we set β = 0.6 for the initial point X8. In SDYP and SP

algorithms, we set σ = 0.01, β = 0.5, 0.4 respetively (as originally given in

the papers). All runs were stop whenever ‖Fk‖ < 10−4
.

In Table 1 and Table 2 we present results on the following information:

the number of iterations (ITER) needed to onverge to an approximate so-

lution, the CPU time in seonds (TIME), the number of funtion evaluation

(FEVAL) and the norm of the objetive funtion F at the approximate so-

lution x∗ (NORM). The aronym 'NaN' appearing in Table 2 means 'Not a

Number'.

In addition, Table 3 summarized the results obtained from Table 1 and

Table 2 based on whih eah method is a winner in terms of CPU time

(TIME), number of iterations (ITER) and number of funtion evaluations

(FEVAL).

It an be observed from Table 3 that PSG method solved about 60% of the

total test problems within a shorter time than SP (8.75%) and SDYP (17.5%).

In terms of number of iterations PSG is the most e�ient beause it solved

about 62.5% with less number of iterations than SP (0%) and SDYP (27.5%).

It is worth mentioning that our proposed PSG method solved the last two

test funtions (arise from the disretization of some di�erential equations)

suessfully, while SP and SDYP failed to solved those funtion within the

maximum number of iterations required.

The test funtions

F (x) = (f1(x), f2(x), ..., fn(x))
T , where x = (x1, x2, ..., xn)

T

are listed as follows:

Problem 1 [30℄

Fi(x) = xi − sin |xi|, i = 1, 2, 3, ..., n.
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Tab. 1: Numerial Results for SP, SDYP and PSG methods for Problem 1 to

5

Initial n ITER TIME Feval Norm

Problems SP SDYP PSG SP SDYP PSG SP SDYP PSG SP SDYP PSG

P1

X1 1000 612 562 306 0.977096 0.347874 0.219974 1836 1686 918 9.98E-05 1.00E-04 9.94E-05

X2 1000 23 7 9 0.015147 0.010177 0.009076 69 21 27 7.39E-05 9.58E-05 9.42E-05

X3 1000 18 6 9 0.009932 0.006993 0.005697 54 18 27 7.87E-05 3.52E-05 3.21E-05

X4 1000 593 548 306 0.264398 0.258694 0.157252 1779 1664 918 1.00E-04 9.99E-05 9.94E-05

X5 10000 308 289 298 1.182605 1.051789 1.081876 924 867 894 9.96E-05 9.97E-05 9.99E-05

X6 10000 - - 483 - - 1.74165 - - 1449 - - 9.95E-05

X7 10000 - - 483 - - 1.847287 - - 1449 - - 9.96E-05

X8 10000 40 19 18 0.212785 0.175317 0.197806 120 57 54 6.98E-05 5.77E-05 9.30E-05

P2

X1 1000 25 9 10 0.01616 0.00664 0.005848 75 27 30 6.96E-05 8.16E-05 6.82E-05

X2 1000 24 10 9 0.013979 0.009998 0.007857 72 30 27 9.55E-05 7.42E-05 7.68E-05

X3 1000 20 7 7 0.010755 0.007575 0.004995 60 21 21 7.66E-05 4.35E-06 4.89E-05

X4 1000 20 8 9 0.010505 0.01801 0.005267 60 24 27 8.18E-05 4.32E-05 8.25E-05

X5 10000 20 16 14 0.075477 0.078249 0.090461 60 48 42 7.47E-05 7.03E-05 6.61E-05

X6 10000 27 22 14 0.104481 0.109667 0.076451 81 66 42 7.68E-05 8.01E-05 8.28E-05

X7 10000 42 24 20 0.184385 0.178531 0.188336 126 72 60 6.68E-05 7.40E-06 6.56E-05

X8 10000 40 32 19 0.180432 0.271937 0.169925 120 96 57 6.13E-05 7.51E-05 2.62E-05

P3

X1 1000 38 28 22 0.027194 0.030577 0.016944 114 84 66 7.15E-05 7.40E-05 4.79E-05

X2 1000 41 29 26 0.025443 0.030163 0.020255 123 87 78 7.73E-05 8.11E-05 5.79E-05

X3 1000 31 32 26 0.022175 0.032685 0.019942 93 96 78 7.34E-05 8.09E-05 5.62E-05

X4 1000 36 30 23 0.023474 0.030629 0.018445 108 90 69 6.44E-05 9.40E-05 6.49E-05

X5 10000 41 31 30 0.184813 0.245373 0.169784 123 93 90 6.82E-05 8.95E-05 5.78E-05

X6 10000 43 29 - 0.18704 0.212561 - 129 87 - 7.99E-05 8.84E-05 -

X7 10000 - - - - - - - - - - - -

X8 10000 - - - - - - - - - - - -

P4

X1 1000 101 93 33 0.066758 0.085708 0.053158 303 279 99 9.74E-05 9.76E-05 5.21E-05

X2 1000 64 87 42 0.040698 0.079832 0.060056 192 261 126 9.80E-05 9.57E-05 8.76E-05

X3 1000 76 18 22 0.047969 0.018724 0.015137 228 54 66 9.35E-05 8.57E-05 2.71E-05

X4 1000 71 59 24 0.046677 0.054305 0.031464 213 177 72 9.66E-05 9.00E-05 8.17E-05

X5 10000 24 19 18 0.11024 0.13139 0.095178 72 57 54 8.94E-05 4.10E-05 8.79E-05

X6 10000 103 92 41 0.479626 0.645417 0.499426 309 276 123 9.13E-05 9.11E-05 9.36E-05

X7 10000 127 85 151 0.593355 0.692414 2.212888 381 255 453 9.81E-05 9.69E-05 6.36E-05

X8 10000 94 85 148 0.404474 0.648166 2.212487 282 255 444 9.83E-05 9.55E-05 7.50E-05

P5

X1 1000 26 12 11 0.024195 0.015785 0.009507 78 36 33 6.57E-05 6.33E-06 6.38E-05

X2 1000 27 12 12 0.023428 0.012696 0.009877 81 36 36 8.54E-05 1.32E-05 2.87E-05

X3 1000 27 12 12 0.022585 0.012781 0.010076 81 36 36 6.47E-05 1.02E-05 2.18E-05

X4 1000 27 12 11 0.023546 0.013085 0.009114 81 36 33 6.01E-05 9.48E-06 9.72E-05

X5 10000 29 11 13 0.169439 0.091871 0.094327 87 33 39 9.65E-05 6.83E-05 4.59E-05

X6 10000 28 12 13 0.166489 0.116191 0.09004 84 36 39 7.32E-05 1.23E-05 2.11E-05

X7 10000 37 19 17 0.246461 0.182903 0.193747 111 57 51 6.34E-05 4.46E-05 5.52E-05

X8 10000 45 27 23 0.33718 0.303648 0.351447 135 81 69 9.14E-05 4.44E-05 4.07E-05

Problem 2 [16℄

Fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n.

Problem 3 [16℄

F1(x) = 2x1 + sin(x1)− 1,

Fi(x) = −2xi−1 + 2xi + sin(xi)− 1, for i = 2, 3, ..., n− 1,

Fn(x) = 2xn + sin(xn)− 1.



A positive SG-like method for large-sale nonlinear monotone eqs 108

Tab. 2: Numerial Results for SP, SDYP and PSG methods for Problem 6 to

10

Initial n ITER TIME Feval Norm

Problems SP SDYP PSG SP SDYP PSG SP SDYP PSG SP SDYP PSG

P6

X1 1000 229 7 522 0.547922 0.050029 2.721665 687 21 1566 9.37E-05 NaN 9.32E-05

X2 1000 235 7 - 0.474068 0.049591 - 705 21 - 9.76E-05 NaN -

X3 1000 112 66 142 0.21367 0.190808 0.533069 336 198 426 5.57E-05 6.22E-05 8.61E-05

X4 1000 108 54 131 0.205038 0.158515 0.46199 324 162 393 6.95E-05 4.27E-05 8.72E-05

X5 10000 - - - - - - - - - - - -

X6 10000 - 5 - - 0.225795 - - 15 - - NaN -

X7 10000 - 5 948 - 0.228469 35.70947 - 15 2844 - NaN 8.35E-05

X8 10000 - 5 - - 0.223426 - 15 - - NaN -

P7

X1 1000 54 39 26 0.703216 0.42539 0.268951 162 117 78 9.16E-05 7.87E-05 7.39E-05

X2 1000 54 33 27 0.375009 0.34951 0.335551 162 99 81 9.23E-05 8.97E-05 7.06E-05

X3 1000 47 28 20 0.331214 0.290744 0.184939 141 84 60 8.50E-05 8.67E-05 3.38E-05

X4 1000 48 28 15 0.331568 0.29609 1.39E-01 144 84 45 9.21E-05 9.00E-05 6.61E-05

X5 10000 39 31 16 1.90404 2.375007 0.978444 117 93 48 8.91E-05 8.64E-05 7.32E-05

X6 10000 64 46 33 3.100786 3.891138 2.67857 192 138 99 9.22E-05 7.37E-05 9.01E-05

X7 10000 89 4 816 4.256329 1.522045 115.7949 267 12 2448 8.53E-05 NaN 3.51E-05

X8 10000 375 521 340 32.98647 72.32298 37.89541 1125 1563 1020 9.89E-05 8.27E-05 5.04E-05

P8

X1 1000 - - - - - - - - - - - -

X2 1000 - - - - - - - - - - - -

X3 1000 - - - - - - - - - - - -

X4 1000 - - - - - - - - - - - -

X5 10000 - - - - - - - - - - - -

X6 10000 - - - - - - - - - - - -

X7 10000 - - - - - - - - - - - -

X8 10000 - - - - - - - - - - - -

P9

X1 900 - - 135 - - 3.315385 - - 405 - - 9.21E-05

X2 1600 - - 136 - - 4.174302 - - 408 - - 9.51E-05

X3 2500 - - 133 - - 4.324865 - - 333 - - 9.98E-05

X4 3600 - - 113 - - 6.170219 - - 339 - - 9.61E-05

X5 4900 - - 126 - - 8.498605 - - 378 - - 9.41E-05

X6 6400 - - 138 - - 11.47546 - - 414 - - 9.37E-05

X7 8100 - - 158 - - 16.20509 - - 474 - - 9.47E-05

X8 12100 - - 160 - - 23.55938 - - 480 - - 9.32E-05

P10

X1 900 - - 135 - - 2.743291 - - 405 - - 9.22E-05

X2 1600 - - 136 - - 3.1633 - - 408 - - 9.56E-05

X3 2500 - - 112 - - 3.039852 - - 336 - - 9.28E-05

X4 3600 - - 113 - - 4.136995 - - 339 - - 9.50E-05

X5 4900 - - 126 - - 5.408373 - - 378 - - 9.54E-05

X6 6400 - - 138 - - 7.121279 - - 414 - - 9.37E-05

X7 8100 - - 158 - - 10.26578 - - 474 - - 9.60E-05

X8 12100 - - 160 - - 13.64664 - - 480 - - 9.41E-05

Tab. 3: Winners with respet to iterations, funtion evaluations and CPU

time

Method SP SDYP PSG

TIME 7 14 48

ITER 0 22 50

FEVAL 0 22 50

Problem 4 [16℄

F1(x) = x1(x
2
1 + x22)− 1

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1)− 1 for i = 2, 3, ..., n− 1

Fn(x) = xn(x
2
n−1 + x2n).
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Problem 5 Tridiagonal Exponential Problem [31℄

F1(x) = x1 − ecos(h(x1+x2))

Fi(x) = xi − ecos(h(xi−1+xi+xi+1))
for i = 2, 3, ..., n− 1

Fn(x) = xn − ecos(h(xn−1+xn)),

where h =
1

n+ 1
.

Problem 6 Singular Funtion [32℄

F1(x) =
1

3
x31 +

1

2
x22

Fi(x) = −
1

2
x2i +

i

3
x3i +

1

2
x2i+1 for i = 2, 3, ..., n− 1

Fn(x) = −
1

2
x2n +

n

3
x3n.

Problem 7 [30℄

F (x) =




2 −1
−1 2 −1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. −1
−1 2



x+ (ex1 − 1, ..., exn − 1)T

Problem 8 [33℄

F (x) =




5 3
2 5 3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3
2 5



x+ (−1,−2, ...,−n)T

Problem 9 [34℄ The funtion F (x) is given by F (x) = Ax+ φ(x), is the
disretization of the boundary problem

{
−∆u(x, y) = g(x, y, u), (x, y) ∈ Ω ⊂ R

2

u = 0, (x, y) ∈ ∂Ω
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where ∆ is the Laplae operator, g(x, y, u) = −u3+10 and Ω = [0, 1]× [0, 1].
The matrix A is the bidimensional �nite di�erenes Laplaian n× n matrix

given by

A =




B −I
−I B −I
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. −I
−I B




∈ R
n×n, (17)

where I is the n0 × n0 identity matrix and

B =




4 −1
−1 4 −1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. −1
−1 4




∈ R
n0×n0 .

φ(x) = h2(x31 − 10, ..., x3n − 10)T , n = n2
0 and h = 1/(n0 + 1).

Problem 10 [35℄ The funtion F (x) is given by F (x) = Ax + ψ(x)− b,
is the disretization of nondi�erentiable Dirihlet problem whih arise from

magnetohydrodynamis equilibria. The matrix A is given by (17),

ψ(x) = −h2(max(αx1 − v, βx1 − µ), ...,max(αxn − v, βxn − µ))T ,

where h = 1/(n0+1), n2
0 = n, α = v = 1, β = µ = 0.5 and b = h2(1, 1, ..., 1)T .

5 Conlusions

In this paper, we proposed a positive spetral gradient-like method for large-

sale nonlinear monotone equations based upon a onvex ombination of two

di�erent spetral oe�ients with projetion tehnique, and it was proved to

onverge globally under some assumptions. Numerial results showed that

the proposed algorithm is ompetitive to similar algorithms for large-sale

problems. In addition, we have notied that the hoie of β a�ets the

performane of the algorithms. Therefore, we suggest further researh on

the seletion of β for an e�ient algorithm.
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