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Abstrat

We onsider a nonloal problem with dynami boundary onditions for a loaded

linear paraboli equation. For this problem we prove the unique solvability in

Sobolev's spaes and the maximum priniple under some natural onditions. We

suggest the numerial straight-lines method for the �nding of the solution of the

problem. The onvergene of the straight-lines method to the exat solution is also

proved.

Keywords: Nonloal problem, loaded paraboli equation, dynami boundary on-

dition, straight lines method, numerial solution, maximum priniple, rate of on-
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1 Introdution

Let N ≥ 1 be an integer, T > 0. Let Ω be a bounded domain in R
N
with

smooth boundary Γ ≡ ∂Ω . Denote D ≡ D ≡ Ω× [0, T ], ΓT ≡ Γ× [0, T ]. In
the domainD we onsider the following initial - boundary value problem with

dynami boundary onditions for the unknown funtion u(x, t), ((x, t) ∈ D)

1
Baku State University, Aademi Z.Khalilov street, 23, Baku, Azerbaijan,

(hankishiyev.zakir�gmail.om).

77



On solution of a nonloal problem with dynami 78

∂u

∂t
=

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂u

∂xj
)−b(x, t)u(x, t)+B[u]+f(x, t), (x, t) ∈ D, (1)

∂u(x, t)

∂t
+ α(x, t)u(x, t) + β(x, t)u ◦ e = µ(x, t), (x, t) ∈ ΓT , (2)

u(x, 0) = ϕ(x), x ∈ Ω. (3)

Here kij = kij(x, t), b = b(x, t), f(x, t) , α = α(x, t), β = β(x, t), µ(x, t), ϕ(x)
are given funtions and we suppose the elliptiity ondition with some ν > 0

νξ2 ≤

N∑

i,j=1

kijξiξj ≤ ν−1ξ2, ξ ∈ RN , (4)

b(x, t) ≥ ν > 0, α(x, t) + β(x, t) ≥ ν > 0, β(x, t) ≤ 0. (5)

The term B[u] in equation (1) represents a given bounded generally non-

loal linear operator in the spae of ontinuous funtions C(D) with the

properties (B0 denotes the norm of B : C(D) → C(D))

|B[u]|
(0)

D
≤ B0|u|

(0)

D
, and B[u](x, t) ≥ 0 in D if u(x, t) ≥ 0 in D, (6)

and for any positive onstant a > 0

−b(x, t)a +B[a](x, t) < 0 in D, (7)

where b(x, t) is the oe�ient from (1) and |u|
(0)

D
is the norm of u in C(D)

|u|
(0)

D
≡ max

(x,t)∈D
|u(x, t)|.

Note that due to linearity (7) is equivalent to

−b(x, t) +B[1](x, t) ≤ −ν < 0 in D. (8)

Finally, u ◦ e in boundary ondition (2) means the omposition of the

unknown funtion u(x, t) with some given di�eomorphism e(x) of the surfae
Γ onto itself, that is
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u ◦ e ≡ u(e(x), t), e(x) : Γ → Γ. (9)

It is worth noting that the linear operator B[u] may be a nonloal operator,

for example,

B[u] =

∫

D

G(x, t; y, τ)u(y, τ)dydτ, G(x, t; y, τ) ≥ 0 in D ×D

or, for example,

B[u] =

m∑

k=1

bk(x, t)u(x, tk), tk ∈ [0, T ], k = 1, m. (10)

Nonloal problems of the (1)- (3) type (sometimes in slightly di�erent

but similar forms) arise in di�erent mathematial models in various physial,

�nanial, biologial, soial and engineering appliations. Without pretending

on a more less omplete survey of suh appliations we mention, for example,

the papers [1�26℄. In partiular, equation (1) is loaded due to the presene

of the nonloal term B[u] . Boundary ondition (2) ontains the highest

derivative ut and the nonloal term u ◦ e; therefore, it is dynamial and

nonloal at the same time. Note that the term u ◦ e is an analogue of

the Bitsadze- Samarskii onditions (the Bitsadze-Samarskii onditions use

a di�eomorphism e of the boundary Γ onto some surfae S whih may not

oinide with Γ). It is worth noting that the investigations of problems with

dynami boundary onditions is an ative diretion in the present theory

of PDE inluding numerial approahes to suh problems. However, the

author is not aware of results regarding orretness of problems of the (1)-

(3) type where a loaded equation has nonloal dynami boundary onditions

or of respetive numerial approahes. The numerial solutions of problems

for loaded paraboli equations are overed in, for example, the papers [1�

3, 5, 6, 16, 20, 25℄. In partiular, the paper [5℄ also disusses the appliation

of the straight-line method to a di�erent problem with a loaded paraboli

equation. However, we onsider the ase of dynami boundary onditions

and prove the onvergene of the straight-lines method.

The purpose of the present paper is twofold. In the next setion 2 we �rst

prove the unique solvability of problem (1)-(3) in Sobolev spaes W 2,1
q (D) by

the Fredholm theory and we prove a omparison priniple for the problem.
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It is worth noting that without onditions (5), (7) this Fredholm problem is

inorret in general (the more in the spaes of smooth funtions) and may

ause some inverse problems - see Remark 1. Main results of setion 2 are

presented in theorems 1- 4 below. Seond, in the last setion 3 we investigate

the appliation of the straight-lines method in solving the one-dimensional

setting of problem (1)-(3). Here we prove the onvergene of this method to

the exat solution and the main results are formulated in theorems 5-8.

In what follows we denote by the same symbols C or ν all absolute on-

stants or onstants depending only on �xed given data of the problem.

2 Corretness of problem (1)-(3) in spaes W 2,1
q (D).

Let γ ∈ (0, 1) and let k be a nonnegative integer. We use the standard

anisotropi Hölder spaes Ck+γ, k+γ
2 (D) of funtions u(x, t) in D with the

smoothness in the x-variables up to the order k+γ and with the smoothness

in the t-variable up to the order (k+γ)/2. And we use also the Hölder spaes

Ck+γ(Ω) and Ck+γ, k+γ
2 (ΓT ) in Ω and on ΓT . Suh spaes are sometimes desig-

nated also as Hk+γ, k+γ
2 (D), Hk+γ(Ω), and Hk+γ, k+γ

2 (ΓT ) and their de�nitions

an be found in [27℄, for example. The norm in the spaes Ck+γ, k+γ
2 (D) and

Ck+γ(Ω) are denoted by

|u|
(k+γ, k+γ

2
)

D
≡ ‖u‖

Ck+γ,
k+γ
2 (D)

, |u|
(k+γ)

Ω
≡ ‖u‖Ck+γ(Ω) .

For q ≥ N = 1 we use the standard anisotropi Sobolev spae W 2,1
q (D)

of funtions u(x, t) in D with the standard norm

‖u‖
(2,1)
q,D ≡ ‖u‖W 2,1

q (D) ≡



∫

D

(
|ut|

q +

N∑

i=1

|uxi
|q +

N∑

i,j=1

|uxixj
|q + |u|q

)
dxdt




1
q

.

About the data of problem (1)-(3) we assume the following. Let the

boundary Γ of the domain Ω be a surfae of the lass Ck+2+γ, k+2+γ
2

(see [27℄)

and let

f(x, t) ∈ Ck+γ, k+γ
2 (D), µ(x, t) ∈ Ck+2+γ, k+2+γ

2 (ΓT ),
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ϕ(x) ∈ Ck+2+γ(Ω), e(x) ∈ Ck+2+γ(Γ), (11)

ki,j(x, t) ∈ Ck+1+γ, k+1+γ
2 (D), b(x, t) ∈ Ck+γ, k+γ

2 (D),

α(x, t), β(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ). (12)

Before we turn to the omparison and existene - uniqueness theorems

we now disuss dynami boundary ondition (2).

Lemma 1. Let onditions (11), (12) be satis�ed. Then there exists the unique

funtion θ(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ) with

|θ|
(k+2+γ, k+2+γ

2
)

ΓT
≤ C

(
|µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω

)
, θ(x, 0) = ϕ(x)|Γ

(13)

and ondition (2) is equivalent to the Dirihlet ondition

u(x, t)|ΓT
= θ(x, t). (14)

Proof. Integrate ondition (2) in t and write it in the form (x ∈ Γ)

u(x, t) =

(
−

∫ t

0

α(x, τ)u(x, τ)dτ −

∫ t

0

β(x, τ)u(e(x), τ)dτ

)

+

(∫ t

0

µ(x, τ)dτ + ϕ(x)

)
≡ A[u] + θ0.

(15)

Sine oe�ients α and β are smooth and sine the hange of variables

x→ e(x) is also smooth we see that

|A[u]|
(k+2+γ, k+2+γ

2
)

ΓT
≤ CT |u|

(k+2+γ, k+2+γ
2

)

ΓT
. (16)

Analogously,

|θ0|
(k+2+γ, k+2+γ

2
)

ΓT
≤ T |µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω
. (17)

Let �rst T be so small that we have CT ≤ 1/2 in (16). Then the operator

A[u] is a ontration on Ck+2+γ, k+2+γ
2 (ΓT ) and the equation u = A[u] + θ0
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from (15) has the unique solution θ(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ) whih is equal

to θ = (I − A)−1θ0. Besides, |θ|
(k+2+γ, k+2+γ

2
)

ΓT
≤ C|θ0|

(k+2+γ, k+2+γ
2

)

ΓT
and thus

the �rst relation in (13) follows from (17). The seond relation in (13) follows

by onstrution from (15). Now if with this θ ondition (14) is satis�ed by

some funtion u(x, t), then, by the onstrution of θ, u(x, t) satis�es (15).
Di�erentiating this relation in t, we arrive at (2). Thus the lemma is proved

for a su�iently small T > 0.
Let now T > 0 be arbitrary. We an hoose su�iently small 0 < T0 < T

so that CT0 ≤ 1/2 in (16) and onsider �rst the part ΓT0 of ΓT , ΓT0 ⊂ ΓT .

As it is shown, we an �nd the orresponding funtion θ(x, t) on the time

interval [0, T0]. Then we onsider the time interval [T0/2, 3T0/2] (of length
T0) and the orresponding surfae Γ × [T0/2, 3T0/2] ⊂ ΓT . Starting from

the initial value of time T0/2 we repeat our reasonings and obtain θ as the

solution of (15) (with T0/2 instead of 0) on the interval [T0/2, 3T0/2]. Moving

now up to the t-axis by steps of length T0/2, we obtain the desired funtion

θ(x, t) on whole interval [0, T ]. This proves the lemma.

We proeed with a maximum and a omparison priniples for the prob-

lems (1)-(3) or (1), (14), (3).

Theorem 1. Let onditions (4)-(7), (11), (12) be satis�ed. Let also

f(x, t) ≤ 0 in D, µ(x, t) ≤ 0 (or θ(x, t) ≤ 0) on ΓT , ϕ(x) ≤ 0 in Ω.
(18)

Let u(x, t) be a solution to (1)- (3) from the spae C(D) and it's derivatives

in x up to the seond order are ontinuous in the open domain D and the

derivative ut is ontinuous in the open domain D inluding ΓT .

Then u(x, t) ≤ 0 in D.

Proof. The simple proof is based on standard for the maximum priniple

arguments by ontradition. We onsider only boundary ondition (2) sine

the di�erene for simpler ondition (14) is evident.

Let there are points in D, where u(x, t) is positive. Sine u(x, t) ∈ C(D),
there exists (x0, t0) ∈ D, where u(x, t) attains it's positive maximum over

D. This an not happen at the bottom Ω × {0} of D beause of the last

ondition in (18). This is also not possible for points on ΓT sine at suh

point must be ut(x0, t0) ≥ 0 and

∂u(x0, t0)

∂t
+ α(x0, t0)u(x0, t0) + β(x0, t0)u(e(x0), t0) ≥
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≥ [α(x0, t0) + β(x0, t0)] u(x0, t0) > 0,

sine u(x0, t0) ≥ u(e(x0), t0), β(x0, t0) ≤ 0, and [α(x0, t0) + β(x0, t0)] > 0.
But this ontradits to the seond ondition in (18).

Analogously, let (x0, t0) be an inner point of D. Consider the right hand

side of equation (1) at this point. We have

N∑

i,j=1

∂

∂xi
(kij(x0, t0)

∂u

∂xj
)− b(x0, t0)u(x0, t0) +B[u](x0, t0) + f(x0, t0) =

=
N∑

i,j=1

kij(x0, t0)
∂2u(x0, t0)

∂xi∂xj
+

N∑

i,j=1

∂kij(x0, t0)

∂xi

∂u

∂xj
(x0, t0)+

+ {−b(x0, t0)u(x0, t0) +B[u(x0, t0)](x0, t0)}+B[u−u(x0, t0)](x0, t0)+f(x0, t0)

≡ I1 + I2 + I3 + I4 + I5. (19)

The term I1 ≤ 0 sine at the maximum point (x0, t0) the matrix of the seond

derivatives

{
∂2u(x0,t0)
∂xi∂xj

}
is negatively de�ned. The seond term I2 ontains the

�rst derivatives and so it vanishes at the maximum point. The term I3 < 0 is
stritly negative beause of (7) with a = u(x0, t0). Sine u(x, t)−u(x0, t0) ≤ 0
and due to the seond ondition in (6) the term I4 ≤ 0 is nonpositive and also
I5 = f(x0, t0) ≤ 0. Thus, the right hand side of equation (1) at this point is

stritly negative. But on the other hand the left hand side of equation (1)

at this point must be nonnegative ut(x0, t0) ≥ 0. This ontradition �nishes

the proof of the theorem.

As a orollary we have the following omparison theorem.

Theorem 2. Let under the onditions of Theorem 1 ui(x, t) , i = 1, 2 be

solutions to problem (1)-(3) (or (1), (14), (3)) with data fi(x, t), µi(x, t)
(θi(x, t)), ϕi(x) , i = 1, 2 , orrespondingly. If

f1(x, t) ≤ f2(x, t), µ1(x, t) ≤ µ2(x, t) (θ1(x, t) ≤ θ2(x, t)), ϕ1(x) ≤ ϕ2(x),

then u1(x, t) ≤ u2(x, t).
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The proof diretly follows from the previous theorem if we note that the

di�erene u1(x, t) − u2(x, t) is a solution to linear problem (1)-(3) (or (1),

(14), (3)) with the orresponding data.

Now we give some estimate for the maximum modulus norm |u|
(0)

D
of a

solution.

Theorem 3. Under the onditions of Theorem 1

|u|
(0)

D
≤ C

(
|f |

(0)

D
+ |µ|

(0)
ΓT

+ |ϕ|
(0)

Ω

)
, (20)

for problem (1)-(3) or

|u|
(0)

D
≤ C

(
|f |

(0)

D
+ |θ|

(0)
ΓT

+ |ϕ|
(0)

Ω

)
(21)

for problem (1), (14), (3), where the onstants C do not depend on f , µ, θ,
ϕ.

Proof. We onsider only (20) sine (21) is ompletely analogous and more

simple.

Consider the funtion F (x, t) = K(R−x2), whereK = |f |
(0)

D
+|µ|

(0)
ΓT
+|ϕ|

(0)

Ω
and the onstant R > 0 is su�iently large and will be hosen later. Note

that sine Ω is bounded there exists r > 0 with x2 ≤ r for (x, t) ∈ D and

onsequently F (x, t) ≥ K(R − r) > 0 if we hoose big R. Moreover, for any

ε ∈ (0, 1/2) we an hoose R = R(r) so large that

R− r ≥ (1− ε)R and so F (x, t) ≥ K(1− ε)R. (22)

Let u(x, t) be a solution to (1)-(3). Denote the di�erene v(x, t) =
u(x, t) − F (x, t). Sine problem (1)-(3) is linear, it is diretly veri�ed that

the funtion v(x, t) satis�es problem (1)- (3) with f̂ , µ̂, and ϕ̂ instead of f ,
µ, and ϕ, where

ϕ̂(x) = ϕ(x)−K(R− x2), (23)

µ̂(x, t) = µ(x, t)− [αF (x, t) + βF (e(x), t)] , (24)

f̂(x, t) =
N∑

i,j=1

∂

∂xi
(kij(x, t)

∂F

∂xj
)− b(x, t)F (x, t) +B[F ] + f(x, t). (25)
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For the funtion ϕ̂(x) we have

ϕ̂(x) ≤ ϕ(x)− |ϕ|
(0)

Ω
R/2 ≤ |ϕ|

(0)

Ω
(1−R/2) ≤ 0, (26)

if R = R(r) is su�iently large. Considering µ̂(x, t) and taking into aount

(5), we see that

µ̂(x, t) ≤ µ(x, t)−K
[
α(R− x2) + β(R− e(x)2)

]
≤

≤ |µ|
(0)
ΓT

−K(α + β)R+ rK(|α|
(0)
ΓT

+ |β|
(0)
ΓT
) ≤

≤ |µ|
(0)
ΓT

{
1− νR + r(|α|

(0)
ΓT

+ |β|
(0)
ΓT
)
}
≤ 0 (27)

if R = R(r, α, β) is hosen su�iently large.

Further, for the �rst term in f̂(x, t) we have

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂F

∂xj
) = −2K

N∑

i,j=1

∂

∂xi
(kij(x, t) · xj) ≤ KC(kij)r.

Consequently, taking into aount (8),

f̂(x, t) ≤ KC(kij)r +K
{
−b(R − x2) +B[R − x2]

}
+ f =

= KC(kij)r +KR {−b(x, t) +B[1]}+ br − B[x2] + f ≤

≤ −K {vR− C(kij, b, B, r)}+f ≤ |f |
(0)

D
{1 + C(kij, b, B, r)− vR} ≤ 0 (28)

if R = R(kij, b, B, r) is hosen su�iently large.

Thus, taking R = R(kij, b, B, α, β,Ω) su�iently large, we obtain (26)-

(28). On the base of Theorem 1 we onlude that v(x, t) = u(x, t)−F (x, t) ≤
0 in D, that is

u(x, t) ≤ F (x, t) ≤ C(kij, b, B, α, β,Ω)(|f |
(0)

D
+ |µ|

(0)
ΓT

+ |ϕ|
(0)

Ω
).

Considering now in absolutely the same way the funtion −u(x, t) instead
of u(x, t), we obtain for this funtion exatly the above inequality as well.

This means (20) and ompletes the proof of the theorem.

Formulate now the existene - uniqueness theorem.
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Theorem 4. Let onditions (4), (11), (12), (6), (8) be satis�ed. Let in

addition the operator B[u] satisfy

|B[u]|
(k+γ, k+γ

2
)

D
≤ C|u|

(k+γ, k+γ
2

)

D
, k ≥ 0, (29)

Then problem (1)-(3) has the unique solution u(x, t) ∈W 2,1
q (D)∩Cγ,γ/2(D)

and

‖u‖
(2,1)
q,D + |u|

(γ, γ
2
)

D
≤ C

(
|f |

(γ, γ
2
)

D
+ |µ|

(2+γ, 2+γ
2

)

ΓT
+ |ϕ|

(2+γ)

Ω

)
, (30)

where the onstant C does not depend on f , µ, ϕ. Moreover, for any subdo-

main D′
of domain D with D′ ⊂ D the solution u(x, t) belongs to the lass

Ck+2+γ,(k+2+γ)/2(D′) and

|u|
(k+2+γ, k+2+γ

2
)

D′ ≤ CD′

(
|f |

(k+γ, k+γ
2

)

D
+ |µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω

)
, (31)

where the onstant CD′
does not depend on f , µ, ϕ.

Remark 1. Although all the data of the problem are smooth, the solution of

the problem is not generally smooth in whole losed ylinder D. The reason

is that we an not insure neessary ompatibility onditions at Γ× {t = 0}.
Suh onditions of the �rst order, for example, look like (we substitute ut
from the equation in the boundary onditions at t = 0)

N∑

i,j=1

∂

∂xi
(kij(x, 0)

∂ϕ

∂xj
)− b(x, 0)ϕ(x) +B[u](x, 0) + f(x, 0)+

+α(x, 0)ϕ(x) + β(x, 0)ϕ ◦ e = µ(x, 0).

This ondition diretly follows from the requirement of smoothness of the

solution up to Γ× {t = 0} . But it ontains nonloal operator B[u] and the

last an not be diretly alulated from the data. Thus, suh ondition may

play a role of an additional ondition on the unknown solution. Generally,

suh requirements may lead to some statements of inverse problems for (1)-

(3), see, for example, [2, 5, 20℄. We do not onsider this issue in the present

paper.
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Proof. First of all, due to Lemma 1 we an replae ondition (2) by Dirihlet

ondition (14). Further, making the hange of the unknown funtion, u→ v,
u(x, t) = v(x, t) + ϕ(x) , we an redue the general situation to the ase

ϕ(x) ≡ 0. After suh hange of the unknown the righthand side f in (1)

and θ in (14) are also hanged but their properties in (11) are preserved.

Moreover, due to the seond relation in (13), new boundary ondition θ(x, t)
will satisfy θ(x, 0) ≡ 0. Now we an extend the funtion θ(x, t) from ΓT to

the whole domain D (the way of suh extension is desribed in, for example,

[27℄) up to the funtion Θ(x, t) of the lass Ck+2+γ,(k+2+γ)/2(D). If we make

one more hange of the unknown funtion, u→ v, u(x, t) = v(x, t) +Θ(x, t),
we redue the original problem to problem (1), (14), (3) with ϕ(x) ≡ 0 and

θ(x, t) ≡ 0.
We hoose q > N + 1 so big that aording to the Sovolev embedding

W 2,1
q (D) ⊂ W 1,1

q (D) ⊂ Cγ,γ/2(D) that is for a funtion u ∈ W 2,1
q (D) we have

|u|
(γ,γ/2)

D
≤ C ‖u‖

(2,1)
q,D . (32)

Denote further by W̃ 2,1
q (D) the proper subspae of W 2,1

q (D) whih onsists

of funtions that vanish at ΓT and at {t = 0} that is satisfy zero onditions

(14) and (3). We are going to apply the well known Fredholm theory for

operator equations so we onsider on W̃ 2,1
q (D) the equation

Lu− Bu = f, f ∈ Lq(D), u ∈ W̃ 2,1
q (D), (33)

where

Lu ≡
∂u

∂t
−

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂u

∂xj
) + b(x, t)u(x, t), Bu ≡ B[u]. (34)

Note that the operator B[u] : W̃ 2,1
q (D) → Lq(D) is well de�ned. Really, from

\ (6) and (32) it follows that for u ∈ W̃ 2,1
q (D)

‖B[u]‖q,D ≤ |D|1/q|B[u]|
(0)

DT
≤ CB0|u|

(0)

D
≤ C ‖u‖

(2,1)
q,D ,

where |D| is the measure of D and ‖B[u]‖q,D denote the norm of B[u] in the

spae Lq(D). It is evident that equation (33) is exatly rewritten equation

(1) with the operator λB[u] instead of B[u] and the ondition u ∈ W̃ 2,1
q (D)

guarantees the neessary boundary and initial onditions.
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Reall now that the embedding Cγ,γ/2(DT ) ⊂⊂ Lq(D) is ompat and on

the base of (32) and (29) we onlude that the operator B[u] : W̃ 2,1
q (D) →

Cγ,γ/2(D) → Lq(D) is a ompat operator. Besides, the operator L is an

invertible operator as an operator L : W̃ 2,1
q (D) → Lq(D). This follows di-

retly from Theorem 9.1 in [27℄, where it is proved that for any f ∈ Lq(D)

the equation Lu = f has the unique solution u(x, t) ∈ W̃ 2,1
q (D) and

‖u‖
(2,1)
q,D ≤ C ‖f‖q,D . (35)

These two fats mean that equation (33) is a Fredholm equation and it's

solvability and invertibility of the operator L−B are equivalent to the unique

solvability for f ≡ 0 of equation (33). Let us show that (33) has the zero

solution only for f ≡ 0.
Let some u ∈ W̃ 2,1

q (D) satisfy equation (33) with f ≡ 0. Write this

assumption as

Lu = B[u].

Sine in this ase u,B[u] ∈ Cγ,γ/2(D), we onlude on the base of well known

loal estimates for paraboli equations (see [27℄) that the solution u is in

fat smooth inside D. Thus, the solution u satis�es all the onditions of

the omparison theorems 1-3. Applying now to equation (33) with f = 0
Theorem 3, we see that the solution u ≡ 0. This means that equation (33)

has the unique solution u ∈ W̃ 2,1
q (D) for any f ∈ Lq(D) and estimate (30) is

valid. Estimate (31) now follows from loal estimates for paraboli equations

(see [27℄) beause all the data of the problem are smooth. This ompletes

the proof of the theorem.

3 Appliation of straight-lines method

In this setion we investigate the appliation of straight-lines method for

�nding the solution of some partiular one-dimensional statement of problem

(1)-(3).

3.1 Problem statement and appliation of

straight-lines method

Let us formulate this one-dimensional problem.
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Let l, T > 0, m is a positive integer. It is required to �nd the ontinuous

in the losed domain D = {0 ≤ x ≤ l, 0 ≤ t ≤ T} funtion u(x, t) aording
to the onditions

∂u

∂t
=

∂

∂x
(k(x, t)

∂u

∂x
)− bu(x, t) +

m∑

k=1

bku(x, tk) + f(x, t), (x, t) ∈ D, (36)

∂u(0, t)

∂t
+ α1u(0, t) + β1u(l, t) = µ1(t), 0 ≤ t ≤ T, (37)

∂u(0, t)

∂t
+ α2u(0, t) + β2u(l, t) = µ2(t), 0 ≤ t ≤ T, (38)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l. (39)

Here k(x, t) > 0, f(x, t), µ1(t), µ2(t), ϕ(x) are given ontinuous funtions,

k(x, t) is ontinuously di�erentiable with respet to x, b, bk, k = 1, 2, . . . , m,

α1, β1, α2, β2 are given onstants, t1, t2, . . . , tm ∈ (0, T ] are given �xed

points. To apply the straight-lines method we make the problem disrete

in x. Divide the interval [0, l] into N idential parts by the points xn = nh,
n = 0, 1, . . . , N , Nh = l, and onsider equation (36) on straight lines x = xn,
n = 1, . . . , N − 1. We assoiate to problem (36)-(39) the following problem

for unknown funtions yn(t), n = 0, 1, . . . , N ,

dyn(t)

dt
=

1

h

[
k(xn+1, t) + k(xn, t)

2

yn+1(t)− yn(t)

h

−
k(xn, t) + k(xn−1, t)

2

yn(t)− yn−1(t)

h

]

+ byn(t) +

m∑

k=1

bkyn(tk) + fn(t),

n = 1, . . . , N − 1, 0 < t ≤ T,

(40)

dy0(t)

dt
+ α1y0(t) + β1yN(t) = µ1(t), 0 ≤ t ≤ T, (41)

dyN(t)

dt
+ α2y0(t) + β2yN(t) = µ2(t), 0 ≤ t ≤ T, (42)
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yn(0) = ϕ(xn), n = 0, 1, . . . , N. (43)

Here by yn(t) we denote the approximate value of the solution u(x, t) to

problem (36)-(39) on the straight line x = xn, fn(t) = f(xn, t). We show

below that problem (40)- (43) approximates original problem (36)-(39) to

within O(h2) provided that the solution of (36)-(39) u(x, t) and the oe�-

ient k(x, t) have in the domain D = {0 < x < l, 0 < t ≤ T} bounded partial

derivatives in the variable x up to fourth and third orders respetively. To

solve problem (40)-(43) it is �rst neessary to solve the problem

dy0(t)

dt
+ α1y0(t) + β1yN(t) = µ1(t), 0 ≤ t ≤ T, (44)

dyN(t)

dt
+ α2y0(t) + β2yN(t) = µ2(t), 0 ≤ t ≤ T, (45)

y0(0) = ϕ(0), yN(0) = ϕ(l). (46)

This is a Cauhy problem for a linear system of ordinary di�erential equations

with onstant oe�ients with respet to y0(t), yN(t). It is always possible
to �nd the exat solution to this problem. Let this solution be found. Then

taking into aount the expressions of the found solution y0(t) and yN(t), we
an rewrite (40), (43) in the following matrix form

dy(t)

dt
+ P (t)y(t) +

m∑

k=1

bky(tk) = f(t), 0 < t ≤ T,

y(0) = ϕ0,

where the unknown is y(t) = {y1(t), . . . , yN−1(t)}. This is a nonloal problem
for a linear system of ordinary di�erential equation. It an be solved by the

method desribed in [28℄ and we refer the reader to this paper.

3.2 Maximum priniple and some theorems following

from this priniple

Consider �rst problem (40)-(43) and prove the following theorem for the

solution of this problem.

By analogy to (5)-(7) we suppose that in (36)-(39) and in (40)-(43)
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bk ≥ 0, k = 1, . . . , m, b+
m∑

k=1

bk < 0,

β1, α2 ≤ 0, α1 + β1 > 0, α2 + β2 > 0.

(47)

Theorem 5. (Maximum priniple)

Let funtions yn(t), n = 0, 1, . . . , N , satisfy problem (40)-(43) and ondi-

tions (47) are ful�lled. If in (40)-(43) fn(t) ≤ 0 (fn(t) ≥ 0), n = 1, . . . , N−1,
0 ≤ t ≤ T , µ1(t) ≤ 0, µ2(t) ≤ 0 (µ1(t) ≥ 0, µ2(t) ≥ 0), 0 ≤ t ≤ T , then the

solution yn(t), n = 0, 1, . . . , N , an not attain the greatest positive (the least

negative) value in the interval (0, T ].

Proof. We prove only the �rst part of the theorem for the greatest positive

value. The rest part is ompletely analogous. We use the reasonings by

ontradition and is analogous to the proof of Theorem 1. Let there exists

a point t0 ∈ (0, T ] wherein the solution of (40)-(43) aepts the greatest

positive value for n = n0

yn0(t0) = max
0<t≤T,0≤n≤N

yn(t) =M > 0.

Let 0 < n < N . Consider equation (40) for n = n0 at the point t = t0.
Sine for all 0 ≤ n ≤ N we have yn(t0) ≤ yn0(t0), we infer, taking into

aount (47),

fn0(t0) =
dyn(t)

dt

−
1

h

[
k(xn0+1, t0) + k(xn0 , t0)

2

yn0+1(t0)− yn0(t0)

h

−
k(xn0 , t0) + k(xn0−1, t0)

2

yn0(t0)− yn0−1(t0)

h

]

− byn0(t0)−
m∑

k=1

bkyn0(tk)

≥ −byn0(t0)−
m∑

k=1

bkyn0(tk)

≥ −

(
b+

m∑

k=1

bk

)
yn0(t0) > 0.
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This ontradits the ondition fn0(t0) ≤ 0.

Let now n0 = 0. Then, under onditions (47), we have from (41)

µ1(t0) =
dy0(t0)

dt
+ α1y0(t0) + β1yN(t0) ≥ (α1 + β1)y0(t0) > 0

and this ontradits the assumption µ1(t) ≤ 0.

The situation with n0 = N is ompletely analogous. This proves the

theorem.

From this theorem we obtain in the standard way the following assertion.

Theorem 6. Let onditions (47) are ful�lled. Let the right sides of equations

(40) and boundary onditions (41), (42) satisfy the onditions

fn(t) ≤ 0 (fn(t) ≥ 0), n = 1, . . . , N − 1, 0 ≤ t ≤ T,

µ1(t) ≤ 0, µ2(t) ≤ 0 (µ1(t) ≥ 0, µ2(t) ≥ 0), 0 ≤ t ≤ T.

If yn(0) ≥ 0 (yn(0) ≤ 0), n = 0, 1, . . . , N , then yn(t) ≥ 0 (yn(t) ≤ 0),
n = 0, 1, . . . , N, 0 ≤ t ≤ T .

Corollary 1. Let onditions (47) be ful�lled. Then the homogeneous problem

orresponding to problem (40)-(43) have only the trivial solution yn(t) = 0,
n = 0, 1, . . . , N .

Theorem 7. Let yn(t), n = 0, 1, . . . , N , be a solution to problem (40)-(43)

and let ỹn(t), n = 0, 1, . . . , N , be a solution to the same problem but with

another orresponding data f̃n(t), n = 1, . . . , N − 1, µ̃1(t), µ̃2(t), ϕ̃(xn),
n = 0, 1, . . . , N , respetively. If

|fn(t)| ≤ f̃n(t), |µ1(t)| ≤ µ̃1(t), |µ2(t)| ≤ µ̃2(t), |ϕ(xn)| ≤ ϕ̃(xn),

then |yn(t)| ≤ ỹn(t), n = 0, 1, . . . , N , 0 ≤ t ≤ T .

For the proof of this theorem it is su�ient to onsider funtions ỹn(t) +
yn(t) and ỹn(t)− yn(t) apply Theorem 5.
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3.3 Convergene of straight lines method

We now use the maximum priniple and in partiular the omparison theorem

to prove the onvergene of the solution of problem (40)-(43) to the solution

of problem (36)-(39). We assume that the exat solution u(x, t) has in D =
{0 < x < l, 0 < t ≤ T} bounded derivatives in x up to the fourth order and

the oe�ient k(x, t) has in D bounded derivatives in x up to the third order

and we denote

K = sup
D

max{|k(x, t)|, |k′x(x, t)|, |k
′′
x(x, t)|, |k

′′′
x (x, t)|},

M = sup
D

max{|u′(x, t)|, |u′′x(x, t)|, |u
′′′
x (x, t)|, |u

IV
x (x, t)|},

(48)

Let u(xn, t) be the value of the exat solution of problem (36)-(39) on the

straight line x = xn and let yn(t), n = 0, 1, . . . , N , be the solution of problem

(40)-(43). Introdue the auxiliary funtion

zn(t) = yn(t)− u(xn, t), n = 0, 1, . . . , N, 0 ≤ t ≤ T.

For this funtion we get

dzn(t)

dt
=
1

h

[
k(xn+1, t) + k(xn, t)

2

zn+1(t)− zn(t)

h

−
k(xn, t) + k(xn−1, t)

2

zn(t)− zn−1(t)

h

]

+ bzn(t) +
m∑

k=1

bkzn(tk) + h2Rn(t),

n = 1, . . . , N − 1, 0 < t ≤ T,

(49)

dz0(t)

dt
+ α1z0(t) + β1zN(t) = 0, 0 < t ≤ T, (50)

dzN(t)

dt
+ α2z0(t) + β2zN(t) = 0, 0 < t ≤ T, (51)

zn(0) = 0, n = 0, . . . , N. (52)

It an be diretly veri�ed on the base of the Taylor formula that

|Rn(t)| ≤
2

3
KM,
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where K and M are from (48).

Denote for all n = 0, . . . , N the funtions

z̃n(t) = h2L
1− ebt

b1ebt1 + b2ebt2 + · · ·+ bmebtm − (b+ b1 + · · ·+ bm)
, 0 ≤ t ≤ T,

where L is a positive onstant and will be hosen later. Under onditions (47)

these funtions are nonnegative funtions. For them, we get after elementary

alulations

dz̃n(t)

dt
−

1

h

[
k(xn+1, t) + k(xn, t)

2

z̃n+1(t)− z̃n(t)

h

−
k(xn, t) + k(xn−1, t)

2

z̃n(t)− z̃n−1(t)

h

]

− bz̃n(t)−
m∑

k=1

bk z̃n(tk)

= h2L, n = 1, . . . , N − 1, 0 < t ≤ T.

(53)

On the other hand under onditions (47)

dz̃0(t)

dt
+ α1z̃0(t) + β1z̃N (t) ≥ 0, 0 < t ≤ T, (54)

dz̃N(t)

dt
+ α2z̃0(t) + β2z̃N (t) ≥ 0, 0 < t ≤ T,

z̃n(0) = 0, n = 0, . . . , N. (55)

Let L = 2
3
KM . Then, omparing problem (49)-(52) with problem (53)-(55),

we have from the omparison theorem

|zn(t)| ≤ z̃n(t), n = 0, . . . , N, 0 < t ≤ T

that is for all n = 0, . . . , N

max
n

|yn(t)− u(xn, t)| ≤

≤
h2L(1− ebt)

b1ebt1 + b2ebt2 + · · ·+ bmebtm − (b+ b1 + · · ·+ bm)

≤ Ch2, 0 < t ≤ T.

(56)

Thus the following theorem holds.
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Theorem 8. Let the oe�ients of problem (36)-(39) satisfy onditions (47).

Then the solution of problem (40)-(43) onverges to the solution of problem

(36)-(39) and estimate (56) holds.

As a onlusion we only mention again that problems of the (1)-(3) type

arise in di�erent mathematial models in various physial, �nanial, biolog-

ial, soial and engineering appliations. Typially, di�erent models on the

base of loaded equations arise in the situations when some data of the mod-

els are unavailable for measurements. Suh data are usually funtions of the

unknown solution itself. We deal with suh situations, for example, in the

ase of di�erent inverse problems and in the ase of free boundary problems

- see [1�26℄.
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