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Abstrat

The well-known Conjugate Gradient (CG) method minimizes a stritly onvex

quadrati funtion for solving large-sale linear system of equations when the o-

e�ient matrix is symmetri and positive de�nite. In this work we present and

analyze a non-quadrati onvex funtion for solving any large-sale linear system

of equations regardless of the harateristis of the oe�ient matrix. For �nding

the global minimizers, of this new onvex funtion, any low-ost iterative opti-

mization tehnique ould be applied. In partiular, we propose to use the low-ost

globally onvergent Spetral Projeted Gradient (SPG) method, whih allow us to

extend this optimization approah for solving onsistent square and retangular

linear system, as well as linear feasibility problem, with and without onvex on-

straints and with and without preonditioning strategies. Our numerial results

indiate that the new sheme outperforms state-of-the-art iterative tehniques for

solving linear systems when the symmetri part of the oe�ient matrix is inde�-

nite, and also for solving linear feasibility problems.
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linear systems.
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1 Introdution

The stritly onvex quadrati funtion

q(x) =
1

2
xTAx− bTx, (1)

where A is a symmetri and positive de�nite (SPD) matrix, is the lassial

and suitable hoie to apply unonstrained minimization tehniques for solv-

ing the large-sale linear system Ax = b. In that ase, the most e�etive

iterative method for the unonstrained minimization is the Conjugate Gra-

dient (CG) method; see, e.g., [1�4℄. In the SPD ase, (1) has also been the

suitable hoie to develop and analyze gradient or residual iterative shemes

for solving Ax = b; see, e.g., [5℄.
In many real appliations as signal proessing, strutural analysis, data

�tting, and linear programming, among others, the oe�ient matrix A ould

be retangular and ould have no desirable harateristis as symmetry, pos-

itive de�niteness, positive de�niteness of the symmetri part, or diagonal

dominane. Hene, in the presene of no desirable harateristis, the CG

method and gradient related methods annot be applied diretly to the mini-

mization of (1). Nevertheless, they an always be applied to the minimization

of the onvex quadrati

1
2
xTATAx − (AT b)Tx, for solving the normal equa-

tions: ATAx = AT b. Now, this so-alled least-squares approah has some

advantages but also some well-known disadvantages, inluding the possible

drasti inrease of the ondition number of the oe�ient matrix ATA; see,
e.g., [4, 6, 7℄.

In order to extend the unonstrained minimization approah, in this work

we propose a new onvex funtion for solving any large-sale linear system

of equations regardless of the harateristis of the oe�ient matrix. For

this new non-quadrati onvex funtion, any low-ost optimization tehnique

ould be applied. In partiular, we propose to use the Spetral Projeted

Gradient (SPG) method [8�10℄, sine it is an e�etive low-ost optimization

sheme that has been suessfully applied in many large-sale real applia-

tions; see, e.g., [11℄.

The rest of this doument is organized as follows. In setion 2 we present

our proposal, we disuss the linear problems to be onsidered, and we brie�y

desribe the SPG method. In setion 3 we present some numerial expe-

riments in whih the performane of the proposed sheme is studied and

ompared with the well-established state-of-the-art methods CG, GMRES,
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BICGSTAB, ORM, RA, and Kazmarz, for di�erent senarios. Finally, in

setion 4, we present some onluding remarks.

2 Optimization approah

For solving the linear system Ax = b, where A ∈ R
m×n

and b ∈ R
m
, onsider

the funtion:

f(x) =
m∑

i=1

fi(x) =
m∑

i=1

(e−ri(x) + eri(x)), (2)

where fi(x) = e−ri(x) + eri(x) and ri(x) is the ith omponent of the residual

vetor r(x) = b−Ax.
The most relevant properties of the funtion f(x) are established in

Propositions 1, 2 and 3

Proposition 1. The funtion f de�ned in (2) is a onvex funtion.

Proof. Let g : R → R be given by g(z) = ez+e−z
. Sine g′′(z) = ez+e−z > 0

for all z ∈ R, then g is onvex. Hene, fi(x) is onvex for all 1 ≤ i ≤ m.

Consequently, f(x) =
∑m

i=1 fi(x) is the sum of onvex funtions and so it is

also a onvex funtion.

Notie that sine g′(z) = ez − e−z
, then the unique global minimizer of

g(z) = ez + e−z
is reahed when ez = e−z

, i.e., when z = 0. Notie also that

g(0) = 2.

Proposition 2. If Ax∗ = b for some vetor x∗ ∈ R
n
, then f(x∗) = 2m.

Proof. Sine Ax∗ = b then the residual vetor satis�es ri(x
∗) = 0, for all i,

1 ≤ i ≤ n, and fj(x
∗) = e−rj(x∗) + erj(x

∗) = 2, for all j, 1 ≤ j ≤ m. Adding

the m values we obtain f(x∗) = 2m.

Notie that Proposition 2 reveals an e�etive riterion for determining if

a given vetor x∗ solves the system Ax = b.

Proposition 3. If the system Ax = b is onsistent then f attains its global

minimum value 2m. Moreover, any global minimizer of f solves the linear

system Ax = b.
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Proof. Let x ∈ R
n
and let x∗ ∈ R

n
suh that Ax∗ = b. Sine fi(x) =

e−ri(x) + eri(x) attains a minimum value when ri(x) = 0 then fi(x) ≥ 2.
Hene by Proposition 2

f(x) =
m∑

i=1

fi(x) ≥ 2m = f(x∗). (3)

Let us now onsider x̃ for whih Ax̃−b 6= 0, that is, there exists k, 1 ≤ k ≤ n,
suh that Akx̃ − bk 6= 0, where Ak represents the k-th row of A. Therefore,
fk(x̃) = e(Akx̃−bk) + e−(Akx̃−bk) > 2. Furthermore, for all i = 1, ..., m, with

i 6= k, fi(x̃) ≥ 2. Consequently, f(x̃) > 2m. Hene, x̃ is not a minimizer of

f .

Observe that the objetive funtion (2) an be written in a more general

way as

f(x) =
m∑

i=1

ϕ(ri(x)), (4)

where ϕ : R → R
+
, ϕ ∈ C2(R), ϕ even, stritly onvex and oerive and

whose global minimum is reahed at 0. Moreover, propositions 1, 2 and 3

are valid for any funtion ϕ satisfying the previous onditions. In partiular,

onsidering ϕ(t) = t2 orresponds to the linear least square problem.

2.1 Problems to be solved

Aording to Propositions 1, 2 and 3, solving a onsistent linear system Ax =
b is equivalent to solving the following unonstrained onvex minimization

problem:

Find x∗, suh that x∗ = arg

(
min
x∈Rn

f(x)

)
. (5)

An important aspet of this optimization approah is that it an be used

for any onsistent square or retangular linear systems, regardless of the

harateristis of the oe�ient matrix.

Sine the funtion f involves exponential terms, then a suitable saling

parameter δ > 0 an always be found to solve

1

δ
Ax =

1

δ
b, (6)
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instead of Ax = b, to avoid the appearane of big numbers that ould ause

loss of auray or even over�ow. Clearly, x solves Ax = b if and only if x
solves (6). Another option to avoid loss of auray when solving (5) is to use

preonditioning strategies for the linear system Ax = b. The way of hoosing

δ > 0 and the use of preonditioning strategies will be fully desribed in

Setion 3 of numerial experiments.

In some real appliations, lower and upper bounds must be imposed to

the solution vetor. In this ase, we are interested in solving the following

problem: {
Find x suh that Ax = b
subjet to: x ∈ Ω,

(7)

where Ω is a onvex set. In partiular, we are interested in the problem:





Find x suh that Ax = b
subjet to:

li ≤ xi ≤ ui if i ∈ D ⊆ {1, 2, · · · , n}.
(8)

In this ase the optimization approah (5) allows us to add onvex on-

straints, that is, to �nd the solution of Ax = b within a given onvex set,

obtaining the following onvex optimization problem:





Find x∗ = arg (minx∈Rn f(x))
Subjet to:

li ≤ xi ≤ ui if i ∈ D.

(9)

For some other appliations, as image reovery or inverse problems, the

solution of a linear feasibility problem is required:

Find x suh that Ax ≤ b, (10)

where A ∈ R
m×n

, b ∈ R
m
and x ∈ R

n
.

Our proposal an be used for solving feasibility problems transforming

problem (10) into an m× (m+ n) onstrained linear systems, as follows:





Find x suh that Ãx̃ = b
Subjet to:

x̃i ≥ 0 if n+ 1 ≤ i ≤ n+m

(11)

where Ã =
(
A Im

)
m×(m+n)

, Im is the m×m identity matrix, x̃i = xi, for

1 ≤ i ≤ n, and x̃i, for n + 1 ≤ i ≤ n + m, are auxiliary variables or slak

variables. Moreover, if some omponents must be bounded, these restritions

an be added to problem (11) and it an be redued to problem (9).
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2.2 The SPG mahinery

The di�erent problems desribed in Setion 2.1, for whih our optimization

approah an be applied, an be solved by any iterative low-ost optimiza-

tion method that an handle onvex onstraints. In partiular, we onsider

the Spetral Projeted Gradient (SPG) method [8�10℄, whih is nowadays a

well-established nonmonotone numerial sheme for solving large-sale on-

vex onstrained optimization problems when the projetion onto the feasible

set an be performed e�iently [11℄. The SPG method has been extended to

some other onstrained optimization settings; see, e.g., [12, 13℄. The attra-

tiveness of the SPG method is mainly based on its simpliity. Moreover, it

is globally onvergent, i.e., the sequene that it generates onverges to sta-

tionary points from any initial guess. For more details on the onvergene

properties of the SPG method see [8℄,[9℄ and [10℄.

We now disuss the most important features of the SPG method for solv-

ing nonlinear optimization problems of the form:

min
x∈Ω

f(x), (12)

where Ω is a losed onvex set in R
n
and f : Rn −→ R is a funtion with

ontinuous partial derivatives in an open set that ontains Ω. Starting from

a given initial x0 ∈ R
n
the iterations are given by

xk+1 = xk + αkdk, (13)

where dk = PΩ(xk−λkgk)−xk, gk = ▽f(xk), PΩ denotes the projetion onto

Ω and λk is the spetral hoie of step length, given by:

λk =
sTk−1sk−1

sTk−1yk−1

, (14)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.

The parameter αk > 0 in (13) is found by a nonmonotone line searh to

aomplish the following ondition:

f(xk+1) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + γαkg
T
k dk, (15)

where M is a nonnegative integer and γ is a small positive number. In this

work, we set M = 10 and γ = 10−4
. For more details onerning pratial

issues see [11℄. Notie that the SPG method an also be applied to the

unonstrained minimization problem (5) by setting Ω = R
n
.
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3 Numerial experiments

From now on, the appliation of the SPG method on the onvex minimization

problems desribed in setion 2.1, will be denoted by OPAPLS (Optimization

Approah for Linear Systems). In order to illustrate the advantages of the

proposed strategy, we ompare OPAPLS with the following methods: GM-

RES, BICGSTAB, RA, ORM, CG, and Kazmarz method. The methods

GMRES, BICGSTAB, CG and Kazmarz are well-known and they an be

found for instanes in [6℄, [14℄ and [4℄, respetively. The strategies ORM and

RA are iterative shemes for whih the searh diretion is the residual vetor;

see [15℄ and [16℄.

The CG and RA methods orrespond to the use of ϕ(t) = t2 in the general
formulation (4). So, omparisons between di�erent funtions ϕ are presented

in our numerial experiments.

The Optimal Rihardson Method (ORM), introdued in [15℄, is a variation

of the lassial Rihardson's method for solving Ax = b, whih uses the

following iterative sheme:

xk+1 = xk + λkrk, (16)

where the step length λk is hosen as follows:

λk =
rTkArk

(Ark)TArk
. (17)

For more details on the ORM sheme see [5℄.

The residual RA method solves Ax = b by solving the minimization

problem:

Find x∗ = arg min
x∈Rn

‖r(x)‖2. (18)

This sheme generates the iterates using plus or minus the residual vetor at

xk as searh diretion, as follows:

xk+1 = xk + sgn(βk)
1

βk−1
rk, (19)

where, sgn(z) represents the sign of the real variable z, and

βk =
rTkArk
rTk rk

.
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In the RA sheme, a globalization strategy is inorporated to guarantee on-

vergene from any initial guess and any positive initial step length. For more

details on the RA sheme see [16℄.

In all our experiments, the alulations were done on a i7 4710MQ at

2.50GHz with Matlab R2013b. For BICGSTAB and GMRES (with the stan-

dard restart parameters 20 and 40) we used the available ommands in Mat-

lab. For RA and ORM we used the algorithms presented in [16℄ and [15℄,

respetively. For the CG method we used a Matlab implementation based

on the algorithm desribed in [6, p. 289℄. The Kazmarz method was im-

plemented aording to Algorithm 1 (below), as desribed in [14, pp. 41℄,

with the relaxation parameter ω = 1, and following the natural ordering for

the projetions. In Algorithm 1, Ai represents the i-th row of A, and the

stopping riterion is evaluated after every sweep of m projetions.

Algorithm 1: Kazmarz Sheme

Require A ∈ R
m×n

, b ∈ R
m
, x0 ∈ R

n
;

Ensure x0, cycles;
for k = 1, 2, · · · , until onvergene do

for i = 1, 2, · · · , m do

x0 = x0 +
bi − AT

i x0
AT

i Ai

Ai;

end for

end for

cycles = k;

In all the forthoming tables, we report the results using the following

notation: the number of iterations (iter), the required pu time until on-

vergene (tcpu) in seonds, the number of �ops (flops) whih represents the

required omputational work, and the relative norm of the residual

(
‖r‖
‖b‖

)
.

For OPAPLS, fcnt represents the number of evaluations of the objetive

funtion and gcnt the number of evaluations of the gradient of the objetive
funtion. For GMRES, we report the number of iterations and not the num-

ber of yles. Let us reall that a yle is made of the iterations in between

two restarts.

The number of �ops for eah method, one k iterations or k yles for

Kazmarz method have been performed, is obtained as follow: For OPAPLS

(gcnt + fcnt) · n · m + 2 · n · k �ops are used to obtain the solution. The
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Kazmarz method uses m inner produts of length n to obtain the square of

the norm of eah row vetor. Furthermore, it uses one inner produt of length

n for eah row Ai. Therefore, in a yle it uses n ·m �ops. So, n ·m ·k+m ·n
�ops are required by Kazmarz method. GMRES(l) requires per iteration
one matrix-vetor multipliation and 2(k mod l) inner produts of length
n, that is, n2 · k + 2(k mod l) · n �ops. BICGSTAB requires two matrix-

vetor multipliation and four inner produts of length n, that is, (2n2 + 4 ·
n) · k �ops. The ORM and RA methods require per iteration one matrix-

vetor multipliation and two inner produts of length n, whih implies the

exeution of (n2 + 2 · n) · k �ops. For the ase of the onjugate gradient

method, one matrix-vetor, two inner produts, and two vetor summations

per iteration are required. Then, the CG method requires (n2+4 ·n) ·k �ops.
In all methods and examples presented in this work, the initial guess is

the null vetor. The stopping riterion for solving unonstrained problems is

‖r‖

‖b‖
< 10−10.

For OPAPLS other simple stopping riteria are available, among them,

|f(xk) − 2m| < ε and ‖∇f(xk)‖ < ε, for unonstrained problems and

‖PΩ (xk − λk∇f(xk))−xk‖ < ε for solving problem (9). We set 20.000 as the
maximum number of yles for Kazmarz method, or iterations for all the

other methods. The symbol ∗∗ in our tables indiates that the orrespond-

ing method does not onverge, with the desired tolerane before reahing the

maximum number of iterations.

In our �rst experiment, we onsider orthogonal matries of dimension

10000 × 10000, from the Matlab gallery, whih are shown in Table 1. The

right hand side vetor is given as b = (1, 1, · · · , 1)T . The number of iterations
required by eah method are shown in Table 2.

Tab. 1: Desription of orthogonal test matries, from the Matlab gallery.

Matrix Desription Matlab Commands

Q1 ai,j =
√

2/(m + 1) sin(ijπ/(m + 1)), A=gallery('orthog',m,1)

Q2 ai,j = 2/
√

2m + 1 sin(2ijπ/(2m + 1)) A=gallery('orthog',m,2)

Q3 A permutation of a lower Hessenberg matrix, whose a1,j = 1√
m

A=gallery('orthog',m,4)

Q4 Householder matrix,

∑m
i=1 ai,j = 0, 2 ≤ j ≤ m and

∑m
i=1 ai,1 =

√
m A=gallery('orthog',m,7)

We an observe, in Table 2, that for all methods few iterations are required

for onvergene. Indeed, these matries are well onditioned. In partiu-

lar, notie that our proposal, OPAPLS, is ompetitive with well-established
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Tab. 2: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA

and OPAPLS for solving linear systems with the orthogonal matries

desribed in Table 1, without preonditioning.

GMRES(20) GMRES(40) BICGSTAB RA OPAPLS

Matrix Iter Iter Iter Iter Iter

Q1 2 2 2 14 6

Q2 2 2 2 14 6

Q3 19 19 18 ** 6

Q4 2 2 3 5 6

methods for solving orthogonal linear systems. For the third matrix, Q3, we
observe an inrease in the number of iterations when using GMRES(20) and

GMRES(40). For this example the symmetri part of the oe�ient matrix

is inde�nite, and as a onsequene RA does not onverge; see [16℄.

For all the linear problems, presented in the remainder of this work, a

saling fator is applied. The matrix A and the vetor b are multiplied by

1
δ
,

where δ = max (maxi,j |ai,j|,maxi |bi|).
For example, for linear systems, we solve (6) instead of Ax = b. Sine

the initial guess x0 = 0, then the initial residual is the vetor b, and as a

onsequene the saling fator guarantees that |ri(x0)| ≤ 1 for all i. More-

over, using the global onvergene of the SPG method and Proposition

3, it follows that the elements of the residual vetor, during the onver-

gene proess, will be bounded above in absolute value by a small posi-

tive number. This fat ould be veri�ed numerially with the parameter

rmax = max1≤k≤iter‖r(xk)‖∞. Consequently, the desribed saling fator

δ > 0 avoids the appearane of big numbers that ould ause loss of auray

when the funtion f(x) in (2) is evaluated during the iterations. Finally, in

order to make a fair omparison between all strategies, we apply the same

saling fator to all the onsidered methods.

For our seond experiment we ompare the performane of OPAPLS with

all the other methods to solve linear systems in whih the oe�ient matrix

has a de�nite symmetri part. We onsider ten matries, taken from the

Matlab gallery, desribed in Table 3. The right hand side vetor is given by

b = (1, 1, · · · , 1)T . The obtained results are shown in Table 4.

Table 4 shows that the proposed strategy OPAPLS is ompetitive with

the other strategies for several matries. However, OPAPLS does not on-

verge for the matries identi�ed as, PSD3, PSD4, PSD8 and PSD10. No-
tie that the oe�ient matries in all these ases are ill-onditioned. Note
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Tab. 3: Desription of the matries with de�nite symmetri part, from the

Matlab gallery.

Matrix Desription Matlab Commands

PSD1 Sparse adjaeny matrix from NASA airfoil Matlab demo: airfoil

PSD2 Singular toeplitz lower Hessenberg PSD2 = gallery(′chow′, m, 1, 1)

PSD3 Cirulant matrix

PSD3 = gallery(′circul′, v)

vi =















10−6 , if i = 1
1, if i = m

2
−1, if i = m
0, otherwise

PSD4 Diagonally dominant, ill onditioned, tridiagonal matrix PSD4 = gallery(′dorr′,m, 1)
PSD5 Perturbed Jordan blok PSD5 = gallery(′forsythe′, m,−1, 2)
PSD6 Matrix whose eigenvalues lie on the vertial line PSD6 = gallery(′hanowa′,m,m)
PSD7 Jordan blok PSD7 = gallery(′jordbloc′, m, 2)
PSD8 Tridiagonal matrix with real sensitive eigenvalues PSD8 = −gallery(′lesp′, m)

PSD9 Pentadiagonal Toeplitz matrix

PSD9 = gallery(′toeppen′, m, 1,
10, m,−10,−1)

PSD10 Upper triangular matrix disussed by Wilkinson and others PSD10 = gallery(′triw′,m,−0.5, 2)

Tab. 4: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matries with de�nite symmetri part, desribed

in Table 3, without preonditioning.

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix m Iter Iter Iter Iter Iter Iter rmax

PSD1 4253 61 60 ** 64 75 240 5.9110394

PSD2 1000 389 229 216 532 1044 9289 3.1843281

PSD3 5000 ** ** 1 2 ** ** 9.2318003

PSD4 500 ** 2047 283 3540 ** ** 1.0000000

PSD5 5000 28 28 ** 29 28 38 1.0000000

PSD6 5000 17 17 11 38 27 13 0.8331333

PSD7 5000 27 27 ** 28 27 33 1.0000000

PSD8 5000 4090 2560 ** 11112 ** ** 6.7975901

PSD9 5000 4 4 2 5 4 5 9.9760922

PSD10 5000 3020 3067 ** 3408 3151 ** 9.6055586

also that, for these same examples, some other methods do not onverge as

well. Therefore, in order to improve the ondition number of the oe�ient

matries a preonditioning strategy is applied.

In tables 5 and 6 we report the results for the matries of Table 3, when

the following two preonditioning strategies are used:

(a) Inomplete LU fatorization with drop tolerane (ILU): the preondi-

tioning matrix is obtained, in Matlab, with the ommand [L,U℄=ilu(A,0.3).

(b) The SSOR preonditioning strategy: the preonditioning matrix is

given by (D − ωE)D−1(D − ωF ), where −E is the strit lower tri-

angular part of A, −F is the strit upper triangular part of A, D is the

diagonal part of A and we onsider ω = 1.

We observe from tables 5 and 6 that the ILU preonditioning is more

e�etive than the SSOR preonditioning strategy for the proposed method-

ology. Notie that, in general, all the methods reahed onvergene when ILU
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Tab. 5: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matries with de�nite symmetri part, desribed

in Table 3, with preonditioning (a).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter rmax

PSD1 53 53 29 57 56 5 1.00000000

PSD2 396 229 523 216 1038 5 0.61803399

PSD3 3 3 2 5 6 14 0.20000000

PSD4 1 1 1 2 1 5 0.86963715

PSD5 2 2 2 4 3 10 0.75000000

PSD6 13 13 8 23 18 6 0.99975858

PSD7 1 1 1 2 1 5 0.50000000

PSD8 7 7 4 13 11 5 0.70186762

PSD9 4 4 2 5 4 5 0.99979956

PSD10 1 1 1 2 2 6 1.00000000

Tab. 6: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matries with de�nite symmetri part, desribed

in Table 3, with preonditioning (b).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter rmax

PSD1 1 1 1 2 1 5 1.00000000

PSD2 13 13 7 16 14 18 0.63952238

PSD3 ** ** ** ** ** ** 1.00000000

PSD4 4773 2452 180 1939 1850 ** 6.75233780

PSD5 2 2 2 4 3 10 0.75000000

PSD6 8 8 5 12 10 18 0.86230000

PSD7 1 1 1 2 1 5 0.50000000

PSD8 5 5 3 7 6 8 0.69433608

PSD9 2 2 1 3 2 5 0.99979553

PSD10 1 1 1 2 1 6 1.00000000

preonditioning strategy is used. However, others preonditioning strategies

ould be used and adapted to this new sheme to improve the performane

of the method.

In our third experiment we work with systems for whih the oe�ient

matrix has an inde�nite symmetri part. These systems are presented in two

groups for whih the oe�ient matries are generated in two di�erent ways.

In all ases, the solution for eah system is the vetor (1, 1, 1, ..., 1)T .

The �rst group, desribed in Table 7, was generated using the Matlab



65 Cores, Figueroa

gallery. In the seond group all the matries are tridiagonalm×m, with the

struture shown in (20).




a11 −1
1 a22 −1

.

.

.

.

.

.

.

.

.

1 am−1m−1 −1
1 amm




(20)

where aii = a +
(

i−1
m−1

)
(amax − a), ∀ i = 1, 2, ..., m, and a and amax are

onstants suh that the symmetri part of the matrix is inde�nite. These

values and the values onsidered for m are shown in Table 8.

Tab. 7: Desription of test matries with an inde�nite symmetri part, from

the Matlab gallery.

Matrix Desription Matlab Commands

PSI1 Tridiagonal and nonsymmetri A = gallery(′clement′ ,m, 0)
PSI2 ai,j = 0 or ai,j = 1, 1 ≤ i, j ≤ m A = gallery(′dramadah′,m)

PSI3 ai,i = 1, ai,i−1 = −1, ai,i+s = 1, s = 1, ..., k, i = 1, ..., m A = gallery(′grcar′, m)
PSI4 a1j = 1, ai,i−1 = 1, 1 ≤ i ≤ m A = gallery(′leslie′,m)

PSI5 Random, orthogonal, and upper Hessenberg A = gallery(′randhess′, m)

PSI6 ai,i−2 = 1, ai,i−1 = 10, ai,i = 4, ai,i+1 = 3, ai,i+2 = 1, 1 ≤ i, j ≤ n
A = gallery(′toeppen′, m,

1, 10, 4, 3, 1)

PSI7 Analogue to PSI6

A = gallery(′toeppen′, 5000,
−2, 10, 0, 4, 3)

PSI8 ai,i−1 = −5, ai,i = 1.8, ai,i+1 = 2, 1 ≤ i, j ≤ n A = gallery(′tridiag′,m,−5, 1.8, 2)

PSI9 Analogue to PSI6

A = gallery(′toeppen′, m,
10, 3,−10,−1, 1)

PSI10 Analogue to PSI1 A = gallery(′clement′ ,m, 0)

For the set of systems desribed in Table 7 we only report the results

obtained using Kazmarz method and OPAPLS. None of the other meth-

ods onverge for this matries, exept the strategies GMRES(20) and GM-

RES(40) for the matrix PSI3. The onvergene of the OPAPLS strategy

is attained for all matries and the results are shown in Table 9. Kazmarz

method fails for the matrix PSI5 and, in general, it uses more pu time than

OPAPLS.

The numerial results obtained using OPAPLS and Kazmarz method for

the matries desribed in Table 8 are shown in Table 10. For these examples

none of the methods GMRES(20), GMRES(40), BICGSTAB, RA and ORM

onverge with the desired tolerane in the number of iterations allowed. In

all these examples the symmetri part of the matrix assoiated with eah

system is inde�nite. So, we only report the results of Kazmarz method and

OPAPLS.
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Tab. 8: Dimension and parameters a and amax for tridiagonal matries with

an inde�nite symmetri part.

Matrix m a amax

PSID1 5000 -3 10

PSID2 5000 -20 200

PSID3 5000 -20 980

PSID4 10000 -3 4

PSID5 10000 -3 100

PSID6 10000 -3 997

PSID7 5001 -3 3

PSID8 5001 -10 10

PSID9 5001 -100 100

PSID10 5001 -500 500

PSID11 10001 -3 3

PSID12 10001 -10 10

PSID13 10001 -100 100

PSID14 10001 -500 500

Tab. 9: Number of iterations, pu time, and �ops required by Kazmarz and

OPAPLS to solve linear systems from the Matlab gallery with an

inde�nite symmetri part, desribed in Table 7, without preondi-

tioning.

Kazmarz OPAPLS

Matrix m cycles tcpu flops(109) Iter tcpu flops(109) rmax

PSI1 5000 20 1.184 0.525000000 4 0.0124 0.25004000 1.0000000

PSI2 1000 10839 127.679 10.84000000 2740 90.505 5.48748000 1.0000000

PSI3 5000 58 3.441 1.475000000 40 0.165 2.05040000 1.0000000

PSI4 5000 1 0.064 0.0468 5043 13.339 364.200430 9.3932957

PSI5 5000 ** ** ** 4 3.778 0.25004000 1.0000000

PSI6 5000 34 2.335 0.87500000 27 0.101 1.40027000 1.0000000

PSI7 5000 51 3.569 1.30000000 37 0.129 1.90037000 1.0000000

PSI8 5000 258 17.648 6.47500000 98 0.290 5.07598000 8.6559621

PSI9 6000 1375 128.278 49.5360000 285 1.358 20.9914200 7.5095462

PSI10 5001 20 1.171 0.52521002 4 0.006 0.25014002 1.0000000

Aording to the results in Table 10, the number of iterations, as well as

the pu time used for OPAPLS, inreases as the length of the interval [a, amax]
grows; and the ondition number of the matrix depends on this length. For

Kazmarz method the opposite ours: the omputational work and the pu

time derease when the values of |a|, |amax|, and the length of the interval

[a, amax] inrease. We observe that the angle between two onseutive hyper-

planes depends on these values. Let πi and πj be onseutive hyper-planes

whose normal vetors are Ai and Aj, respetively, where Ai and Aj are the

i-th and j-th rows of A. Then, if L = amax − a, and θi,j denotes the angle

between πi and πj , by de�nition of the angle between hyper-planes, we have
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Tab. 10: Number of iterations, pu time, and �ops required by Kazmarz

and OPAPLS to solve tridiagonal linear systems with an inde�nite

symmetri part, desribed in Table 8, without preonditioning.

Kazmarz OPAPLS

Matrix m cycles tcpu flops(1010) Iter tcpu flops(1010) rmax

PSID1 5000 1654 105.614 4.13750000 1975 4.971 9.8919750 8.3491821

PSID2 5000 89 5.603 0.22500000 4305 10.453 21.574305 7.5422094

PSID3 5000 22 1.386 0.05750000 11634 27.521 58.216634 8.3739901

PSID4 10000 6209 1427.399 62.1000000 1053 5.456 21.102106 9.1480524

PSID5 10000 363 84.360 3.64000000 6063 28.604 121.47213 7.6934738

PSID6 10000 38 8.739 0.39000000 15737 72.468 314.92147 8.2741977

PSID7 5001 3763 241.754 9.413764400 973 2.586 4.8754224 7.3971303

PSID8 5001 1076 68.915 2.693577100 1202 3.087 6.0261115 5.8441152

PSID9 5001 102 6.477 0.257603010 4843 11.829 24.237034 6.4805663

PSID10 5001 23 1.491 0.060024002 5193 12.604 26.003090 8.1546386

PSID11 10001 7304 1698.359 73.0646110 1391 6.945 27.858353 6.3738294

PSID12 10001 2082 474.943 20.8341660 2821 13.965 56.486937 7.3010586

PSID13 10001 191 43.539 1.92038400 4381 20.896 87.736306 5.3416070

PSID14 10001 39 8.952 0.40008000 9060 42.599 181.35438 8.6500760

that:

|cos(θi,j)| =
|AT

i Aj|

‖Ai‖2‖Aj‖2
=

|aii − ajj|√
2 + a2ii

√
2 + a2jj

=
L

(m− 1)
√
2 + a2ii

√
2 + a2jj

.

So, |cos(θij)| dereases diretly proportionally to L and inversely proportion-

ally to m, |aii| and |ajj|, for 1 ≤ i, j ≤ m, a ≤ aii, ajj ≤ amax. We note that

for a �xed m, when the values of |a|, |amax| and L derease, the osine of most

angles between hyper-planes inreases, that is, the angle θij dereases imply-

ing that the Kazmarz method requires many more yles for onvergene,

whih inreases the number of �ops and the pu time.

For some matries in Table 10, we observe that, the Kazmarz method

uses fewer number of �ops than OPAPLS. However, it requires more pu

time. The Kazmarz method requires the omputation of an inner produt

between a row of A and a vetor to obtain a new vetor for the next row, and

so on, until it reahes the last row. This sequential alulations inreases the

required pu time to obtain the solution.

In our fourth experiment, we onsider the solution of onsistent dense

linear systems for whih the oe�ient matrixA was obtained in the following

way: Take C as a 100 × 100 dense matrix from the Matlab gallery and

onsider the matrix A suh that, for 1 ≤ i, j ≤ 100, aij = cij if i < j; for
i > j, aij = −cji; and aii = a +

(
i−1
m−1

)
(amax − a), where a and amax are

given onstants suh that the symmetri part of A is inde�nite. The Matlab

ommands used to generate the matrix C, and the values assigned to a and

amax are shown in Table 11.
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Tab. 11: Desription of the Matlab ommands, and the parameters a and

amax, for dense matries with an inde�nite symmetri part.

Matrix Matlab Commands for matrix C a amax

DENSEPSI1 C = gallery(′lehmer′, 100) -1 6

DENSEPSI2 C = gallery(′toeppd′, 100) -1 6

DENSEPSI3 C = gallery(′pei′, 100) -1 6

DENSEPSI4 C = gallery(′randhess′, 100) -1 6

DENSEPSI5 C = gallery(′parter′, 100) -1 6

DENSEPSI6 C = gallery(′lehmer′, 100) -2 6

DENSEPSI7 C = gallery(′toeppd′, 100) -2 6

DENSEPSI8 C = gallery(′pei′, 100) -2 6

DENSEPSI9 C = gallery(′randhess′, 100) -2 6

DENSEPSI10 C = gallery(′parter′, 100) -2 6

DENSEPSI11 C = gallery(′lehmer′, 100) -2 10

DENSEPSI12 C = gallery(′toeppd′, 100) -2 10

DENSEPSI13 B = gallery(′pei′, 100) -2 10

DENSEPSI14 C = gallery(′randhess′, 100) -2 10

DENSEPSI15 C = gallery(′parter′, 100) -2 10

For these examples, we report, in tables 12 and 13, the number of it-

erations required by OPAPLS and all the other methods to reah onver-

gene. Table 12 shows the results obtained when the solution vetor x is

(1, 1, · · · , 1)T ; and Table 13 shows the results obtained when b = (1, 1, · · · , 1)T .

Tab. 12: Number of iterations required by GMRES(20), GMRES(40),

BICGSTAB, Kazmarz and OPAPLS for solving dense linear sys-

tems for whih the oe�ient matrix has an inde�nite symmetri

part, desribed in Table 11, with the solution vetor is (1, 1, · · · , 1)T ,
without preonditioning.

GMRES(20) GMRES(40) BICGSTAB Kazmarz OPAPLS

Matrix iter iter iter cycles iter rmax

DENSEPSI1 ** ** 216 131 495 1.0000000

DENSEPSI2 717 581 ** 2484 649 1.9270749

DENSEPSI3 159 23 61 738 749 1.0000000

DENSEPSI4 ** 1267 ** 191 1680 3.2593333

DENSEPSI5 ** ** ** ** 7566 1.0000000

DENSEPSI6 ** 32 124 133 181 1.0000000

DENSEPSI7 97 811 ** 6169 1218 1.1647514

DENSEPSI8 ** 22 64 734 266 1.0000000

DENSEPSI9 ** ** ** 823 2489 3.3312492

DENSEPSI10 ** ** ** 120 112 1.0000000

DENSEPSI11 ** 34 133 87 205 1.0000000

DENSEPSI12 440 17 36 1294 447 5.1925796

DENSEPSI13 16 16 36 495 303 1.0000000

DENSEPSI14 ** ** 335 1379 4154 3.0944160

DENSEPSI15 ** ** ** ** ** 1.0000000

The results from tables 12 and 13 indiate learly that the Kazmarz
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Tab. 13: Number of iterations required by GMRES(20), GMRES(40),

BICGSTAB, Kazmarz and OPAPLS for solving dense linear sys-

tems for whih the oe�ient matrix has an inde�nite symmetri

part, desribed in Table 11, with b = (1, 1, · · · , 1)T , without pre-
onditioning.

GMRES(20) GMRES(40) BICGSTAB Kazmarz OPAPLS

Matrix iter iter iter cycles iter rmax

DENSEPSI1 ** 41 ** 143 611 3.3281386

DENSEPSI2 773 316 ** 2700 830 4.2149836

DENSEPSI3 179 24 146 866 829 3.9461871

DENSEPSI4 ** 16188 ** 147 2333 8.5489338

DENSEPSI5 ** ** ** ** ** 8.9455954

DENSEPSI6 ** ** ** 141 195 3.3564561

DENSEPSI7 1072 873 ** 6949 806 4.0339567

DENSEPSI8 ** 23 164 846 273 3.9644313

DENSEPSI9 ** ** ** 1043 3956 8.3114409

DENSEPSI10 ** ** ** ** ** 9.0260881

DENSEPSI11 ** ** ** 93 246 1.9881283

DENSEPSI12 464 23 ** 1339 453 8.4347586

DENSEPSI13 17 17 89 570 360 4.7793751

DENSEPSI14 ** ** 301 1846 4991 8.5786460

DENSEPSI15 ** ** ** ** ** 8.9939191

method and the proposed OPAPLS sheme are more e�etive for solving

these small systems for whih the dense oe�ient matrix has an inde�nite

symmetri part. Moreover, the results obtained in Tables 9, 10, 12 and 13

seem to indiate that the proposed method, OPAPLS, is the best option for

solving linear systems when the oe�ient matrix has an inde�nite symmetri

part.

In our �fth experiment we onsider the solution of onsistent retangular

linear systems, whose matries (A ∈ R
m×n

) are desribed in Table 14. The

solution for eah system is the vetor (1, 1, 1, ..., 1)T . The �rst seven ma-

tries were taken from the olletion available in the portal matrix market

(www.matrixmarket.om). The matries labeled as R8 and R9 were ob-

tained following a model presented in [6℄, whih ombines some matries in

the following way: R8 =

(
R1

R̂4

)

1252×320

and R9 =

(
R1

R̂6

)

1641×320

, with

R̂4 =
(
0219×235 R4

)
and R̂6 =

(
0608×132 R6

)
.

The last two matries in Table 14 were generated in Matlab. Matrix R10
was obtained with the Matlab ommand gallery('lauhli', m, µ ), whih is an

(m + 1) ×m matrix suh that the �rst row has all the omponent equal to

one and the followingm rows oinide with µIm×m, where µ is a given salar.

Matrix R11 was generated with the Matlab ommand gallery('sprand',m,n,d)

and it has, approximately, m× n× d random nonzero entries, where d is the
nonzero density of the matrix.



A onvex optimization approah for solving large sale linear systems 70

Tab. 14: Desription of retangular matries in R
m×n

, m > n.
Matrix Desription m n

R1 WELL1033 1033 320
R2 WELL1850 1850 712
R3 ABB313 313 176
R4 ASH219 219 85
R5 ASH331 331 104
R6 ASH608 608 188
R7 ASH958 958 292
R8 ARTF1252 1252 320
R9 ARTF1641 1641 320
R10 gallery(′lauchli′, 5000, 10−4) 5001 5000
R11 sprand(m,n, 0.002) 4000 3000

The Kazmarz method and the OPAPLS strategy are the only methods

that an be diretly applied to retangular systems. The methods CG and

RA are applied to the orresponding normal equations ATAx = AT b. In

partiular, instead of the standard CG method, we use the speialized ver-

sion CGNE, also known as Craig's method, fully desribed in [4, Ch. 8℄.

For CGNE and RA an additional matrix-vetor produt with AT
must be

omputed at eah iteration, and so mn �ops must be added to their required

number of �ops.

We report, in Table 15, the number of iterations and pu time required

to reah onvergene in eah ase.

From Table 15, we an observe that, in general, CGNE requires less pu

time that the others methods. Among the others methods our methodology

reah onvergene for all the problems with a ompetitive pu time. However,

all strategies attained onvergene, exept Kazmarz for matrix R1. Notie

that Kazmarz and OPAPLS an be applied diretly to the retangular sys-

tem. Contrary, RA and CGNE involve the normal equations system in their

formulations, even thought the matrix ATA is not generated.

For our last experiment we use the sheme proposed in (9) to solve linear

systems of equations, square or retangular, subjet to box onstraints on

the variables. The solution of eah system is the vetor (1, 1, · · · , 1)T . The

ompetitors GMRES, BICGSTAB, Kazmarz, RA, ORM and CG annot be

applied to onstraint problems. Hene, for this experiment, we only report

the results using OPAPLS. We onsider the set of squared matries desribed

in Table 7 with di�erent onstraints: 0 ≤ xi ≤ 2, for 1 ≤ i ≤ n, −5 ≤ xi ≤ 5
for 1 ≤ i ≤ n and −100 ≤ xi ≤ 100 for 1 ≤ i ≤ n. The obtained results
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Tab. 15: Number of iterations and pu time required by RA, CGNE, Kaz-

marz and OPAPLS for solving retangular systems, whose oe�-

ient matries were desribed in Table 14, without preonditioning.

RA CGNE Kaczmarz OPAPLS

Matrix iter tcpu iter tcpu cycles tcpu iter tcpu rmax

R1 1380 12.887 185 0.095 ** ** 3380 2.934 2.0202712

R2 1113 94.350 491 0.843 16931 111.562 2059 3.180 2.1468575

R3 146 0.252 81 0.000 122 0.093 129 0.053 1.0000000

R4 54 0.034 42 0.000 29 0.015 58 0.012 1.0000000

R5 42 0.024 34 0.000 19 0.014 43 0.011 1.0000000

R6 56 0.176 49 0.000 19 0.028 60 0.021 1.0000000

R7 61 0.513 511 0.015 22 0.060 66 0.032 1.0000000

R8 431 5.402 122 0.046 484 1.595 667 0.639 4.2227713

R9 64 0.992 47 0.043 27 0.185 54 0.062 1.0000000

R10 2 17.788 1 0.028 1 0.054 1 0.004 1.0000000

R11 910 5.021 511 0.043 1 0.045 1094 4.332 1.0000000

are shown in Table 16. Table 17 shows the values for rmax obtained in the

experiment of Table 17.

Tab. 16: Number of iterations and pu time required by OPAPLS to solve

linear systems whose matrix has an inde�nite symmetri part, de-

sribed in Table 7, subjet to box onstraints, without preondi-

tioning.

Unonstrained 0 ≤ xi ≤ 2 −5 ≤ xi ≤ 5 −100 ≤ xi ≤ 100
Matrix Iter tcpu Iter tcpu Iter tcpu Iter tcpu

PSI1 4 0.02 6 0.015 5 0.015 5 0.015

PSI2 2740 112.81 2413 81.572 2413 82.134 2413 81.588

PSI3 37 0.20 50 0.202 50 0.218 50 0.202

PSI4 5043 17.43 4 0.000 4 0.015 4 0.015

PSI5 4 4.59 6 4.945 6 5.085 6 5.038

PSI6 27 0.14 37 0.156 33 0.124 33 0.124

PSI7 37 0.16 47 0.171 47 0.171 47 0.171

PSI8 97 0.37 83 0.296 112 0.327 107 0.312

PSI9 308 1.81 294 1.591 306 1.482 291 1.606

PSI10 4 0.02 6 0.015 5 0.031 5 0.015

We solve some additional squared systems with box onstraints using

OPAPLS. The additional systems are the ones previously desribed in Table

8, and for these problems we use the same box onstraints, desribed in

Table 16. The right hand side vetor for eah system is set in suh a way the
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Tab. 17: Maximum value taken by the elements of the residual vetor using

OPAPLS in the experiment shows in Table 16.

0 ≤ xi ≤ 2,1 ≤ i ≤ n −5 ≤ xi ≤ 5,1 ≤ i ≤ n −100 ≤ xi ≤ 100,1 ≤ i ≤ n

Matrix rmax rmax rmax

PSI1 1.00000000 1.00000000 1.00000000

PSI2 1.00000000 1.00000000 1.00000000

PSI3 1.00000000 1.00000000 1.00000000

PSI4 1.00000000 1.0000000 1.00000000

PSI5 1.00000000 1.00000000 1.00000000

PSI6 1.00000000 1.00000000 1.0000000

PSI7 1.00000000 1.00000000 1.00000000

PSI8 1.76000000 8.75703240 8.65596210

PSI9 2.50000000 6.10399220 7.50954620

PSI10 1.00000000 1.00000000 1.00000000

solution vetor is (1, 1, 1, ..., 1)T . The required number of iterations and pu

time are shown in Table 18. Table 19 shows the values for rmax obtained in

the experiment of Table 19.

Tab. 18: Number of iterations and pu time required by OPAPLS to solve

linear systems whose matrix has an inde�nite symmetri part, de-

sribed in Table 8, subjet to box onstraints, without preondi-

tioning.

Unonstrained 0 ≤ xi ≤ 2 −5 ≤ xi ≤ 5 −100 ≤ xi ≤ 100
Matrix Iter tcpu Iter tcpu Iter tcpu Iter tcpu

PSID1 1975 5.08 1879 5.085 2079 5.725 1819 4.992

PSID2 4305 11.06 5103 13.026 4620 12.183 4196 10.935

PSID3 11634 28.54 8390 21.325 9565 24.102 10795 27.222

PSID4 1053 5.50 1287 7.129 1558 8.408 1033 5.678

PSID5 6063 29.25 8229 40.887 7367 36.660 6939 34.679

PSID6 15737 73.78 16326 78.952 10359 50.544 16033 78.234

PSID7 973 2.66 902 2.745 654 1.903 981 3.026

PSID8 1202 3.27 1205 3.354 977 2.839 1201 3.572

PSID9 4843 11.93 4295 11.138 2410 6.614 4554 11.824

PSID10 5193 12.83 9321 23.727 6328 16.052 5195 13.416

PSID11 1391 7.05 1415 7.441 1012 5.569 1384 7.987

PSID12 2821 14.05 1875 9.921 1956 10046 2709 14.211

PSID13 4381 20.88 3948 19.905 4366 21.668 4341 21.652

PSID14 9060 42.35 8513 41.901 8161 40.045 7976 39.374

The results of tables 16 and 18 indiate that our methodology permits to
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Tab. 19: Maximum value taken by the elements of the residual vetor using

OPAPLS in the experiment shows in Table 18.

0 ≤ xi ≤ 2,1 ≤ i ≤ n −5 ≤ xi ≤ 5,1 ≤ i ≤ n −100 ≤ xi ≤ 100,1 ≤ i ≤ n

Matrix rmax rmax rmax

PSID1 1.0906727 6.3565440 8.3491821

PSID2 1.0000000 6.0120183 7.5422094

PSID3 1.0008155 5.9938245 8.3739901

PSID4 1.1997200 6.7983198 9.1480524

PSID5 1.0093910 5.9728412 7.6934738

PSID6 1.0000652 5.9943319 8.2741977

PSID7 1.2494000 5.7753408 7.3971303

PSID8 1.0653689 6.3549091 5.8441152

PSID9 1.0000000 5.9530400 6.4805663

PSID10 1.0000000 5.9830990 8.1546386

PSID11 1.2498500 6.2392268 6.3738294

PSID12 1.0903636 6.3560000 7.3010586

PSID13 1.0000000 5.9421503 5.3416070

PSID14 1.0002467 6.0055888 8.6500760

obtain partiular solutions within a small pu time perturbation.

The mahinery OPAPLS also works for solving retangular systems sub-

jet to box onstraints. In order to observe its performane, we now solve

onsistent underdetermined systems subjet to onstraints. The set of un-

derdetermined systems to be onsidered are desribed in Table 20. Table 21

shows, in the �rst olumn the label for eah example, in the seond olumn

the name of the matrix, and in the third olumn the imposed onstraints that

fore a partiular solution. The obtained results using OPAPLS are shown

in the last two olumns.

Tab. 20: Desription of some retangular matries in R
m×n

, m < n.
Matrix Matlab ommand m n
R12 sprand(m,n, 0.1) 500 4000
R13 sprand(m,n, 0.1) 2000 5000

The underdetermined systems onsidered for this experiment have an in-

�nite number of solutions. Partiulary, the proposed strategy found one of

them. There is not muh di�erene in pu time when solving onstrained

problems sine the projetion over the box onstraint set is simple and re-

quires low omputational ost.
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Tab. 21: Number of iterations and pu time required by OPAPLS to solve

underdetermined linear systems, whose matries were desribed in

Table 20, subjet to onstraints, without preonditioning.

Problem Matrix Constraint Iter tcpu rmax

CS1 R12 No onstraint 47 1.263 1.0

CS2 R12 x1 = x2 = x3 = 1 51 1.294 1.0

CS3 R12 x1 = x2 = x3 = 1, 0 ≤ xi ≤ 2 for i > 3 51 1.326 1.0

CS4 R12 x1 = x2 = x3 = 1, −5 ≤ xi ≤ 5 for i > 3 51 1.326 1.0

CS5 R12 x1 = x2 = x3 = 1, −100 ≤ xi ≤ 100 for i > 3 51 1.404 1.0

CS6 R12 x1 = xn
2

= xn = 1 51 1.357 1.0

CS7 R12 x1 = xn
2

= xn = 1 and 0 ≤ xi ≤ 2, i /∈ {1, n
2
, n} 51 1.357 1.0

CS8 R12 x1 = xn
2

= xn = 1 and −5 ≤ xi ≤ 5, i /∈ {1, n
2
, n} 51 1.341 1.0

CS9 R12 x1 = xn
2

= xn = 1, and −100 ≤ xi ≤ 100 i /∈ {1, n
2
, n} 51 1.419 1.0

CS10 R13 No onstraint 97 12.932 1.0

CS11 R13 x1 = x2 = x3 = 1 95 12.526 1.0

CS12 R13 x1 = x2 = x3 = 1, 0 ≤ xi ≤ 2 for i > 3 95 12.339 1.0

CS13 R13 x1 = x2 = x3 = 1, −5 ≤ xi ≤ 5 for i > 3 95 12.448 1.0

CS14 R13 x1 = x2 = x3 = 1 and −100 ≤ xi ≤ 100 for i > 3 95 12.792 1.0

CS15 R13 x1 = 1, xn
2

= 1, xn = 1 95 12.698 1.0

CS16 R13 x1 = xn
2

= xn = 1 and 0 ≤ xi ≤ 2 for i /∈ {1, n
2
, n} 103 13.291 1.0

CS17 R13 x1 = xn
2

= xn = 1 and −5 ≤ xi ≤ 5 for i /∈ {1, n
2
, n} 103 14.071 1.0

CS18 R13 x1 = xn
2

= xn = 1 and −100 ≤ xi ≤ 100 i /∈ {1, n
2
, n} 103 13.322 1.0

4 Conlusions

We have presented an optimization strategy for solving di�erent kinds of on-

sistent linear systems. The proposed method �nds the solution by searhing

a loal minimizer of a novel non-quadrati onvex funtion. In the ase of

solving linear systems, a relevant feature is that the new sheme does not

require the oe�ient matrix to be square. In this work, we use the Spetral

Projeted Gradient (SPG) method to solve the optimization problems. The

SPG is a globally onvergent method that has a low omputational and low

storage ost, and it only requires �rst order information. However, any other

globally onvergent low-ost optimization method an be used.

Our numerial results indiate that the new mahinery is suitable for

solving large-sale and sparse, as well as small and dense, problems for whih

the oe�ient matrix has no speial harateristis. Moreover, it allows one

to add easily onvex onstraints to the optimization approah. Adding on-

vex onstraints is useful for several di�erent reasons. One of them is that it

imposes regularity to the optimization problem. Another advantage is that if

the linear problem has an in�nite number of solutions, a spei� type of so-

lution an be found by onveniently setting the onvex onstraints. Further-

more, the proposed strategy also allows to solve linear feasibility problems,

sine these problems an be treated as a linear system of equation subjet to

box onstraints, for whih some slak variables are introdued. On the other
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hand, the hoie of the saling parameter guarantees that the value of the

new non quadrati funtion is bounded above for all iterations. So, over�ow

or loss of auray an be avoided.

Finally, the new optimization mahinery an also bene�t from the use

of preonditioning strategies, whih plays a key role in the presene of very

ill-onditioned problems. However, in the ase of the matries with inde�-

nite symmetri part where generi preonditioning tehniques are still under

development, the OPAPLS method seems to be a ompetitive approah for

this kind of problems.
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