compAma Bull. Comput. Appl. Math., Vol.5, No.1, 2017

ISSN 2244-8659

WWWw.compama.co.usb.ve

A convex optimization approach for
solving large scale linear systems

Debora Cores } Johanna Figueroa *

CompAMa Vol.5, No.1, pp.53-76, 2017 - Accepted November 11, 2016

Abstract

The well-known Conjugate Gradient (CG) method minimizes a strictly convex
quadratic function for solving large-scale linear system of equations when the co-
efficient matrix is symmetric and positive definite. In this work we present and
analyze a non-quadratic convex function for solving any large-scale linear system
of equations regardless of the characteristics of the coefficient matrix. For finding
the global minimizers, of this new convex function, any low-cost iterative opti-
mization technique could be applied. In particular, we propose to use the low-cost
globally convergent Spectral Projected Gradient (SPG) method, which allow us to
extend this optimization approach for solving consistent square and rectangular
linear system, as well as linear feasibility problem, with and without convex con-
straints and with and without preconditioning strategies. Our numerical results
indicate that the new scheme outperforms state-of-the-art iterative techniques for
solving linear systems when the symmetric part of the coefficient matrix is indefi-
nite, and also for solving linear feasibility problems.

Keywords: Nonlinear convex optimization, spectral gradient method, large-scale
linear systems.

'Departamento de Computo Cientifico y Estadistica, Universidad Simén Bolivar (USB),
Caracas 1080-A, Venezuela (cores@usb.ve).

2Departamento de Matematica de la Facultad de Ciencias y Tecnologia, Universidad
de Carabobo (UC), Valencia 2005, Venezuela (jfigueroal@uc.edu.ve).

23

A convex optimization approach for solving large scale linear systems 54

1 Introduction

The strictly convex quadratic function

q(z) = %xTAx — bz, (1)
where A is a symmetric and positive definite (SPD) matrix, is the classical
and suitable choice to apply unconstrained minimization techniques for solv-
ing the large-scale linear system Ax = b. In that case, the most effective
iterative method for the unconstrained minimization is the Conjugate Gra-
dient (CG) method; see, e.g., [1-4]. In the SPD case, (1) has also been the
suitable choice to develop and analyze gradient or residual iterative schemes
for solving Az = b; see, e.g., |5].

In many real applications as signal processing, structural analysis, data
fitting, and linear programming, among others, the coefficient matrix A could
be rectangular and could have no desirable characteristics as symmetry, pos-
itive definiteness, positive definiteness of the symmetric part, or diagonal
dominance. Hence, in the presence of no desirable characteristics, the CG
method and gradient related methods cannot be applied directly to the mini-
mization of (1). Nevertheless, they can always be applied to the minimization
of the convex quadratic 127 AT Az — (ATb)"z, for solving the normal equa-
tions: ATAx = ATb. Now, this so-called least-squares approach has some
advantages but also some well-known disadvantages, including the possible
drastic increase of the condition number of the coefficient matrix AT A; see,
e.g., [4,6,7].

In order to extend the unconstrained minimization approach, in this work
we propose a new convex function for solving any large-scale linear system
of equations regardless of the characteristics of the coefficient matrix. For
this new non-quadratic convex function, any low-cost optimization technique
could be applied. In particular, we propose to use the Spectral Projected
Gradient (SPG) method [8-10], since it is an effective low-cost optimization
scheme that has been successfully applied in many large-scale real applica-
tions; see, e.g., [11].

The rest of this document is organized as follows. In section 2 we present
our proposal, we discuss the linear problems to be considered, and we briefly
describe the SPG method. In section 3 we present some numerical expe-
riments in which the performance of the proposed scheme is studied and
compared with the well-established state-of-the-art methods CG, GMRES,

55 Cores, Figueroa

BICGSTAB, ORM, RA, and Kaczmarz, for different scenarios. Finally, in
section 4, we present some concluding remarks.

2 Optimization approach

For solving the linear system Ax = b, where A € R"*" and b € R™, consider
the function:

F@) =3 fila) = (e 4), 2)

i=1

where f;(x) = e "(® 4 ¢7(®) and r;(x) is the ith component of the residual
vector r(x) = b — Ax.

The most relevant properties of the function f(z) are established in
Propositions 1, 2 and 3

Proposition 1. The function f defined in (2) is a convex function.

Proof. Let g : R — R be given by ¢g(z) = e*+e7*. Since ¢"(z) = e*+e % >0
for all z € R, then g is convex. Hence, f;(z) is convex for all 1 < i < m.
Consequently, f(z) =", fi(z) is the sum of convex functions and so it is
also a convex function. O

Notice that since ¢’(z) = e* — e #, then the unique global minimizer of
g(z) = €* 4+ e * is reached when e* = ¢~*, i.e., when z = 0. Notice also that

9(0) =2.
Proposition 2. If Ax* = b for some vector x* € R", then f(z*) = 2m.

Proof. Since Az* = b then the residual vector satisfies r;(z*) = 0, for all i,
1 <i<mn,and fi(z*) = e @) @) =2 forall j, 1 < j <m. Adding
the m values we obtain f(z*) = 2m. O

Notice that Proposition 2 reveals an effective criterion for determining if
a given vector x* solves the system Az = b.

Proposition 3. If the system Ax = b is consistent then f attains its global
minimum value 2m. Moreover, any global minimizer of f solves the linear
system Ax = b.

A convex optimization approach for solving large scale linear systems 56

Proof. Let € R™ and let z* € R" such that Az* = b. Since fi(z) =
e i@ 4 eri@) attains a minimum value when 7;(x) = 0 then f;(z) > 2.
Hence by Proposition 2

m

flx) =) filx) = 2m = f(a"). (3)

=1

Let us now consider x for which Ax—b # 0, that is, there exists k, 1 < k < mn,
such that A,z — b, # 0, where A, represents the k-th row of A. Therefore,
fo(@) = eAsT=br) 1 e=(A@=b) ~ 9 Furthermore, for all i = 1,...,m, with
i # k, fi(zx) > 2. Consequently, f(z) > 2m. Hence, T is not a minimizer of

/ O

Observe that the objective function (2) can be written in a more general

way as
m

f(x) = elri(x)), (4)

=1

where ¢ : R — R, p € C*(R), ¢ even, strictly convex and coercive and
whose global minimum is reached at 0. Moreover, propositions 1, 2 and 3
are valid for any function ¢ satisfying the previous conditions. In particular,
considering ¢(t) = t* corresponds to the linear least square problem.

2.1 Problems to be solved

According to Propositions 1, 2 and 3, solving a consistent linear system Ax =
b is equivalent to solving the following unconstrained convex minimization
problem:
Find z*, such that 2™ = arg <m}£{n f(a:)) . (5)
TER™

An important aspect of this optimization approach is that it can be used
for any consistent square or rectangular linear systems, regardless of the
characteristics of the coefficient matrix.

Since the function f involves exponential terms, then a suitable scaling
parameter 0 > 0 can always be found to solve

1 1

57 Cores, Figueroa

instead of Ax = b, to avoid the appearance of big numbers that could cause
loss of accuracy or even overflow. Clearly, x solves Az = b if and only if z
solves (6). Another option to avoid loss of accuracy when solving (5) is to use
preconditioning strategies for the linear system Az = b. The way of choosing
0 > 0 and the use of preconditioning strategies will be fully described in
Section 3 of numerical experiments.

In some real applications, lower and upper bounds must be imposed to
the solution vector. In this case, we are interested in solving the following
problem:

{ Find z such that Az = b (7)
subject to: x € €,

where (2 is a convex set. In particular, we are interested in the problem:

Find x such that Az =b
subject to: (8)

In this case the optimization approach (5) allows us to add convex con-
straints, that is, to find the solution of Ax = b within a given convex set,
obtaining the following convex optimization problem:

Find 2* = arg (mingegn f(2))
Subject to: 9)

For some other applications, as image recovery or inverse problems, the
solution of a linear feasibility problem is required:

Find z such that Az <D, (10)

where A € R"™*" b€ R™ and x € R™.
Our proposal can be used for solving feasibility problems transforming
problem (10) into an m x (m + n) constrained linear systems, as follows:

Find z such that A% = b
Subject to: (11)
z; >0 if n+l1<i<n+m

where A = (A I,)mx(mn), I,, is the m x m identity matrix, ; = x;, for
1 <1< n,and z;, for n +1 < i < n + m, are auxiliary variables or slack
variables. Moreover, if some components must be bounded, these restrictions

can be added to problem (11) and it can be reduced to problem (9).

A convex optimization approach for solving large scale linear systems 58

2.2 The SPG machinery

The different problems described in Section 2.1, for which our optimization
approach can be applied, can be solved by any iterative low-cost optimiza-
tion method that can handle convex constraints. In particular, we consider
the Spectral Projected Gradient (SPG) method [8-10], which is nowadays a
well-established nonmonotone numerical scheme for solving large-scale con-
vex constrained optimization problems when the projection onto the feasible
set can be performed efficiently [11]. The SPG method has been extended to
some other constrained optimization settings; see, e.g., [12,13]. The attrac-
tiveness of the SPG method is mainly based on its simplicity. Moreover, it
is globally convergent, i.e., the sequence that it generates converges to sta-
tionary points from any initial guess. For more details on the convergence

properties of the SPG method see [8],|9] and [10].
We now discuss the most important features of the SPG method for solv-

ing nonlinear optimization problems of the form:
min f(z), (12)

€

where () is a closed convex set in R” and f : R® — R is a function with
continuous partial derivatives in an open set that contains). Starting from
a given initial g € R" the iterations are given by

Tpt1 = Tp + apdy, (13)

where dy, = Po(xr — A\egr) — Tk, gx = V.f (zx), Po denotes the projection onto
2 and), is the spectral choice of step length, given by:

T
Sh_15k—
= (14)
Sk—1Yk—1
where sp_1 = 2 — Ty and Yp_1 = gr — Gr—1-
The parameter a; > 0 in (13) is found by a nonmonotone line search to
accomplish the following condition:

frgs) < ogjgnﬂ%ﬁM_u f(xp—j) + yorgl dr, (15)

where M is a nonnegative integer and v is a small positive number. In this
work, we set M = 10 and v = 10~*. For more details concerning practical
issues see [11]. Notice that the SPG method can also be applied to the
unconstrained minimization problem (5) by setting {2 = R™.

59 Cores, Figueroa

3 Numerical experiments

From now on, the application of the SPG method on the convex minimization
problems described in section 2.1, will be denoted by OPAPLS (Optimization
Approach for Linear Systems). In order to illustrate the advantages of the
proposed strategy, we compare OPAPLS with the following methods: GM-
RES, BICGSTAB, RA, ORM, CG, and Kaczmarz method. The methods
GMRES, BICGSTAB, CG and Kaczmarz are well-known and they can be
found for instances in [6], [14] and [4], respectively. The strategies ORM and
RA are iterative schemes for which the search direction is the residual vector;
see [15] and [16].

The CG and RA methods correspond to the use of p(t) = t* in the general
formulation (4). So, comparisons between different functions ¢ are presented
in our numerical experiments.

The Optimal Richardson Method (ORM), introduced in [15], is a variation
of the classical Richardson’s method for solving Az = b, which uses the
following iterative scheme:

Tht1l = Tk + AT, (16)

where the step length A\, is chosen as follows:

ri Ary,
Ap= —2——— 17
k (ATk)TATk ()
For more details on the ORM scheme see [5].
The residual RA method solves Az = b by solving the minimization
problem:
Find z* = arg m}%{n |7 (z)||>. (18)
TzeR?

This scheme generates the iterates using plus or minus the residual vector at
x, as search direction, as follows:

1
Tpi1 = Tk + sgn(Bk) Tks (19)
Br—1
where, sgn(z) represents the sign of the real variable z, and
T
. Ary
Bk = T

e

A convex optimization approach for solving large scale linear systems 60

In the RA scheme, a globalization strategy is incorporated to guarantee con-
vergence from any initial guess and any positive initial step length. For more
details on the RA scheme see [16].

In all our experiments, the calculations were done on a i7 4710MQ at
2.50GHz with Matlab R2013b. For BICGSTAB and GMRES (with the stan-
dard restart parameters 20 and 40) we used the available commands in Mat-
lab. For RA and ORM we used the algorithms presented in [16] and [15],
respectively. For the CG method we used a Matlab implementation based
on the algorithm described in |6, p. 289|. The Kaczmarz method was im-
plemented according to Algorithm 1 (below), as described in [14, pp. 41],
with the relaxation parameter w = 1, and following the natural ordering for
the projections. In Algorithm 1, A; represents the i-th row of A, and the
stopping criterion is evaluated after every sweep of m projections.

Algorithm 1: Kaczmarz Scheme
Require A € R™*" b € R™, x5 € R"™;
Ensure x, cycles;

for £k =1,2,--- until convergence do
fori=1,2,--- ., mdo
T
Ty = To + @szixo%
end for
end for
cycles = k;

In all the forthcoming tables, we report the results using the following
notation: the number of iterations (iter), the required cpu time until con-
vergence (tcpu) in seconds, the number of flops (flops) which represents the

Lrll
ol) -

For OPAPLS, fent represents the number of evaluations of the objective
function and gent the number of evaluations of the gradient of the objective
function. For GMRES, we report the number of iterations and not the num-
ber of cycles. Let us recall that a cycle is made of the iterations in between
two restarts.

The number of flops for each method, once k iterations or k cycles for
Kaczmarz method have been performed, is obtained as follow: For OPAPLS
(gent + fent) -n-m+ 2 -n - k flops are used to obtain the solution. The

required computational work, and the relative norm of the residual <

61 Cores, Figueroa

Kaczmarz method uses m inner products of length n to obtain the square of
the norm of each row vector. Furthermore, it uses one inner product of length
n for each row A;. Therefore, in a cycle it uses n-m flops. So,n-m-k+m-n
flops are required by Kaczmarz method. GMRES(]) requires per iteration
one matrix-vector multiplication and 2(k mod 1) inner products of length
n, that is, n? -k + 2(k mod 1) -n flops. BICGSTAB requires two matrix-
vector multiplication and four inner products of length n, that is, (2n% + 4 -
n) - k flops. The ORM and RA methods require per iteration one matrix-
vector multiplication and two inner products of length n, which implies the
execution of (n? 4+ 2-n) - k flops. For the case of the conjugate gradient
method, one matrix-vector, two inner products, and two vector summations
per iteration are required. Then, the CG method requires (n?+4-n)-k flops.

In all methods and examples presented in this work, the initial guess is
the null vector. The stopping criterion for solving unconstrained problems is

HTH —10
— < 107,
0]

For OPAPLS other simple stopping criteria are available, among them,
|f(zx) — 2m| < € and ||V f(x)| < e, for unconstrained problems and
| P (zx — AV f(x)) — x| < € for solving problem (9). We set 20.000 as the
maximum number of cycles for Kaczmarz method, or iterations for all the
other methods. The symbol *x in our tables indicates that the correspond-
ing method does not converge, with the desired tolerance before reaching the
maximum number of iterations.

In our first experiment, we consider orthogonal matrices of dimension
10000 x 10000, from the Matlab gallery, which are shown in Table 1. The
right hand side vector is given as b = (1,1,---,1)?. The number of iterations
required by each method are shown in Table 2.

Tab. 1: Description of orthogonal test matrices, from the Matlab gallery.

Matrix Description Matlab Commands
Q1 ajj =+/2/(m+ 1)sin(ijn/(m + 1)), A=gallery(’orthog’,m,1)
Q2 aj j =2/v2m + 1sin(2ijn/(2m + 1)) A=gallery(’orthog’,m,2)
Q3 A permutation of a lower Hessenberg matrix, whose a1 ; = \/% A=gallery(’orthog’,m,4)
Q4 Householder matrix, 3372 a; ; =0,2<j <m and 3 3j%, a;,1 = vm A=gallery(’orthog’,m,7)

We can observe, in Table 2, that for all methods few iterations are required
for convergence. Indeed, these matrices are well conditioned. In particu-
lar, notice that our proposal, OPAPLS, is competitive with well-established

A convex optimization approach for solving large scale linear systems 62

Tab. 2: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA
and OPAPLS for solving linear systems with the orthogonal matrices

described in Table 1, without preconditioning.
GMRES(20) GMRES(40) BICGSTAB RA OPAPLS

Matrix Iter Iter Iter Iter ITter
Q1 2 2 2 14 6
Q2 2 2 2 14 6
Q3 19 19 18 ok 6
Q4 2 2 3 5 6

methods for solving orthogonal linear systems. For the third matrix,)3, we
observe an increase in the number of iterations when using GMRES(20) and
GMRES(40). For this example the symmetric part of the coefficient matrix
is indefinite, and as a consequence RA does not converge; see [16].

For all the linear problems, presented in the remainder of this work, a
scaling factor is applied. The matrix A and the vector b are multiplied by %,
where § = max (max; ; |a; ;|, max; |b;|).

For example, for linear systems, we solve (6) instead of Az = b. Since
the initial guess xg = 0, then the initial residual is the vector b, and as a
consequence the scaling factor guarantees that |r;(zo)| < 1 for all i. More-
over, using the global convergence of the SPG method and Proposition
3, it follows that the elements of the residual vector, during the conver-
gence process, will be bounded above in absolute value by a small posi-
tive number. This fact could be verified numerically with the parameter
Tmaz = MaT1<k<iter||T(Tk)]lo- Consequently, the described scaling factor
0 > 0 avoids the appearance of big numbers that could cause loss of accuracy
when the function f(z) in (2) is evaluated during the iterations. Finally, in
order to make a fair comparison between all strategies, we apply the same
scaling factor to all the considered methods.

For our second experiment we compare the performance of OPAPLS with
all the other methods to solve linear systems in which the coefficient matrix
has a definite symmetric part. We consider ten matrices, taken from the
Matlab gallery, described in Table 3. The right hand side vector is given by
b= (1,1,---,1)T. The obtained results are shown in Table 4.

Table 4 shows that the proposed strategy OPAPLS is competitive with
the other strategies for several matrices. However, OPAPLS does not con-
verge for the matrices identified as, PSD3, PSD4, PSD8 and PSD10. No-
tice that the coefficient matrices in all these cases are ill-conditioned. Note

63 Cores, Figueroa

Tab. 3: Description of the matrices with definite symmetric part, from the
Matlab gallery.

Matrix Description Matlab Commands
PSD1 Sparse adjacency matrix from NASA airfoil Matlab demo: airfoil
PSD2 Singular toeplitz lower Hessenberg PSD2 = gallery(’chow’, m,1,1)

PSD3 = gallery('circul’, v)
1076, if i=1

PSD3 Circulant matrix vy — 1, if i= T
v -1, if i=m

0, otherwise
PSD4 Diagonally dominant, ill conditioned, tridiagonal matrix PSD4 = gallery(’'dorr’, m, 1)
PSD5 Perturbed Jordan block PSD5 = gallery(’ forsythe’, m, —1,2)
PSD6 Matrix whose eigenvalues lie on the vertical line PSD6 = gallery(’hanowa’, m, m)
PSD7 Jordan block PSD7 = gallery(’jordbloc’, m, 2)
PSD8 Tridiagonal matrix with real sensitive eigenvalues PSD8 = —gallery('lesp’, m)

! ’

PSD9 Pentadiagonal Toeplitz matrix PSD9 = gallery(‘toeppen’, m, 1,

10, m, —10, —1)
PSD10 Upper triangular matrix discussed by Wilkinson and others PSD10 = gallery('triw’, m, —0.5, 2)

Tab. 4: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,
ORM and OPAPLS matrices with definite symmetric part, described
in Table 3, without preconditioning.

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix m Iter Iter Iter Iter Iter Tter Tmazx

PSD1 4253 61 60 x* 64 75 240 5.9110394
PSD2 1000 389 229 216 532 1044 9289 3.1843281
PSD3 5000 e e 1 2 e x* 9.2318003
PSD4 500 e 2047 283 3540 e xx 1.0000000
PSD5 5000 28 28 x* 29 28 38 1.0000000
PSD6 5000 17 17 11 38 27 13 0.8331333
PSD7 5000 27 27 *k 28 27 33 1.0000000
PSD8 5000 4090 2560 *k 11112 *ok *k 6.7975901
PSD9 5000 4 4 2 5 4 5 9.9760922
PSD10 5000 3020 3067 *k 3408 3151 *k 9.6055586

also that, for these same examples, some other methods do not converge as
well. Therefore, in order to improve the condition number of the coefficient
matrices a preconditioning strategy is applied.

In tables 5 and 6 we report the results for the matrices of Table 3, when
the following two preconditioning strategies are used:

(a) Incomplete LU factorization with drop tolerance (ILU): the precondi-
tioning matrix is obtained, in Matlab, with the command |L,U|=ilu(A,0.3).

(b) The SSOR preconditioning strategy: the preconditioning matrix is
given by (D — wFE)D (D — wF), where —F is the strict lower tri-
angular part of A, —F' is the strict upper triangular part of A, D is the
diagonal part of A and we consider w = 1.

We observe from tables 5 and 6 that the ILU preconditioning is more
effective than the SSOR preconditioning strategy for the proposed method-
ology. Notice that, in general, all the methods reached convergence when ILU

A convex optimization approach for solving large scale linear systems 64

Tab. 5: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matrices with definite symmetric part, described
in Table 3, with preconditioning (a).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter Tmaz

PSD1 53 53 29 57 56 5 1.00000000
PSD2 396 229 523 216 1038 5 0.61803399
PSD3 3 3 2 5 6 14 0.20000000
PSD4 1 1 1 2 1 5 0.86963715
PSD5 2 2 2 4 3 10 0.75000000
PSD6 13 13 8 23 18 6 0.99975858
PSD7 1 1 1 2 1 5 0.50000000
PSDS8 7 7 4 13 11 5 0.70186762
PSD9 4 4 2 5 4 5 0.99979956
PSD10 1 1 1 2 2 6 1.00000000

Tab. 6: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matrices with definite symmetric part, described
in Table 3, with preconditioning (b).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter Tmaz

PSD1 1 1 1 2 1 5 1.00000000
PSD2 13 13 7 16 14 18 0.63952238
PSD3 ok ok *x *x ok ** - 1.00000000
PSD4 4773 2452 180 1939 1850 ¥ 6.75233780
PSD5 2 2 2 4 3 10 0.75000000
PSD6 8 8 5 12 10 18 0.86230000
PSD7 1 1 1 2 1 5 0.50000000
PSDS8 5 5 3 7 6 8 0.69433608
PSD9 2 2 1 3 2 5 0.99979553
PSD10 1 1 1 2 1 6 1.00000000

preconditioning strategy is used. However, others preconditioning strategies
could be used and adapted to this new scheme to improve the performance
of the method.

In our third experiment we work with systems for which the coefficient
matrix has an indefinite symmetric part. These systems are presented in two
groups for which the coefficient matrices are generated in two different ways.

In all cases, the solution for each system is the vector (1,1,1,...,1)".

T

The first group, described in Table 7, was generated using the Matlab

65 Cores, Figueroa

gallery. In the second group all the matrices are tridiagonal m x m, with the
structure shown in (20).

(20)

1 Aym,

where a; = a + (7;;_11) (Gmaz — @), ¥V i = 1,2,...,m, and a and a,,,, are
constants such that the symmetric part of the matrix is indefinite. These
values and the values considered for m are shown in Table 8.

Tab. 7: Description of test matrices with an indefinite symmetric part, from
the Matlab gallery.

Matrix Description Matlab Commands

PSI1 Tridiagonal and nonsymmetric A = gallery('clement”, m, 0)
PSI2 ajj=0o0ra;; =1,1<4,j<m A = gallery('dramadah’, m)
PSI3 aji=1,a;;_1=-1,a;15s=1,s=1,...,k, i=1,....m A = gallery('grecar’, m)
PSI4 aj;=1,a;;-1=1,1<i<m A = gallery('leslie’, m)
PSI5 Random, orthogonal, and upper Hessenberg A = gallery('randhess’, m)
A A = gall 't ! m,
PSI6 aji—2=1,0a;;-1=10,0a;; =4, a;i+1=3,a;i42=1,1<1i,j<n galye{“gy(&%?;;;))en m
A = gallery('toeppen’, 5000,
PSI7 Analogue to PSI6 ~2,10,0, 4, 3)
PSI8 a;i—1=-5,0a;;=18,a;;,41=21<i,j<n A = gallery('tridiag’, m, —5,1.8, 2)
A = gallery("toeppen’, m,
PSI9 Analogue to PSI6 10,3, —10, —1, 1)
PSI10 Analogue to PSI1 A = gallery('clement’, m, 0)

For the set of systems described in Table 7 we only report the results
obtained using Kaczmarz method and OPAPLS. None of the other meth-
ods converge for this matrices, except the strategies GMRES(20) and GM-
RES(40) for the matrix PST3. The convergence of the OPAPLS strategy
is attained for all matrices and the results are shown in Table 9. Kaczmarz
method fails for the matrix PST5 and, in general, it uses more cpu time than
OPAPLS.

The numerical results obtained using OPAPLS and Kaczmarz method for
the matrices described in Table 8 are shown in Table 10. For these examples
none of the methods GMRES(20), GMRES(40), BICGSTAB, RA and ORM
converge with the desired tolerance in the number of iterations allowed. In
all these examples the symmetric part of the matrix associated with each
system is indefinite. So, we only report the results of Kaczmarz method and
OPAPLS.

A convex optimization approach for solving large scale linear systems 66

Tab. 8: Dimension and parameters a and amaz for tridiagonal matrices with

an indefinite symmetric part.
Matrix m a Amax
PSID1 5000 -3 10
PSID2 5000 -20 200
PSID3 5000 -20 980
PSID4 10000 -3 4
PSID5 10000 -3 100
PSID6 10000 -3 997
PSID7 5001 -3 3
PSID8 5001 -10 10
PSID9 5001 -100 100
PSID10 5001 -500 500
PSID11 10001 -3 3
PSID12 10001 -10 10
PSID13 10001 -100 100
PSID14 10001 -500 500

Tab. 9: Number of iterations, cpu time, and flops required by Kaczmarz and
OPAPLS to solve linear systems from the Matlab gallery with an
indefinite symmetric part, described in Table 7, without precondi-

tioning.
Kaczmarz OPAPLS
Matrix m cycles tcpu flops(lOQ) Iter tcpu flops(lOg) Tmazx
PSI1 5000 20 1.184 0.525000000 4 0.0124 0.25004000 1.0000000
PSI2 1000 10839 127.679 10.84000000 2740 90.505 5.48748000 1.0000000
PSI3 5000 58 3.441 1.475000000 40 0.165 2.05040000 1.0000000
PSI4 5000 1 0.064 0.0468 5043 13.339 364.200430 9.3932957
PSI5 5000 Hox xx Hox 4 3.778 0.25004000 1.0000000
PSI6 5000 34 2.335 0.87500000 27 0.101 1.40027000 1.0000000
PSI7 5000 51 3.569 1.30000000 37 0.129 1.90037000 1.0000000
PSI8 5000 258 17.648 6.47500000 98 0.290 5.07598000 8.6559621
PSI9 6000 1375 128.278 49.5360000 285 1.358 20.9914200 7.5095462
PSI10 5001 20 1.171 0.52521002 4 0.006 0.25014002 1.0000000

According to the results in Table 10, the number of iterations, as well as
the cpu time used for OPAPLS, increases as the length of the interval [a, @]
grows; and the condition number of the matrix depends on this length. For
Kaczmarz method the opposite occurs: the computational work and the cpu
time decrease when the values of |a|, [@mqz|, and the length of the interval
[a, Qnar] increase. We observe that the angle between two consecutive hyper-
planes depends on these values. Let m; and 7; be consecutive hyper-planes
whose normal vectors are A; and Aj, respectively, where A; and A; are the
i-th and j-th rows of A. Then, if L = a4, — @, and 0, ; denotes the angle
between m; and 7;, by definition of the angle between hyper-planes, we have

67 Cores, Figueroa

Tab. 10: Number of iterations, cpu time, and flops required by Kaczmarz
and OPAPLS to solve tridiagonal linear systems with an indefinite
symmetric part, described in Table 8, without preconditioning.

Kaczmarz OPAPLS
Matrix m cycles tepu Fflops(1010) Iter tepu Fflops(1010) Tmaxz
PSID1 5000 1654 105.614 4.13750000 1975 4.971 9.8919750 8.3491821
PSID2 5000 89 5.603 0.22500000 4305 10.453 21.574305 7.5422094
PSID3 5000 22 1.386 0.05750000 11634 27.521 58.216634 8.3739901
PSID4 10000 6209 1427.399 62.1000000 1053 5.456 21.102106 9.1480524
PSID5 10000 363 84.360 3.64000000 6063 28.604 121.47213 7.6934738
PSID6 10000 38 8.739 0.39000000 15737 72.468 314.92147 8.2741977
PSID7 5001 3763 241.754 9.413764400 973 2.586 4.8754224 7.3971303
PSID8 5001 1076 68.915 2.693577100 1202 3.087 6.0261115 5.8441152
PSID9 5001 102 6.477 0.257603010 4843 11.829 24.237034 6.4805663
PSID10 5001 23 1.491 0.060024002 5193 12.604 26.003090 8.1546386
PSIDI11 10001 7304 1698.359 73.0646110 1391 6.945 27.858353 6.3738294
PSID12 10001 2082 474.943 20.8341660 2821 13.965 56.486937 7.3010586
PSID13 10001 191 43.539 1.92038400 4381 20.896 87.736306 5.3416070
PSID14 10001 39 8.952 0.40008000 9060 42.599 181.35438 8.6500760
that:
| AT A |aii — ajj] L
|cos(0;.5)] = =

[ALIAT ™~ ava ora, m-1)yara, 2+,

So, |cos(0;;)| decreases directly proportionally to L and inversely proportion-
ally to m, |a;;| and |aj;|, for 1 <i.j <m, a < @y, a5 < Gmaes- We note that
for a fixed m, when the values of |a|, |aq.| and L decrease, the cosine of most
angles between hyper-planes increases, that is, the angle 0;; decreases imply-
ing that the Kaczmarz method requires many more cycles for convergence,
which increases the number of flops and the cpu time.

For some matrices in Table 10, we observe that, the Kaczmarz method
uses fewer number of flops than OPAPLS. However, it requires more cpu
time. The Kaczmarz method requires the computation of an inner product
between a row of A and a vector to obtain a new vector for the next row, and
so on, until it reaches the last row. This sequential calculations increases the
required cpu time to obtain the solution.

In our fourth experiment, we consider the solution of consistent dense
linear systems for which the coefficient matrix A was obtained in the following
way: Take C' as a 100 x 100 dense matrix from the Matlab gallery and
consider the matrix A such that, for 1 < ¢,5 < 100, a;; = ¢;; if @ < j; for
i > j, ay; = —cji; and a; = a + (%) (@maz — @), where a and @, are
given constants such that the symmetric part of A is indefinite. The Matlab
commands used to generate the matrix ', and the values assigned to a and

Umae are shown in Table 11.

A convex optimization approach for solving large scale linear systems

68

Qmaz, fOr dense matrices with an indefinite symmetric part.

Matrix Matlab Commands for matrix C a amax
DENSEPSI1 C = gallery('lehmer’,100) -1 6
DENSEPSI2 C = gallery("toeppd’,100) -1 6
DENSEPSI3 C = gallery('pei’, 100) -1 6
DENSEPSI4 C = gallery('randhess’, 100) -1 6
DENSEPSI5 C = gallery('parter’,100) -1 6
DENSEPSI6 C = gallery('lehmer’,100) -2 6
DENSEPSI7 C = gallery("toeppd’,100) -2 6
DENSEPSIS C = gallery('pei’, 100) -2 6
DENSEPSI9 C = gallery('randhess’, 100) -2 6
DENSEPSI10 C = gallery('parter’,100) -2 6
DENSEPSI11 C = gallery('lehmer’,100) -2 10
DENSEPSI12 C = gallery("toeppd’,100) -2 10
DENSEPSI13 B = gallery('pei’, 100) -2 10
DENSEPSI14 C = gallery('randhess’, 100) -2 10
DENSEPSI15 C = gallery('parter’,100) -2 10

Tab. 11: Description of the Matlab commands, and the parameters a and

For these examples, we report, in tables 12 and 13, the number of it-
erations required by OPAPLS and all the other methods to reach conver-
gence. Table 12 shows the results obtained when the solution vector z is

(1,1,---,1)T; and Table 13 shows the results obtained when b = (1,1, - - -

)7

Tab. 12: Number of iterations required by GMRES(20), GMRES(40),
BICGSTAB, Kaczmarz and OPAPLS for solving dense linear sys-
tems for which the coefficient matrix has an indefinite symmetric
part, described in Table 11, with the solution vector is (1,1, -+, 1)T,
without preconditioning.

GMRES(20)

GMRES(40)

BICGSTAB

Kaczmarz

OPAPLS

Matrix

iter

iter

iter

cycles

iter

Tmax

DENSEPSI1
DENSEPSI2
DENSEPSI3
DENSEPSI4
DENSEPSI5
DENSEPSI6
DENSEPSI7
DENSEPSI8
DENSEPSI9
DENSEPSI10
DENSEPSII11
DENSEPSI12
DENSEPSI13
DENSEPSI14
DENSEPSI15

The results from tables 12 and

EE3

77
159

*x
*x
*x
97
*x
*x
*k
*k

440

16
*ok

Hook

EX3

581
23
1267
*x
32
811
22
*x
* %

34
17

16
* ok

*ok

216

*k
61
*k
*k

124
*k
64
*k
*ok

133
36
36

335
*ok

131
2484
738
191
* %
133
6169
734
823
120
87
1294
495

1379
*ok

495
649
749
1680
7566
181
1218
266
2489
112
205
447
303

4154
*ok

1.0000000
1.9270749
1.0000000
3.2593333
1.0000000
1.0000000
1.1647514
1.0000000
3.3312492
1.0000000
1.0000000
5.1925796
1.0000000
3.0944160
1.0000000

13 indicate clearly that the Kaczmarz

69 Cores, Figueroa

Tab. 13: Number of iterations required by GMRES(20), GMRES(40),
BICGSTAB, Kaczmarz and OPAPLS for solving dense linear sys-
tems for which the coefficient matrix has an indefinite symmetric
part, described in Table 11, with b = (1,1,---,1)7, without pre-

conditioning.
GMRES(20) _GMRES(40) _BICGSTAB _ Kaczmarz OPAPLS

Matrix iter iter iter cycles iter Tmax
DENSEPSI1 xx 41 xx 143 611 3.3281386
DENSEPSI2 773 316 xx 2700 830 4.2149836
DENSEPSI3 179 24 146 866 829 3.9461871
DENSEPSI4 *ox 16188 Hok 147 2333 8.5489338
DENSEPSI5 *ox Hok Hok *ox *ox 8.9455954
DENSEPSI6 Hox *ok *ok 141 195 3.3564561
DENSEPSI7 1072 873 Hok 6949 806 4.0339567
DENSEPSI8 Hox 23 164 846 273 3.9644313
DENSEPSI9 *ox Hok Hok 1043 3956 8.3114409
DENSEPSI10 *ox Hok Hok *ox *ox 9.0260881
DENSEPSI11 Hox Hok Hok 93 246 1.9881283
DENSEPSI12 464 23 xx 1339 453 8.4347586
DENSEPSI13 17 17 89 570 360 4.7793751
DENSEPSI14 Hox xx 301 1846 4991 8.5786460
DENSEPSI15 Hox xx xx Hox Hx 8.9939191

method and the proposed OPAPLS scheme are more effective for solving
these small systems for which the dense coefficient matrix has an indefinite
symmetric part. Moreover, the results obtained in Tables 9, 10, 12 and 13
seem to indicate that the proposed method, OPAPLS, is the best option for
solving linear systems when the coefficient matrix has an indefinite symmetric
part.

In our fifth experiment we consider the solution of consistent rectangular
linear systems, whose matrices (A € R”™*") are described in Table 14. The
solution for each system is the vector (1,1,1,...,1)7. The first seven ma-
trices were taken from the collection available in the portal matrix market
(www.matrixmarket.com). The matrices labeled as R8 and R9 were ob-

tained following a model presented in [6], which combines some matrices in
R1 R1

the followi . Ry = = dRY=(= ith
¢ JOHOWIE way: s (14)1252><320 o (16)1641><320, "

R4 = (O219x235 R4) and R6 = (Oosx1z2 R6).

The last two matrices in Table 14 were generated in Matlab. Matrix R10
was obtained with the Matlab command gallery("lauchli’, m, 1), which is an
(m + 1) x m matrix such that the first row has all the component equal to
one and the following m rows coincide with p/,,x,,, where p is a given scalar.
Matrix R11 was generated with the Matlab command gallery(’sprand’;m,n,d)
and it has, approximately, m X n X d random nonzero entries, where d is the
nonzero density of the matrix.

A convex optimization approach for solving large scale linear systems 70

Tab. 14: Description of rectangular matrices in R™*"™, m > n.

Matrix Description m n
R1 WELL1033 1033 320
R2 WELL1850 1850 712
R3 ABB313 313 176
R4 ASH219 219 85
R5 ASH331 331 104
R6 ASH608 608 188
R7 ASH958 958 292
R8 ARTF1252 1252 320
R9 ARTF1641 1641 320
R10 gallery('lauchli’,5000,10%) 5001 5000
R11 sprand(m,n,0.002) 4000 3000

The Kaczmarz method and the OPAPLS strategy are the only methods
that can be directly applied to rectangular systems. The methods CG and
RA are applied to the corresponding normal equations A" Az = ATbh. In
particular, instead of the standard CG method, we use the specialized ver-
sion CGNE, also known as Craig’s method, fully described in [4, Ch. 8§|.
For CGNE and RA an additional matrix-vector product with A7 must be
computed at each iteration, and so mn flops must be added to their required
number of flops.

We report, in Table 15, the number of iterations and cpu time required
to reach convergence in each case.

From Table 15, we can observe that, in general, CGNE requires less cpu
time that the others methods. Among the others methods our methodology
reach convergence for all the problems with a competitive cpu time. However,
all strategies attained convergence, except Kaczmarz for matrix R1. Notice
that Kaczmarz and OPAPLS can be applied directly to the rectangular sys-
tem. Contrary, RA and CGNE involve the normal equations system in their
formulations, even thought the matrix AT A is not generated.

For our last experiment we use the scheme proposed in (9) to solve linear
systems of equations, square or rectangular, subject to box constraints on
the variables. The solution of each system is the vector (1,1,---,1)T. The
competitors GMRES, BICGSTAB, Kaczmarz, RA, ORM and CG cannot be
applied to constraint problems. Hence, for this experiment, we only report
the results using OPAPLS. We consider the set of squared matrices described
in Table 7 with different constraints: 0 < z; < 2,for 1 <i:<n, -5 <z; <5
for 1 < i <mnand —100 < z; < 100 for 1 < ¢ < n. The obtained results

71 Cores, Figueroa

Tab. 15: Number of iterations and cpu time required by RA, CGNE, Kacz-
marz and OPAPLS for solving rectangular systems, whose coeffi-
cient matrices were described in Table 14, without preconditioning.

RA CGNE Kaczmarz OPAPLS
Matrix iter tepu iter tepu cycles tepu iter tcpu T'maz
R1 1380 12.887 185 0.095 oK oK 3380 2934 2.0202712

R2 1113 94.350 491 0.843 16931 111.562 2059 3.180 2.1468575
R3 146 0.252 81 0.000 122 0.093 129 0.053 1.0000000
R4 54 0.034 42 0.000 29 0.015 58 0.012 1.0000000
R5 42 0.024 34 0.000 19 0.014 43 0.011 1.0000000
R6 56 0.176 49 0.000 19 0.028 60 0.021 1.0000000
R7 61 0.513 511 0.015 22 0.060 66 0.032 1.0000000
R8 431 5.402 122 0.046 484 1.595 667 0.639 4.2227713
R9 64 0.992 47 0.043 27 0.185 54 0.062 1.0000000
R10 2 17.788 1 0.028 1 0.054 1 0.004 1.0000000
R11 910 5.021 511 0.043 1 0.045 1094 4.332 1.0000000

are shown in Table 16. Table 17 shows the values for r,,,, obtained in the
experiment of Table 17.

Tab. 16: Number of iterations and cpu time required by OPAPLS to solve
linear systems whose matrix has an indefinite symmetric part, de-
scribed in Table 7, subject to box constraints, without precondi-

tioning.
Unconstrained 0<z; <2 —5<x; <5 —100< x; <100
Matrix Iter tepu Iter tepu Iter tepu Iter tepu
PSI1 4 0.02 6 0.015 5 0.015 5 0.015

PSI2 2740 112.81 2413 81.572 2413 82.134 2413 81.588
PSI3 37 0.20 50 0.202 50 0.218 50 0.202
PSI4 5043 17.43 4 0.000 4 0.015 4 0.015
PSI5 4 4.59 6 4.945 6 5.085 6 5.038
PSI6 27 0.14 37 0.156 33 0.124 33 0.124
PSI7 37 0.16 47 0.171 47 0.171 47 0.171
PSI8 97 0.37 83 0296 112 0.327 107 0.312
PSI9 308 1.81 294 1591 306 1.482 291 1.606
PSI10 4 0.02 6 0.015 5} 0.031 5} 0.015

We solve some additional squared systems with box constraints using
OPAPLS. The additional systems are the ones previously described in Table
8, and for these problems we use the same box constraints, described in
Table 16. The right hand side vector for each system is set in such a way the

A convex optimization approach for solving large scale linear systems 72

Tab. 17: Maximum value taken by the elements of the residual vector using

OPAPLS in the experiment shows in Table 16.
0<2;,<21<:<n —-5<z;<H1<:i<n —-100<x; <£100,1 <5< n

Matrix Tmazx Tmaz Tmaz
PSI1 1.00000000 1.00000000 1.00000000
PSI2 1.00000000 1.00000000 1.00000000
PSI3 1.00000000 1.00000000 1.00000000
PSI4 1.00000000 1.0000000 1.00000000
PSI5 1.00000000 1.00000000 1.00000000
PSI6 1.00000000 1.00000000 1.0000000
PSI7 1.00000000 1.00000000 1.00000000
PSI8 1.76000000 8.75703240 8.65596210
PSI9 2.50000000 6.10399220 7.50954620
PSI10 1.00000000 1.00000000 1.00000000

solution vector is (1,1, 1,...,1)7. The required number of iterations and cpu
time are shown in Table 18. Table 19 shows the values for r,,,, obtained in
the experiment of Table 19.

Tab. 18: Number of iterations and cpu time required by OPAPLS to solve
linear systems whose matrix has an indefinite symmetric part, de-
scribed in Table 8, subject to box constraints, without precondi-
tioning.

Unconstrained 0<z; <2 —5<x; <5 —100 < z; <100
Matrix [ter tepu ITter tepu Iter tepu ITter tepu
PSID1 1975 5.08 1879 5.085 2079 5.725 1819 4.992
PSID2 4305 11.06 5103 13.026 4620 12.183 4196 10.935
PSID3 11634 28.54 8390 21.325 9565 24.102 10795 27.222
PSID4 1053 5.50 1287 7.129 1558 8.408 1033 5.678
PSID5 6063 29.25 8229 40.887 7367 36.660 6939 34.679
PSID6 15737 73.78 16326 78.952 10359 50.544 16033 78.234
PSID7 973 2.66 902 2.745 654 1.903 981 3.026
PSIDS 1202 3.27 1205 3.354 977 2.839 1201 3.572
PSID9 4843 11.93 4295 11.138 2410 6.614 4554 11.824
PSID10 5193 12.83 9321 23.727 6328 16.052 5195 13.416
PSID11 1391 7.05 1415 7.441 1012 5.569 1384 7.987
PSID12 2821 14.05 1875 9.921 1956 10046 2709 14.211
PSID13 4381 20.88 3948 19.905 4366 21.668 4341 21.652
PSID14 9060 42.35 8513 41901 8161 40.045 7976 39.374

The results of tables 16 and 18 indicate that our methodology permits to

73 Cores, Figueroa

Tab. 19: Maximum value taken by the elements of the residual vector using

OPAPLS in the experiment shows in Table 18.
0<z2;,<21<i<n —-5<z;<H5,1<i<n —-100<z; <£100,1 <7< n

Matrix Tmaz Tmaz Tmaz

PSID1 1.0906727 6.3565440 8.3491821
PSID2 1.0000000 6.0120183 7.5422094
PSID3 1.0008155 5.9938245 8.3739901
PSID4 1.1997200 6.7983198 9.1480524
PSID5 1.0093910 5.9728412 7.6934738
PSID6 1.0000652 5.9943319 8.2741977
PSID7 1.2494000 5.7753408 7.3971303
PSIDS8 1.0653689 6.3549091 5.8441152
PSID9 1.0000000 5.9530400 6.4805663
PSID10 1.0000000 5.9830990 8.1546386
PSID11 1.2498500 6.2392268 6.3738294
PSID12 1.0903636 6.3560000 7.3010586
PSID13 1.0000000 5.9421503 5.3416070
PSID14 1.0002467 6.0055888 8.6500760

obtain particular solutions within a small cpu time perturbation.

The machinery OPAPLS also works for solving rectangular systems sub-
ject to box constraints. In order to observe its performance, we now solve
consistent underdetermined systems subject to constraints. The set of un-
derdetermined systems to be considered are described in Table 20. Table 21
shows, in the first column the label for each example, in the second column
the name of the matrix, and in the third column the imposed constraints that
force a particular solution. The obtained results using OPAPLS are shown
in the last two columuns.

Tab. 20: Description of some rectangular matrices in R™*" m < n.
Matrix Matlab command m n
R12 sprand(m,n,0.1) 500 4000
R13 sprand(m,n,0.1) 2000 5000

The underdetermined systems considered for this experiment have an in-
finite number of solutions. Particulary, the proposed strategy found one of
them. There is not much difference in cpu time when solving constrained
problems since the projection over the box constraint set is simple and re-
quires low computational cost.

A convex optimization approach for solving large scale linear systems 74

Tab. 21: Number of iterations and cpu time required by OPAPLS to solve
underdetermined linear systems, whose matrices were described in
Table 20, subject to constraints, without preconditioning.

Problem Matrix Constraint Iter tepu Tmax
CS1 R12 No constraint 47 1.263 1.0
cs2 R12 #1 =@g =a3 =1 51 1.294 1.0
Cs3 R12 zy =20 =23=1,0<az; <2fori>3 51 1.326 1.0
Cs4 R12 t1=ao =23 =1, -5 < z; <5 fori >3 51 1.326 1.0
S5 R12 21 = @0 = w3 = 1, —100 < x; < 100 for i > 3 51 1.404 1.0
CS6 R12 1 = z% =z, =1 51 1.357 1.0
CS7 R12 rp=zp =zp=1and 0 <wz; <2,5¢ {1, 3,n} 51 1.357 1.0
CS8 R12 rp=zp =xp =1and =5 <z; <5,i¢ {1, §,n} 51 1.341 1.0
cso R12 21 =2y =on =1 and —100 < z; < 100 i ¢ {1, §,n} 51 1.419 1.0
CsS10 R13 No constraint 97 12.932 1.0
CS11 R13) =xz0 =23 =1 95 12.526 .0
Cs12 R13 21 =xs =23 =1,0<x; <2fori>3 95 12.339 1.0
Cs13 R13 1 =ao =23 =1, -5 < z; <5 fori>3 95 12.448 1.0
CcS14 R13 @] =29 = o3 = 1 and —100 < x; < 100 for i > 3 95 12.792 1.0
Ccs15 R13 21 =1, an =1, op = 1 05 12.698 1.0
CS16 R13 T =on =an = land 0 <z; <2fori ¢ {1, 5,n} 103 13.291 1.0
CS17 R13 z] = z% =znp =1and =5 < z; <5fori ¢ {1, F,n} 103 14.071 1.0
cs18 R13 w1 =wy =wn=land —100 <z; <100 ¢ {1,3,n}) 103 13.322 1.0

4 Conclusions

We have presented an optimization strategy for solving different kinds of con-
sistent linear systems. The proposed method finds the solution by searching
a local minimizer of a novel non-quadratic convex function. In the case of
solving linear systems, a relevant feature is that the new scheme does not
require the coefficient matrix to be square. In this work, we use the Spectral
Projected Gradient (SPG) method to solve the optimization problems. The
SPG is a globally convergent method that has a low computational and low
storage cost, and it only requires first order information. However, any other
globally convergent low-cost optimization method can be used.

Our numerical results indicate that the new machinery is suitable for
solving large-scale and sparse, as well as small and dense, problems for which
the coefficient matrix has no special characteristics. Moreover, it allows one
to add easily convex constraints to the optimization approach. Adding con-
vex constraints is useful for several different reasons. One of them is that it
imposes regularity to the optimization problem. Another advantage is that if
the linear problem has an infinite number of solutions, a specific type of so-
lution can be found by conveniently setting the convex constraints. Further-
more, the proposed strategy also allows to solve linear feasibility problems,
since these problems can be treated as a linear system of equation subject to
box constraints, for which some slack variables are introduced. On the other

75 Cores, Figueroa

hand, the choice of the scaling parameter guarantees that the value of the
new non quadratic function is bounded above for all iterations. So, overflow
or loss of accuracy can be avoided.

Finally, the new optimization machinery can also benefit from the use
of preconditioning strategies, which plays a key role in the presence of very
ill-conditioned problems. However, in the case of the matrices with indefi-
nite symmetric part where generic preconditioning techniques are still under
development, the OPAPLS method seems to be a competitive approach for
this kind of problems.

References

[1] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 2 edition, 1999. ISBN 978-1886529007.

[2] G. Golub and C. Van Loan. Matriz computations. Johns Hopkins Uni-
versity Press, 3 edition, 1996. ISBN 978-0801854149.

[3] M.R. Hestenes. Conjugate Direction Methods in Optimization. Springer-
Verlag New York, 1 edition, 1980. ISBN 978-1-4612-6048-6.

[4] Y. Saad. Iterative methods for sparse linear systems. — SIAM,
Philadelphia, 1 edition, 2003. ISBN 978-0-89871-534-7, doi:
10.1137/1.9780898718003.

[5] C. Brezinski. Projection methods for systems of equations. North Hol-
land, Amsterdam, 1 edition, 1997. ISBN 978-0444827777.

[6] A.Bjorck. Numerical methods for least square problems. SIAM, Philadel-
phia, 1996. ISBN 978-0-89871-360-2.

[7] P.C Hansen, V. Pereya, and G. Scherer. Least Squares Data Fitting
with Applications. Johns Hopkins University Press, Maryland, USA, 1
edition, 2013. ISBN 9781421407869.

[8] E.G. Birgin, J.M. Martinez, and M. Raydan. Algorithm 813: SPG - soft-
ware for convex-constrained optimization. ACM Transactions on Math-
ematical Software, 27(3):340-349, 2001. doi: 10.1145/502800.502803.

A convex optimization approach for solving large scale linear systems 76

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E.G. Birgin, J.M. Martinez, and M. Raydan. Nonmonotone spectral
projected gradient methods on convex sets. SIAM J. Opt., 10(4):1196—-
1211, 2000. doi: 10.1137/51052623497330963.

Raydan M. The barzilai and borwein gradient method for the large-scale
unconstrained minimization problem. SIAM J. Opt., 7(1):26-33, 1997.
doi: 10.1137/51052623494266365.

E.G. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradi-
ent methods: Review and perspectives. Journal of Statistical Sofware,
60(3):1-21, 2014. doi: 10.18637/jss.v060.i03.

M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero, J.M. Martinez, and S.A.
Santos. Augmented lagrangian algorithms based on the spectral pro-
jected gradient method for solving nonlinear programming problems.
Journal of Optimization Theory and Applications, 123(3):497-517, 2004.
doi: 10.1007/s10957-004-5720-5.

M.A. Gomes-Ruggiero, J.M. Martinez, and S.A Santos. Spectral
projected gradient method with inexact restoration for minimization

with nonconvex constraints. SIAM Journal on Scientific Computing,
31(3):1628-1652, 2009. doi: 10.1137/070707828.

R. Escalante and M. Raydan. Alternating projection methods. SIAM,
Philadelphia, 1 edition, 2011. ISBN 978-1-611971-93-4.

C. Brezinski. Variations on richardson’s method and acceleration. Bull.
Soc. Math. Belg., 3(Supplement):33-44, 1996. doi: 10.1.1.11.7024.

W. La Cruz and M. Raydan. Residual iterative schemes for large-
scale nonsymmetric positive definite linear systems. Computacional
and applied mathematics, 27(2):151-173, 2008. doi: 10.1590/S0101-
82052008000200003.

