
www.
ompama.
o.usb.ve

Bull. Comput. Appl. Math., Vol.5, No.1, 2017

ISSN 2244-8659

A
onvex optimization approa
h for

solving large s
ale linear systems

Debora Cores

1
, Johanna Figueroa

2

CompAMa Vol.5, No.1, pp.53-76, 2017 - A

epted November 11, 2016

Abstra
t

The well-known Conjugate Gradient (CG) method minimizes a stri
tly
onvex

quadrati
 fun
tion for solving large-s
ale linear system of equations when the
o-

e�
ient matrix is symmetri
 and positive de�nite. In this work we present and

analyze a non-quadrati

onvex fun
tion for solving any large-s
ale linear system

of equations regardless of the
hara
teristi
s of the
oe�
ient matrix. For �nding

the global minimizers, of this new
onvex fun
tion, any low-
ost iterative opti-

mization te
hnique
ould be applied. In parti
ular, we propose to use the low-
ost

globally
onvergent Spe
tral Proje
ted Gradient (SPG) method, whi
h allow us to

extend this optimization approa
h for solving
onsistent square and re
tangular

linear system, as well as linear feasibility problem, with and without
onvex
on-

straints and with and without pre
onditioning strategies. Our numeri
al results

indi
ate that the new s
heme outperforms state-of-the-art iterative te
hniques for

solving linear systems when the symmetri
 part of the
oe�
ient matrix is inde�-

nite, and also for solving linear feasibility problems.

Keywords: Nonlinear
onvex optimization, spe
tral gradient method, large-s
ale

linear systems.

1
Departamento de Cómputo Cientí�
o y Estadísti
a, Universidad Simón Bolívar (USB),

Cara
as 1080-A, Venezuela (
ores�usb.ve).

2
Departamento de Matemáti
a de la Fa
ultad de Cien
ias y Te
nología, Universidad

de Carabobo (UC), Valen
ia 2005, Venezuela (j�gueroa1�u
.edu.ve).

53

A
onvex optimization approa
h for solving large s
ale linear systems 54

1 Introdu
tion

The stri
tly
onvex quadrati
 fun
tion

q(x) =
1

2
xTAx− bTx, (1)

where A is a symmetri
 and positive de�nite (SPD) matrix, is the
lassi
al

and suitable
hoi
e to apply un
onstrained minimization te
hniques for solv-

ing the large-s
ale linear system Ax = b. In that
ase, the most e�e
tive

iterative method for the un
onstrained minimization is the Conjugate Gra-

dient (CG) method; see, e.g., [1�4℄. In the SPD
ase, (1) has also been the

suitable
hoi
e to develop and analyze gradient or residual iterative s
hemes

for solving Ax = b; see, e.g., [5℄.
In many real appli
ations as signal pro
essing, stru
tural analysis, data

�tting, and linear programming, among others, the
oe�
ient matrix A
ould

be re
tangular and
ould have no desirable
hara
teristi
s as symmetry, pos-

itive de�niteness, positive de�niteness of the symmetri
 part, or diagonal

dominan
e. Hen
e, in the presen
e of no desirable
hara
teristi
s, the CG

method and gradient related methods
annot be applied dire
tly to the mini-

mization of (1). Nevertheless, they
an always be applied to the minimization

of the
onvex quadrati

1
2
xTATAx − (AT b)Tx, for solving the normal equa-

tions: ATAx = AT b. Now, this so-
alled least-squares approa
h has some

advantages but also some well-known disadvantages, in
luding the possible

drasti
 in
rease of the
ondition number of the
oe�
ient matrix ATA; see,
e.g., [4, 6, 7℄.

In order to extend the un
onstrained minimization approa
h, in this work

we propose a new
onvex fun
tion for solving any large-s
ale linear system

of equations regardless of the
hara
teristi
s of the
oe�
ient matrix. For

this new non-quadrati

onvex fun
tion, any low-
ost optimization te
hnique

ould be applied. In parti
ular, we propose to use the Spe
tral Proje
ted

Gradient (SPG) method [8�10℄, sin
e it is an e�e
tive low-
ost optimization

s
heme that has been su

essfully applied in many large-s
ale real appli
a-

tions; see, e.g., [11℄.

The rest of this do
ument is organized as follows. In se
tion 2 we present

our proposal, we dis
uss the linear problems to be
onsidered, and we brie�y

des
ribe the SPG method. In se
tion 3 we present some numeri
al expe-

riments in whi
h the performan
e of the proposed s
heme is studied and

ompared with the well-established state-of-the-art methods CG, GMRES,

55 Cores, Figueroa

BICGSTAB, ORM, RA, and Ka
zmarz, for di�erent s
enarios. Finally, in

se
tion 4, we present some
on
luding remarks.

2 Optimization approa
h

For solving the linear system Ax = b, where A ∈ R
m×n

and b ∈ R
m
,
onsider

the fun
tion:

f(x) =
m∑

i=1

fi(x) =
m∑

i=1

(e−ri(x) + eri(x)), (2)

where fi(x) = e−ri(x) + eri(x) and ri(x) is the ith
omponent of the residual

ve
tor r(x) = b−Ax.
The most relevant properties of the fun
tion f(x) are established in

Propositions 1, 2 and 3

Proposition 1. The fun
tion f de�ned in (2) is a
onvex fun
tion.

Proof. Let g : R → R be given by g(z) = ez+e−z
. Sin
e g′′(z) = ez+e−z > 0

for all z ∈ R, then g is
onvex. Hen
e, fi(x) is
onvex for all 1 ≤ i ≤ m.

Consequently, f(x) =
∑m

i=1 fi(x) is the sum of
onvex fun
tions and so it is

also a
onvex fun
tion.

Noti
e that sin
e g′(z) = ez − e−z
, then the unique global minimizer of

g(z) = ez + e−z
is rea
hed when ez = e−z

, i.e., when z = 0. Noti
e also that

g(0) = 2.

Proposition 2. If Ax∗ = b for some ve
tor x∗ ∈ R
n
, then f(x∗) = 2m.

Proof. Sin
e Ax∗ = b then the residual ve
tor satis�es ri(x
∗) = 0, for all i,

1 ≤ i ≤ n, and fj(x
∗) = e−rj(x∗) + erj(x

∗) = 2, for all j, 1 ≤ j ≤ m. Adding

the m values we obtain f(x∗) = 2m.

Noti
e that Proposition 2 reveals an e�e
tive
riterion for determining if

a given ve
tor x∗ solves the system Ax = b.

Proposition 3. If the system Ax = b is
onsistent then f attains its global

minimum value 2m. Moreover, any global minimizer of f solves the linear

system Ax = b.

A
onvex optimization approa
h for solving large s
ale linear systems 56

Proof. Let x ∈ R
n
and let x∗ ∈ R

n
su
h that Ax∗ = b. Sin
e fi(x) =

e−ri(x) + eri(x) attains a minimum value when ri(x) = 0 then fi(x) ≥ 2.
Hen
e by Proposition 2

f(x) =
m∑

i=1

fi(x) ≥ 2m = f(x∗). (3)

Let us now
onsider x̃ for whi
h Ax̃−b 6= 0, that is, there exists k, 1 ≤ k ≤ n,
su
h that Akx̃ − bk 6= 0, where Ak represents the k-th row of A. Therefore,
fk(x̃) = e(Akx̃−bk) + e−(Akx̃−bk) > 2. Furthermore, for all i = 1, ..., m, with

i 6= k, fi(x̃) ≥ 2. Consequently, f(x̃) > 2m. Hen
e, x̃ is not a minimizer of

f .

Observe that the obje
tive fun
tion (2)
an be written in a more general

way as

f(x) =
m∑

i=1

ϕ(ri(x)), (4)

where ϕ : R → R
+
, ϕ ∈ C2(R), ϕ even, stri
tly
onvex and
oer
ive and

whose global minimum is rea
hed at 0. Moreover, propositions 1, 2 and 3

are valid for any fun
tion ϕ satisfying the previous
onditions. In parti
ular,

onsidering ϕ(t) = t2
orresponds to the linear least square problem.

2.1 Problems to be solved

A

ording to Propositions 1, 2 and 3, solving a
onsistent linear system Ax =
b is equivalent to solving the following un
onstrained
onvex minimization

problem:

Find x∗, su
h that x∗ = arg

(
min
x∈Rn

f(x)

)
. (5)

An important aspe
t of this optimization approa
h is that it
an be used

for any
onsistent square or re
tangular linear systems, regardless of the

hara
teristi
s of the
oe�
ient matrix.

Sin
e the fun
tion f involves exponential terms, then a suitable s
aling

parameter δ > 0
an always be found to solve

1

δ
Ax =

1

δ
b, (6)

57 Cores, Figueroa

instead of Ax = b, to avoid the appearan
e of big numbers that
ould
ause

loss of a

ura
y or even over�ow. Clearly, x solves Ax = b if and only if x
solves (6). Another option to avoid loss of a

ura
y when solving (5) is to use

pre
onditioning strategies for the linear system Ax = b. The way of
hoosing

δ > 0 and the use of pre
onditioning strategies will be fully des
ribed in

Se
tion 3 of numeri
al experiments.

In some real appli
ations, lower and upper bounds must be imposed to

the solution ve
tor. In this
ase, we are interested in solving the following

problem: {
Find x su
h that Ax = b
subje
t to: x ∈ Ω,

(7)

where Ω is a
onvex set. In parti
ular, we are interested in the problem:





Find x su
h that Ax = b
subje
t to:

li ≤ xi ≤ ui if i ∈ D ⊆ {1, 2, · · · , n}.
(8)

In this
ase the optimization approa
h (5) allows us to add
onvex
on-

straints, that is, to �nd the solution of Ax = b within a given
onvex set,

obtaining the following
onvex optimization problem:





Find x∗ = arg (minx∈Rn f(x))
Subje
t to:

li ≤ xi ≤ ui if i ∈ D.

(9)

For some other appli
ations, as image re
overy or inverse problems, the

solution of a linear feasibility problem is required:

Find x su
h that Ax ≤ b, (10)

where A ∈ R
m×n

, b ∈ R
m
and x ∈ R

n
.

Our proposal
an be used for solving feasibility problems transforming

problem (10) into an m× (m+ n)
onstrained linear systems, as follows:





Find x su
h that Ãx̃ = b
Subje
t to:

x̃i ≥ 0 if n+ 1 ≤ i ≤ n+m

(11)

where Ã =
(
A Im

)
m×(m+n)

, Im is the m×m identity matrix, x̃i = xi, for

1 ≤ i ≤ n, and x̃i, for n + 1 ≤ i ≤ n + m, are auxiliary variables or sla
k

variables. Moreover, if some
omponents must be bounded, these restri
tions

an be added to problem (11) and it
an be redu
ed to problem (9).

A
onvex optimization approa
h for solving large s
ale linear systems 58

2.2 The SPG ma
hinery

The di�erent problems des
ribed in Se
tion 2.1, for whi
h our optimization

approa
h
an be applied,
an be solved by any iterative low-
ost optimiza-

tion method that
an handle
onvex
onstraints. In parti
ular, we
onsider

the Spe
tral Proje
ted Gradient (SPG) method [8�10℄, whi
h is nowadays a

well-established nonmonotone numeri
al s
heme for solving large-s
ale
on-

vex
onstrained optimization problems when the proje
tion onto the feasible

set
an be performed e�
iently [11℄. The SPG method has been extended to

some other
onstrained optimization settings; see, e.g., [12, 13℄. The attra
-

tiveness of the SPG method is mainly based on its simpli
ity. Moreover, it

is globally
onvergent, i.e., the sequen
e that it generates
onverges to sta-

tionary points from any initial guess. For more details on the
onvergen
e

properties of the SPG method see [8℄,[9℄ and [10℄.

We now dis
uss the most important features of the SPG method for solv-

ing nonlinear optimization problems of the form:

min
x∈Ω

f(x), (12)

where Ω is a
losed
onvex set in R
n
and f : Rn −→ R is a fun
tion with

ontinuous partial derivatives in an open set that
ontains Ω. Starting from

a given initial x0 ∈ R
n
the iterations are given by

xk+1 = xk + αkdk, (13)

where dk = PΩ(xk−λkgk)−xk, gk = ▽f(xk), PΩ denotes the proje
tion onto

Ω and λk is the spe
tral
hoi
e of step length, given by:

λk =
sTk−1sk−1

sTk−1yk−1

, (14)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.

The parameter αk > 0 in (13) is found by a nonmonotone line sear
h to

a

omplish the following
ondition:

f(xk+1) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + γαkg
T
k dk, (15)

where M is a nonnegative integer and γ is a small positive number. In this

work, we set M = 10 and γ = 10−4
. For more details
on
erning pra
ti
al

issues see [11℄. Noti
e that the SPG method
an also be applied to the

un
onstrained minimization problem (5) by setting Ω = R
n
.

59 Cores, Figueroa

3 Numeri
al experiments

From now on, the appli
ation of the SPG method on the
onvex minimization

problems des
ribed in se
tion 2.1, will be denoted by OPAPLS (Optimization

Approa
h for Linear Systems). In order to illustrate the advantages of the

proposed strategy, we
ompare OPAPLS with the following methods: GM-

RES, BICGSTAB, RA, ORM, CG, and Ka
zmarz method. The methods

GMRES, BICGSTAB, CG and Ka
zmarz are well-known and they
an be

found for instan
es in [6℄, [14℄ and [4℄, respe
tively. The strategies ORM and

RA are iterative s
hemes for whi
h the sear
h dire
tion is the residual ve
tor;

see [15℄ and [16℄.

The CG and RA methods
orrespond to the use of ϕ(t) = t2 in the general
formulation (4). So,
omparisons between di�erent fun
tions ϕ are presented

in our numeri
al experiments.

The Optimal Ri
hardson Method (ORM), introdu
ed in [15℄, is a variation

of the
lassi
al Ri
hardson's method for solving Ax = b, whi
h uses the

following iterative s
heme:

xk+1 = xk + λkrk, (16)

where the step length λk is
hosen as follows:

λk =
rTkArk

(Ark)TArk
. (17)

For more details on the ORM s
heme see [5℄.

The residual RA method solves Ax = b by solving the minimization

problem:

Find x∗ = arg min
x∈Rn

‖r(x)‖2. (18)

This s
heme generates the iterates using plus or minus the residual ve
tor at

xk as sear
h dire
tion, as follows:

xk+1 = xk + sgn(βk)
1

βk−1
rk, (19)

where, sgn(z) represents the sign of the real variable z, and

βk =
rTkArk
rTk rk

.

A
onvex optimization approa
h for solving large s
ale linear systems 60

In the RA s
heme, a globalization strategy is in
orporated to guarantee
on-

vergen
e from any initial guess and any positive initial step length. For more

details on the RA s
heme see [16℄.

In all our experiments, the
al
ulations were done on a i7 4710MQ at

2.50GHz with Matlab R2013b. For BICGSTAB and GMRES (with the stan-

dard restart parameters 20 and 40) we used the available
ommands in Mat-

lab. For RA and ORM we used the algorithms presented in [16℄ and [15℄,

respe
tively. For the CG method we used a Matlab implementation based

on the algorithm des
ribed in [6, p. 289℄. The Ka
zmarz method was im-

plemented a

ording to Algorithm 1 (below), as des
ribed in [14, pp. 41℄,

with the relaxation parameter ω = 1, and following the natural ordering for

the proje
tions. In Algorithm 1, Ai represents the i-th row of A, and the

stopping
riterion is evaluated after every sweep of m proje
tions.

Algorithm 1: Ka
zmarz S
heme

Require A ∈ R
m×n

, b ∈ R
m
, x0 ∈ R

n
;

Ensure x0, cycles;
for k = 1, 2, · · · , until
onvergen
e do

for i = 1, 2, · · · , m do

x0 = x0 +
bi − AT

i x0
AT

i Ai

Ai;

end for

end for

cycles = k;

In all the forth
oming tables, we report the results using the following

notation: the number of iterations (iter), the required
pu time until
on-

vergen
e (tcpu) in se
onds, the number of �ops (flops) whi
h represents the

required
omputational work, and the relative norm of the residual

(
‖r‖
‖b‖

)
.

For OPAPLS, fcnt represents the number of evaluations of the obje
tive

fun
tion and gcnt the number of evaluations of the gradient of the obje
tive
fun
tion. For GMRES, we report the number of iterations and not the num-

ber of
y
les. Let us re
all that a
y
le is made of the iterations in between

two restarts.

The number of �ops for ea
h method, on
e k iterations or k
y
les for

Ka
zmarz method have been performed, is obtained as follow: For OPAPLS

(gcnt + fcnt) · n · m + 2 · n · k �ops are used to obtain the solution. The

61 Cores, Figueroa

Ka
zmarz method uses m inner produ
ts of length n to obtain the square of

the norm of ea
h row ve
tor. Furthermore, it uses one inner produ
t of length

n for ea
h row Ai. Therefore, in a
y
le it uses n ·m �ops. So, n ·m ·k+m ·n
�ops are required by Ka
zmarz method. GMRES(l) requires per iteration
one matrix-ve
tor multipli
ation and 2(k mod l) inner produ
ts of length
n, that is, n2 · k + 2(k mod l) · n �ops. BICGSTAB requires two matrix-

ve
tor multipli
ation and four inner produ
ts of length n, that is, (2n2 + 4 ·
n) · k �ops. The ORM and RA methods require per iteration one matrix-

ve
tor multipli
ation and two inner produ
ts of length n, whi
h implies the

exe
ution of (n2 + 2 · n) · k �ops. For the
ase of the
onjugate gradient

method, one matrix-ve
tor, two inner produ
ts, and two ve
tor summations

per iteration are required. Then, the CG method requires (n2+4 ·n) ·k �ops.
In all methods and examples presented in this work, the initial guess is

the null ve
tor. The stopping
riterion for solving un
onstrained problems is

‖r‖

‖b‖
< 10−10.

For OPAPLS other simple stopping
riteria are available, among them,

|f(xk) − 2m| < ε and ‖∇f(xk)‖ < ε, for un
onstrained problems and

‖PΩ (xk − λk∇f(xk))−xk‖ < ε for solving problem (9). We set 20.000 as the
maximum number of
y
les for Ka
zmarz method, or iterations for all the

other methods. The symbol ∗∗ in our tables indi
ates that the
orrespond-

ing method does not
onverge, with the desired toleran
e before rea
hing the

maximum number of iterations.

In our �rst experiment, we
onsider orthogonal matri
es of dimension

10000 × 10000, from the Matlab gallery, whi
h are shown in Table 1. The

right hand side ve
tor is given as b = (1, 1, · · · , 1)T . The number of iterations
required by ea
h method are shown in Table 2.

Tab. 1: Des
ription of orthogonal test matri
es, from the Matlab gallery.

Matrix Des
ription Matlab Commands

Q1 ai,j =
√

2/(m + 1) sin(ijπ/(m + 1)), A=gallery('orthog',m,1)

Q2 ai,j = 2/
√

2m + 1 sin(2ijπ/(2m + 1)) A=gallery('orthog',m,2)

Q3 A permutation of a lower Hessenberg matrix, whose a1,j = 1√
m

A=gallery('orthog',m,4)

Q4 Householder matrix,

∑m
i=1 ai,j = 0, 2 ≤ j ≤ m and

∑m
i=1 ai,1 =

√
m A=gallery('orthog',m,7)

We
an observe, in Table 2, that for all methods few iterations are required

for
onvergen
e. Indeed, these matri
es are well
onditioned. In parti
u-

lar, noti
e that our proposal, OPAPLS, is
ompetitive with well-established

A
onvex optimization approa
h for solving large s
ale linear systems 62

Tab. 2: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA

and OPAPLS for solving linear systems with the orthogonal matri
es

des
ribed in Table 1, without pre
onditioning.

GMRES(20) GMRES(40) BICGSTAB RA OPAPLS

Matrix Iter Iter Iter Iter Iter

Q1 2 2 2 14 6

Q2 2 2 2 14 6

Q3 19 19 18 ** 6

Q4 2 2 3 5 6

methods for solving orthogonal linear systems. For the third matrix, Q3, we
observe an in
rease in the number of iterations when using GMRES(20) and

GMRES(40). For this example the symmetri
 part of the
oe�
ient matrix

is inde�nite, and as a
onsequen
e RA does not
onverge; see [16℄.

For all the linear problems, presented in the remainder of this work, a

s
aling fa
tor is applied. The matrix A and the ve
tor b are multiplied by

1
δ
,

where δ = max (maxi,j |ai,j|,maxi |bi|).
For example, for linear systems, we solve (6) instead of Ax = b. Sin
e

the initial guess x0 = 0, then the initial residual is the ve
tor b, and as a

onsequen
e the s
aling fa
tor guarantees that |ri(x0)| ≤ 1 for all i. More-

over, using the global
onvergen
e of the SPG method and Proposition

3, it follows that the elements of the residual ve
tor, during the
onver-

gen
e pro
ess, will be bounded above in absolute value by a small posi-

tive number. This fa
t
ould be veri�ed numeri
ally with the parameter

rmax = max1≤k≤iter‖r(xk)‖∞. Consequently, the des
ribed s
aling fa
tor

δ > 0 avoids the appearan
e of big numbers that
ould
ause loss of a

ura
y

when the fun
tion f(x) in (2) is evaluated during the iterations. Finally, in

order to make a fair
omparison between all strategies, we apply the same

s
aling fa
tor to all the
onsidered methods.

For our se
ond experiment we
ompare the performan
e of OPAPLS with

all the other methods to solve linear systems in whi
h the
oe�
ient matrix

has a de�nite symmetri
 part. We
onsider ten matri
es, taken from the

Matlab gallery, des
ribed in Table 3. The right hand side ve
tor is given by

b = (1, 1, · · · , 1)T . The obtained results are shown in Table 4.

Table 4 shows that the proposed strategy OPAPLS is
ompetitive with

the other strategies for several matri
es. However, OPAPLS does not
on-

verge for the matri
es identi�ed as, PSD3, PSD4, PSD8 and PSD10. No-
ti
e that the
oe�
ient matri
es in all these
ases are ill-
onditioned. Note

63 Cores, Figueroa

Tab. 3: Des
ription of the matri
es with de�nite symmetri
 part, from the

Matlab gallery.

Matrix Des
ription Matlab Commands

PSD1 Sparse adja
en
y matrix from NASA airfoil Matlab demo: airfoil

PSD2 Singular toeplitz lower Hessenberg PSD2 = gallery(′chow′, m, 1, 1)

PSD3 Cir
ulant matrix

PSD3 = gallery(′circul′, v)

vi =















10−6 , if i = 1
1, if i = m

2
−1, if i = m
0, otherwise

PSD4 Diagonally dominant, ill
onditioned, tridiagonal matrix PSD4 = gallery(′dorr′,m, 1)
PSD5 Perturbed Jordan blo
k PSD5 = gallery(′forsythe′, m,−1, 2)
PSD6 Matrix whose eigenvalues lie on the verti
al line PSD6 = gallery(′hanowa′,m,m)
PSD7 Jordan blo
k PSD7 = gallery(′jordbloc′, m, 2)
PSD8 Tridiagonal matrix with real sensitive eigenvalues PSD8 = −gallery(′lesp′, m)

PSD9 Pentadiagonal Toeplitz matrix

PSD9 = gallery(′toeppen′, m, 1,
10, m,−10,−1)

PSD10 Upper triangular matrix dis
ussed by Wilkinson and others PSD10 = gallery(′triw′,m,−0.5, 2)

Tab. 4: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matri
es with de�nite symmetri
 part, des
ribed

in Table 3, without pre
onditioning.

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix m Iter Iter Iter Iter Iter Iter rmax

PSD1 4253 61 60 ** 64 75 240 5.9110394

PSD2 1000 389 229 216 532 1044 9289 3.1843281

PSD3 5000 ** ** 1 2 ** ** 9.2318003

PSD4 500 ** 2047 283 3540 ** ** 1.0000000

PSD5 5000 28 28 ** 29 28 38 1.0000000

PSD6 5000 17 17 11 38 27 13 0.8331333

PSD7 5000 27 27 ** 28 27 33 1.0000000

PSD8 5000 4090 2560 ** 11112 ** ** 6.7975901

PSD9 5000 4 4 2 5 4 5 9.9760922

PSD10 5000 3020 3067 ** 3408 3151 ** 9.6055586

also that, for these same examples, some other methods do not
onverge as

well. Therefore, in order to improve the
ondition number of the
oe�
ient

matri
es a pre
onditioning strategy is applied.

In tables 5 and 6 we report the results for the matri
es of Table 3, when

the following two pre
onditioning strategies are used:

(a) In
omplete LU fa
torization with drop toleran
e (ILU): the pre
ondi-

tioning matrix is obtained, in Matlab, with the
ommand [L,U℄=ilu(A,0.3).

(b) The SSOR pre
onditioning strategy: the pre
onditioning matrix is

given by (D − ωE)D−1(D − ωF), where −E is the stri
t lower tri-

angular part of A, −F is the stri
t upper triangular part of A, D is the

diagonal part of A and we
onsider ω = 1.

We observe from tables 5 and 6 that the ILU pre
onditioning is more

e�e
tive than the SSOR pre
onditioning strategy for the proposed method-

ology. Noti
e that, in general, all the methods rea
hed
onvergen
e when ILU

A
onvex optimization approa
h for solving large s
ale linear systems 64

Tab. 5: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matri
es with de�nite symmetri
 part, des
ribed

in Table 3, with pre
onditioning (a).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter rmax

PSD1 53 53 29 57 56 5 1.00000000

PSD2 396 229 523 216 1038 5 0.61803399

PSD3 3 3 2 5 6 14 0.20000000

PSD4 1 1 1 2 1 5 0.86963715

PSD5 2 2 2 4 3 10 0.75000000

PSD6 13 13 8 23 18 6 0.99975858

PSD7 1 1 1 2 1 5 0.50000000

PSD8 7 7 4 13 11 5 0.70186762

PSD9 4 4 2 5 4 5 0.99979956

PSD10 1 1 1 2 2 6 1.00000000

Tab. 6: Required iterations for GMRES(20), GMRES(40), BICGSTAB, RA,

ORM and OPAPLS matri
es with de�nite symmetri
 part, des
ribed

in Table 3, with pre
onditioning (b).

GMRES(20) GMRES(40) BICGSTAB RA ORM OPAPLS

Matrix Iter Iter Iter Iter Iter Iter rmax

PSD1 1 1 1 2 1 5 1.00000000

PSD2 13 13 7 16 14 18 0.63952238

PSD3 ** ** ** ** ** ** 1.00000000

PSD4 4773 2452 180 1939 1850 ** 6.75233780

PSD5 2 2 2 4 3 10 0.75000000

PSD6 8 8 5 12 10 18 0.86230000

PSD7 1 1 1 2 1 5 0.50000000

PSD8 5 5 3 7 6 8 0.69433608

PSD9 2 2 1 3 2 5 0.99979553

PSD10 1 1 1 2 1 6 1.00000000

pre
onditioning strategy is used. However, others pre
onditioning strategies

ould be used and adapted to this new s
heme to improve the performan
e

of the method.

In our third experiment we work with systems for whi
h the
oe�
ient

matrix has an inde�nite symmetri
 part. These systems are presented in two

groups for whi
h the
oe�
ient matri
es are generated in two di�erent ways.

In all
ases, the solution for ea
h system is the ve
tor (1, 1, 1, ..., 1)T .

The �rst group, des
ribed in Table 7, was generated using the Matlab

65 Cores, Figueroa

gallery. In the se
ond group all the matri
es are tridiagonalm×m, with the

stru
ture shown in (20).




a11 −1
1 a22 −1

.

.

.

.

.

.

.

.

.

1 am−1m−1 −1
1 amm




(20)

where aii = a +
(

i−1
m−1

)
(amax − a), ∀ i = 1, 2, ..., m, and a and amax are

onstants su
h that the symmetri
 part of the matrix is inde�nite. These

values and the values
onsidered for m are shown in Table 8.

Tab. 7: Des
ription of test matri
es with an inde�nite symmetri
 part, from

the Matlab gallery.

Matrix Des
ription Matlab Commands

PSI1 Tridiagonal and nonsymmetri
 A = gallery(′clement′ ,m, 0)
PSI2 ai,j = 0 or ai,j = 1, 1 ≤ i, j ≤ m A = gallery(′dramadah′,m)

PSI3 ai,i = 1, ai,i−1 = −1, ai,i+s = 1, s = 1, ..., k, i = 1, ..., m A = gallery(′grcar′, m)
PSI4 a1j = 1, ai,i−1 = 1, 1 ≤ i ≤ m A = gallery(′leslie′,m)

PSI5 Random, orthogonal, and upper Hessenberg A = gallery(′randhess′, m)

PSI6 ai,i−2 = 1, ai,i−1 = 10, ai,i = 4, ai,i+1 = 3, ai,i+2 = 1, 1 ≤ i, j ≤ n
A = gallery(′toeppen′, m,

1, 10, 4, 3, 1)

PSI7 Analogue to PSI6

A = gallery(′toeppen′, 5000,
−2, 10, 0, 4, 3)

PSI8 ai,i−1 = −5, ai,i = 1.8, ai,i+1 = 2, 1 ≤ i, j ≤ n A = gallery(′tridiag′,m,−5, 1.8, 2)

PSI9 Analogue to PSI6

A = gallery(′toeppen′, m,
10, 3,−10,−1, 1)

PSI10 Analogue to PSI1 A = gallery(′clement′ ,m, 0)

For the set of systems des
ribed in Table 7 we only report the results

obtained using Ka
zmarz method and OPAPLS. None of the other meth-

ods
onverge for this matri
es, ex
ept the strategies GMRES(20) and GM-

RES(40) for the matrix PSI3. The
onvergen
e of the OPAPLS strategy

is attained for all matri
es and the results are shown in Table 9. Ka
zmarz

method fails for the matrix PSI5 and, in general, it uses more
pu time than

OPAPLS.

The numeri
al results obtained using OPAPLS and Ka
zmarz method for

the matri
es des
ribed in Table 8 are shown in Table 10. For these examples

none of the methods GMRES(20), GMRES(40), BICGSTAB, RA and ORM

onverge with the desired toleran
e in the number of iterations allowed. In

all these examples the symmetri
 part of the matrix asso
iated with ea
h

system is inde�nite. So, we only report the results of Ka
zmarz method and

OPAPLS.

A
onvex optimization approa
h for solving large s
ale linear systems 66

Tab. 8: Dimension and parameters a and amax for tridiagonal matri
es with

an inde�nite symmetri
 part.

Matrix m a amax

PSID1 5000 -3 10

PSID2 5000 -20 200

PSID3 5000 -20 980

PSID4 10000 -3 4

PSID5 10000 -3 100

PSID6 10000 -3 997

PSID7 5001 -3 3

PSID8 5001 -10 10

PSID9 5001 -100 100

PSID10 5001 -500 500

PSID11 10001 -3 3

PSID12 10001 -10 10

PSID13 10001 -100 100

PSID14 10001 -500 500

Tab. 9: Number of iterations,
pu time, and �ops required by Ka
zmarz and

OPAPLS to solve linear systems from the Matlab gallery with an

inde�nite symmetri
 part, des
ribed in Table 7, without pre
ondi-

tioning.

Ka
zmarz OPAPLS

Matrix m cycles tcpu flops(109) Iter tcpu flops(109) rmax

PSI1 5000 20 1.184 0.525000000 4 0.0124 0.25004000 1.0000000

PSI2 1000 10839 127.679 10.84000000 2740 90.505 5.48748000 1.0000000

PSI3 5000 58 3.441 1.475000000 40 0.165 2.05040000 1.0000000

PSI4 5000 1 0.064 0.0468 5043 13.339 364.200430 9.3932957

PSI5 5000 ** ** ** 4 3.778 0.25004000 1.0000000

PSI6 5000 34 2.335 0.87500000 27 0.101 1.40027000 1.0000000

PSI7 5000 51 3.569 1.30000000 37 0.129 1.90037000 1.0000000

PSI8 5000 258 17.648 6.47500000 98 0.290 5.07598000 8.6559621

PSI9 6000 1375 128.278 49.5360000 285 1.358 20.9914200 7.5095462

PSI10 5001 20 1.171 0.52521002 4 0.006 0.25014002 1.0000000

A

ording to the results in Table 10, the number of iterations, as well as

the
pu time used for OPAPLS, in
reases as the length of the interval [a, amax]
grows; and the
ondition number of the matrix depends on this length. For

Ka
zmarz method the opposite o

urs: the
omputational work and the
pu

time de
rease when the values of |a|, |amax|, and the length of the interval

[a, amax] in
rease. We observe that the angle between two
onse
utive hyper-

planes depends on these values. Let πi and πj be
onse
utive hyper-planes

whose normal ve
tors are Ai and Aj, respe
tively, where Ai and Aj are the

i-th and j-th rows of A. Then, if L = amax − a, and θi,j denotes the angle

between πi and πj , by de�nition of the angle between hyper-planes, we have

67 Cores, Figueroa

Tab. 10: Number of iterations,
pu time, and �ops required by Ka
zmarz

and OPAPLS to solve tridiagonal linear systems with an inde�nite

symmetri
 part, des
ribed in Table 8, without pre
onditioning.

Ka
zmarz OPAPLS

Matrix m cycles tcpu flops(1010) Iter tcpu flops(1010) rmax

PSID1 5000 1654 105.614 4.13750000 1975 4.971 9.8919750 8.3491821

PSID2 5000 89 5.603 0.22500000 4305 10.453 21.574305 7.5422094

PSID3 5000 22 1.386 0.05750000 11634 27.521 58.216634 8.3739901

PSID4 10000 6209 1427.399 62.1000000 1053 5.456 21.102106 9.1480524

PSID5 10000 363 84.360 3.64000000 6063 28.604 121.47213 7.6934738

PSID6 10000 38 8.739 0.39000000 15737 72.468 314.92147 8.2741977

PSID7 5001 3763 241.754 9.413764400 973 2.586 4.8754224 7.3971303

PSID8 5001 1076 68.915 2.693577100 1202 3.087 6.0261115 5.8441152

PSID9 5001 102 6.477 0.257603010 4843 11.829 24.237034 6.4805663

PSID10 5001 23 1.491 0.060024002 5193 12.604 26.003090 8.1546386

PSID11 10001 7304 1698.359 73.0646110 1391 6.945 27.858353 6.3738294

PSID12 10001 2082 474.943 20.8341660 2821 13.965 56.486937 7.3010586

PSID13 10001 191 43.539 1.92038400 4381 20.896 87.736306 5.3416070

PSID14 10001 39 8.952 0.40008000 9060 42.599 181.35438 8.6500760

that:

|cos(θi,j)| =
|AT

i Aj|

‖Ai‖2‖Aj‖2
=

|aii − ajj|√
2 + a2ii

√
2 + a2jj

=
L

(m− 1)
√
2 + a2ii

√
2 + a2jj

.

So, |cos(θij)| de
reases dire
tly proportionally to L and inversely proportion-

ally to m, |aii| and |ajj|, for 1 ≤ i, j ≤ m, a ≤ aii, ajj ≤ amax. We note that

for a �xed m, when the values of |a|, |amax| and L de
rease, the
osine of most

angles between hyper-planes in
reases, that is, the angle θij de
reases imply-

ing that the Ka
zmarz method requires many more
y
les for
onvergen
e,

whi
h in
reases the number of �ops and the
pu time.

For some matri
es in Table 10, we observe that, the Ka
zmarz method

uses fewer number of �ops than OPAPLS. However, it requires more
pu

time. The Ka
zmarz method requires the
omputation of an inner produ
t

between a row of A and a ve
tor to obtain a new ve
tor for the next row, and

so on, until it rea
hes the last row. This sequential
al
ulations in
reases the

required
pu time to obtain the solution.

In our fourth experiment, we
onsider the solution of
onsistent dense

linear systems for whi
h the
oe�
ient matrixA was obtained in the following

way: Take C as a 100 × 100 dense matrix from the Matlab gallery and

onsider the matrix A su
h that, for 1 ≤ i, j ≤ 100, aij = cij if i < j; for
i > j, aij = −cji; and aii = a +

(
i−1
m−1

)
(amax − a), where a and amax are

given
onstants su
h that the symmetri
 part of A is inde�nite. The Matlab

ommands used to generate the matrix C, and the values assigned to a and

amax are shown in Table 11.

A
onvex optimization approa
h for solving large s
ale linear systems 68

Tab. 11: Des
ription of the Matlab
ommands, and the parameters a and

amax, for dense matri
es with an inde�nite symmetri
 part.

Matrix Matlab Commands for matrix C a amax

DENSEPSI1 C = gallery(′lehmer′, 100) -1 6

DENSEPSI2 C = gallery(′toeppd′, 100) -1 6

DENSEPSI3 C = gallery(′pei′, 100) -1 6

DENSEPSI4 C = gallery(′randhess′, 100) -1 6

DENSEPSI5 C = gallery(′parter′, 100) -1 6

DENSEPSI6 C = gallery(′lehmer′, 100) -2 6

DENSEPSI7 C = gallery(′toeppd′, 100) -2 6

DENSEPSI8 C = gallery(′pei′, 100) -2 6

DENSEPSI9 C = gallery(′randhess′, 100) -2 6

DENSEPSI10 C = gallery(′parter′, 100) -2 6

DENSEPSI11 C = gallery(′lehmer′, 100) -2 10

DENSEPSI12 C = gallery(′toeppd′, 100) -2 10

DENSEPSI13 B = gallery(′pei′, 100) -2 10

DENSEPSI14 C = gallery(′randhess′, 100) -2 10

DENSEPSI15 C = gallery(′parter′, 100) -2 10

For these examples, we report, in tables 12 and 13, the number of it-

erations required by OPAPLS and all the other methods to rea
h
onver-

gen
e. Table 12 shows the results obtained when the solution ve
tor x is

(1, 1, · · · , 1)T ; and Table 13 shows the results obtained when b = (1, 1, · · · , 1)T .

Tab. 12: Number of iterations required by GMRES(20), GMRES(40),

BICGSTAB, Ka
zmarz and OPAPLS for solving dense linear sys-

tems for whi
h the
oe�
ient matrix has an inde�nite symmetri

part, des
ribed in Table 11, with the solution ve
tor is (1, 1, · · · , 1)T ,
without pre
onditioning.

GMRES(20) GMRES(40) BICGSTAB Ka
zmarz OPAPLS

Matrix iter iter iter cycles iter rmax

DENSEPSI1 ** ** 216 131 495 1.0000000

DENSEPSI2 717 581 ** 2484 649 1.9270749

DENSEPSI3 159 23 61 738 749 1.0000000

DENSEPSI4 ** 1267 ** 191 1680 3.2593333

DENSEPSI5 ** ** ** ** 7566 1.0000000

DENSEPSI6 ** 32 124 133 181 1.0000000

DENSEPSI7 97 811 ** 6169 1218 1.1647514

DENSEPSI8 ** 22 64 734 266 1.0000000

DENSEPSI9 ** ** ** 823 2489 3.3312492

DENSEPSI10 ** ** ** 120 112 1.0000000

DENSEPSI11 ** 34 133 87 205 1.0000000

DENSEPSI12 440 17 36 1294 447 5.1925796

DENSEPSI13 16 16 36 495 303 1.0000000

DENSEPSI14 ** ** 335 1379 4154 3.0944160

DENSEPSI15 ** ** ** ** ** 1.0000000

The results from tables 12 and 13 indi
ate
learly that the Ka
zmarz

69 Cores, Figueroa

Tab. 13: Number of iterations required by GMRES(20), GMRES(40),

BICGSTAB, Ka
zmarz and OPAPLS for solving dense linear sys-

tems for whi
h the
oe�
ient matrix has an inde�nite symmetri

part, des
ribed in Table 11, with b = (1, 1, · · · , 1)T , without pre-

onditioning.

GMRES(20) GMRES(40) BICGSTAB Ka
zmarz OPAPLS

Matrix iter iter iter cycles iter rmax

DENSEPSI1 ** 41 ** 143 611 3.3281386

DENSEPSI2 773 316 ** 2700 830 4.2149836

DENSEPSI3 179 24 146 866 829 3.9461871

DENSEPSI4 ** 16188 ** 147 2333 8.5489338

DENSEPSI5 ** ** ** ** ** 8.9455954

DENSEPSI6 ** ** ** 141 195 3.3564561

DENSEPSI7 1072 873 ** 6949 806 4.0339567

DENSEPSI8 ** 23 164 846 273 3.9644313

DENSEPSI9 ** ** ** 1043 3956 8.3114409

DENSEPSI10 ** ** ** ** ** 9.0260881

DENSEPSI11 ** ** ** 93 246 1.9881283

DENSEPSI12 464 23 ** 1339 453 8.4347586

DENSEPSI13 17 17 89 570 360 4.7793751

DENSEPSI14 ** ** 301 1846 4991 8.5786460

DENSEPSI15 ** ** ** ** ** 8.9939191

method and the proposed OPAPLS s
heme are more e�e
tive for solving

these small systems for whi
h the dense
oe�
ient matrix has an inde�nite

symmetri
 part. Moreover, the results obtained in Tables 9, 10, 12 and 13

seem to indi
ate that the proposed method, OPAPLS, is the best option for

solving linear systems when the
oe�
ient matrix has an inde�nite symmetri

part.

In our �fth experiment we
onsider the solution of
onsistent re
tangular

linear systems, whose matri
es (A ∈ R
m×n

) are des
ribed in Table 14. The

solution for ea
h system is the ve
tor (1, 1, 1, ..., 1)T . The �rst seven ma-

tri
es were taken from the
olle
tion available in the portal matrix market

(www.matrixmarket.
om). The matri
es labeled as R8 and R9 were ob-

tained following a model presented in [6℄, whi
h
ombines some matri
es in

the following way: R8 =

(
R1

R̂4

)

1252×320

and R9 =

(
R1

R̂6

)

1641×320

, with

R̂4 =
(
0219×235 R4

)
and R̂6 =

(
0608×132 R6

)
.

The last two matri
es in Table 14 were generated in Matlab. Matrix R10
was obtained with the Matlab
ommand gallery('lau
hli', m, µ), whi
h is an

(m + 1) ×m matrix su
h that the �rst row has all the
omponent equal to

one and the followingm rows
oin
ide with µIm×m, where µ is a given s
alar.

Matrix R11 was generated with the Matlab
ommand gallery('sprand',m,n,d)

and it has, approximately, m× n× d random nonzero entries, where d is the
nonzero density of the matrix.

A
onvex optimization approa
h for solving large s
ale linear systems 70

Tab. 14: Des
ription of re
tangular matri
es in R
m×n

, m > n.
Matrix Des
ription m n

R1 WELL1033 1033 320
R2 WELL1850 1850 712
R3 ABB313 313 176
R4 ASH219 219 85
R5 ASH331 331 104
R6 ASH608 608 188
R7 ASH958 958 292
R8 ARTF1252 1252 320
R9 ARTF1641 1641 320
R10 gallery(′lauchli′, 5000, 10−4) 5001 5000
R11 sprand(m,n, 0.002) 4000 3000

The Ka
zmarz method and the OPAPLS strategy are the only methods

that
an be dire
tly applied to re
tangular systems. The methods CG and

RA are applied to the
orresponding normal equations ATAx = AT b. In

parti
ular, instead of the standard CG method, we use the spe
ialized ver-

sion CGNE, also known as Craig's method, fully des
ribed in [4, Ch. 8℄.

For CGNE and RA an additional matrix-ve
tor produ
t with AT
must be

omputed at ea
h iteration, and so mn �ops must be added to their required

number of �ops.

We report, in Table 15, the number of iterations and
pu time required

to rea
h
onvergen
e in ea
h
ase.

From Table 15, we
an observe that, in general, CGNE requires less
pu

time that the others methods. Among the others methods our methodology

rea
h
onvergen
e for all the problems with a
ompetitive
pu time. However,

all strategies attained
onvergen
e, ex
ept Ka
zmarz for matrix R1. Noti
e

that Ka
zmarz and OPAPLS
an be applied dire
tly to the re
tangular sys-

tem. Contrary, RA and CGNE involve the normal equations system in their

formulations, even thought the matrix ATA is not generated.

For our last experiment we use the s
heme proposed in (9) to solve linear

systems of equations, square or re
tangular, subje
t to box
onstraints on

the variables. The solution of ea
h system is the ve
tor (1, 1, · · · , 1)T . The

ompetitors GMRES, BICGSTAB, Ka
zmarz, RA, ORM and CG
annot be

applied to
onstraint problems. Hen
e, for this experiment, we only report

the results using OPAPLS. We
onsider the set of squared matri
es des
ribed

in Table 7 with di�erent
onstraints: 0 ≤ xi ≤ 2, for 1 ≤ i ≤ n, −5 ≤ xi ≤ 5
for 1 ≤ i ≤ n and −100 ≤ xi ≤ 100 for 1 ≤ i ≤ n. The obtained results

71 Cores, Figueroa

Tab. 15: Number of iterations and
pu time required by RA, CGNE, Ka
z-

marz and OPAPLS for solving re
tangular systems, whose
oe�-

ient matri
es were des
ribed in Table 14, without pre
onditioning.

RA CGNE Kaczmarz OPAPLS

Matrix iter tcpu iter tcpu cycles tcpu iter tcpu rmax

R1 1380 12.887 185 0.095 ** ** 3380 2.934 2.0202712

R2 1113 94.350 491 0.843 16931 111.562 2059 3.180 2.1468575

R3 146 0.252 81 0.000 122 0.093 129 0.053 1.0000000

R4 54 0.034 42 0.000 29 0.015 58 0.012 1.0000000

R5 42 0.024 34 0.000 19 0.014 43 0.011 1.0000000

R6 56 0.176 49 0.000 19 0.028 60 0.021 1.0000000

R7 61 0.513 511 0.015 22 0.060 66 0.032 1.0000000

R8 431 5.402 122 0.046 484 1.595 667 0.639 4.2227713

R9 64 0.992 47 0.043 27 0.185 54 0.062 1.0000000

R10 2 17.788 1 0.028 1 0.054 1 0.004 1.0000000

R11 910 5.021 511 0.043 1 0.045 1094 4.332 1.0000000

are shown in Table 16. Table 17 shows the values for rmax obtained in the

experiment of Table 17.

Tab. 16: Number of iterations and
pu time required by OPAPLS to solve

linear systems whose matrix has an inde�nite symmetri
 part, de-

s
ribed in Table 7, subje
t to box
onstraints, without pre
ondi-

tioning.

Un
onstrained 0 ≤ xi ≤ 2 −5 ≤ xi ≤ 5 −100 ≤ xi ≤ 100
Matrix Iter tcpu Iter tcpu Iter tcpu Iter tcpu

PSI1 4 0.02 6 0.015 5 0.015 5 0.015

PSI2 2740 112.81 2413 81.572 2413 82.134 2413 81.588

PSI3 37 0.20 50 0.202 50 0.218 50 0.202

PSI4 5043 17.43 4 0.000 4 0.015 4 0.015

PSI5 4 4.59 6 4.945 6 5.085 6 5.038

PSI6 27 0.14 37 0.156 33 0.124 33 0.124

PSI7 37 0.16 47 0.171 47 0.171 47 0.171

PSI8 97 0.37 83 0.296 112 0.327 107 0.312

PSI9 308 1.81 294 1.591 306 1.482 291 1.606

PSI10 4 0.02 6 0.015 5 0.031 5 0.015

We solve some additional squared systems with box
onstraints using

OPAPLS. The additional systems are the ones previously des
ribed in Table

8, and for these problems we use the same box
onstraints, des
ribed in

Table 16. The right hand side ve
tor for ea
h system is set in su
h a way the

A
onvex optimization approa
h for solving large s
ale linear systems 72

Tab. 17: Maximum value taken by the elements of the residual ve
tor using

OPAPLS in the experiment shows in Table 16.

0 ≤ xi ≤ 2,1 ≤ i ≤ n −5 ≤ xi ≤ 5,1 ≤ i ≤ n −100 ≤ xi ≤ 100,1 ≤ i ≤ n

Matrix rmax rmax rmax

PSI1 1.00000000 1.00000000 1.00000000

PSI2 1.00000000 1.00000000 1.00000000

PSI3 1.00000000 1.00000000 1.00000000

PSI4 1.00000000 1.0000000 1.00000000

PSI5 1.00000000 1.00000000 1.00000000

PSI6 1.00000000 1.00000000 1.0000000

PSI7 1.00000000 1.00000000 1.00000000

PSI8 1.76000000 8.75703240 8.65596210

PSI9 2.50000000 6.10399220 7.50954620

PSI10 1.00000000 1.00000000 1.00000000

solution ve
tor is (1, 1, 1, ..., 1)T . The required number of iterations and
pu

time are shown in Table 18. Table 19 shows the values for rmax obtained in

the experiment of Table 19.

Tab. 18: Number of iterations and
pu time required by OPAPLS to solve

linear systems whose matrix has an inde�nite symmetri
 part, de-

s
ribed in Table 8, subje
t to box
onstraints, without pre
ondi-

tioning.

Un
onstrained 0 ≤ xi ≤ 2 −5 ≤ xi ≤ 5 −100 ≤ xi ≤ 100
Matrix Iter tcpu Iter tcpu Iter tcpu Iter tcpu

PSID1 1975 5.08 1879 5.085 2079 5.725 1819 4.992

PSID2 4305 11.06 5103 13.026 4620 12.183 4196 10.935

PSID3 11634 28.54 8390 21.325 9565 24.102 10795 27.222

PSID4 1053 5.50 1287 7.129 1558 8.408 1033 5.678

PSID5 6063 29.25 8229 40.887 7367 36.660 6939 34.679

PSID6 15737 73.78 16326 78.952 10359 50.544 16033 78.234

PSID7 973 2.66 902 2.745 654 1.903 981 3.026

PSID8 1202 3.27 1205 3.354 977 2.839 1201 3.572

PSID9 4843 11.93 4295 11.138 2410 6.614 4554 11.824

PSID10 5193 12.83 9321 23.727 6328 16.052 5195 13.416

PSID11 1391 7.05 1415 7.441 1012 5.569 1384 7.987

PSID12 2821 14.05 1875 9.921 1956 10046 2709 14.211

PSID13 4381 20.88 3948 19.905 4366 21.668 4341 21.652

PSID14 9060 42.35 8513 41.901 8161 40.045 7976 39.374

The results of tables 16 and 18 indi
ate that our methodology permits to

73 Cores, Figueroa

Tab. 19: Maximum value taken by the elements of the residual ve
tor using

OPAPLS in the experiment shows in Table 18.

0 ≤ xi ≤ 2,1 ≤ i ≤ n −5 ≤ xi ≤ 5,1 ≤ i ≤ n −100 ≤ xi ≤ 100,1 ≤ i ≤ n

Matrix rmax rmax rmax

PSID1 1.0906727 6.3565440 8.3491821

PSID2 1.0000000 6.0120183 7.5422094

PSID3 1.0008155 5.9938245 8.3739901

PSID4 1.1997200 6.7983198 9.1480524

PSID5 1.0093910 5.9728412 7.6934738

PSID6 1.0000652 5.9943319 8.2741977

PSID7 1.2494000 5.7753408 7.3971303

PSID8 1.0653689 6.3549091 5.8441152

PSID9 1.0000000 5.9530400 6.4805663

PSID10 1.0000000 5.9830990 8.1546386

PSID11 1.2498500 6.2392268 6.3738294

PSID12 1.0903636 6.3560000 7.3010586

PSID13 1.0000000 5.9421503 5.3416070

PSID14 1.0002467 6.0055888 8.6500760

obtain parti
ular solutions within a small
pu time perturbation.

The ma
hinery OPAPLS also works for solving re
tangular systems sub-

je
t to box
onstraints. In order to observe its performan
e, we now solve

onsistent underdetermined systems subje
t to
onstraints. The set of un-

derdetermined systems to be
onsidered are des
ribed in Table 20. Table 21

shows, in the �rst
olumn the label for ea
h example, in the se
ond
olumn

the name of the matrix, and in the third
olumn the imposed
onstraints that

for
e a parti
ular solution. The obtained results using OPAPLS are shown

in the last two
olumns.

Tab. 20: Des
ription of some re
tangular matri
es in R
m×n

, m < n.
Matrix Matlab
ommand m n
R12 sprand(m,n, 0.1) 500 4000
R13 sprand(m,n, 0.1) 2000 5000

The underdetermined systems
onsidered for this experiment have an in-

�nite number of solutions. Parti
ulary, the proposed strategy found one of

them. There is not mu
h di�eren
e in
pu time when solving
onstrained

problems sin
e the proje
tion over the box
onstraint set is simple and re-

quires low
omputational
ost.

A
onvex optimization approa
h for solving large s
ale linear systems 74

Tab. 21: Number of iterations and
pu time required by OPAPLS to solve

underdetermined linear systems, whose matri
es were des
ribed in

Table 20, subje
t to
onstraints, without pre
onditioning.

Problem Matrix Constraint Iter tcpu rmax

CS1 R12 No
onstraint 47 1.263 1.0

CS2 R12 x1 = x2 = x3 = 1 51 1.294 1.0

CS3 R12 x1 = x2 = x3 = 1, 0 ≤ xi ≤ 2 for i > 3 51 1.326 1.0

CS4 R12 x1 = x2 = x3 = 1, −5 ≤ xi ≤ 5 for i > 3 51 1.326 1.0

CS5 R12 x1 = x2 = x3 = 1, −100 ≤ xi ≤ 100 for i > 3 51 1.404 1.0

CS6 R12 x1 = xn
2

= xn = 1 51 1.357 1.0

CS7 R12 x1 = xn
2

= xn = 1 and 0 ≤ xi ≤ 2, i /∈ {1, n
2
, n} 51 1.357 1.0

CS8 R12 x1 = xn
2

= xn = 1 and −5 ≤ xi ≤ 5, i /∈ {1, n
2
, n} 51 1.341 1.0

CS9 R12 x1 = xn
2

= xn = 1, and −100 ≤ xi ≤ 100 i /∈ {1, n
2
, n} 51 1.419 1.0

CS10 R13 No
onstraint 97 12.932 1.0

CS11 R13 x1 = x2 = x3 = 1 95 12.526 1.0

CS12 R13 x1 = x2 = x3 = 1, 0 ≤ xi ≤ 2 for i > 3 95 12.339 1.0

CS13 R13 x1 = x2 = x3 = 1, −5 ≤ xi ≤ 5 for i > 3 95 12.448 1.0

CS14 R13 x1 = x2 = x3 = 1 and −100 ≤ xi ≤ 100 for i > 3 95 12.792 1.0

CS15 R13 x1 = 1, xn
2

= 1, xn = 1 95 12.698 1.0

CS16 R13 x1 = xn
2

= xn = 1 and 0 ≤ xi ≤ 2 for i /∈ {1, n
2
, n} 103 13.291 1.0

CS17 R13 x1 = xn
2

= xn = 1 and −5 ≤ xi ≤ 5 for i /∈ {1, n
2
, n} 103 14.071 1.0

CS18 R13 x1 = xn
2

= xn = 1 and −100 ≤ xi ≤ 100 i /∈ {1, n
2
, n} 103 13.322 1.0

4 Con
lusions

We have presented an optimization strategy for solving di�erent kinds of
on-

sistent linear systems. The proposed method �nds the solution by sear
hing

a lo
al minimizer of a novel non-quadrati

onvex fun
tion. In the
ase of

solving linear systems, a relevant feature is that the new s
heme does not

require the
oe�
ient matrix to be square. In this work, we use the Spe
tral

Proje
ted Gradient (SPG) method to solve the optimization problems. The

SPG is a globally
onvergent method that has a low
omputational and low

storage
ost, and it only requires �rst order information. However, any other

globally
onvergent low-
ost optimization method
an be used.

Our numeri
al results indi
ate that the new ma
hinery is suitable for

solving large-s
ale and sparse, as well as small and dense, problems for whi
h

the
oe�
ient matrix has no spe
ial
hara
teristi
s. Moreover, it allows one

to add easily
onvex
onstraints to the optimization approa
h. Adding
on-

vex
onstraints is useful for several di�erent reasons. One of them is that it

imposes regularity to the optimization problem. Another advantage is that if

the linear problem has an in�nite number of solutions, a spe
i�
 type of so-

lution
an be found by
onveniently setting the
onvex
onstraints. Further-

more, the proposed strategy also allows to solve linear feasibility problems,

sin
e these problems
an be treated as a linear system of equation subje
t to

box
onstraints, for whi
h some sla
k variables are introdu
ed. On the other

75 Cores, Figueroa

hand, the
hoi
e of the s
aling parameter guarantees that the value of the

new non quadrati
 fun
tion is bounded above for all iterations. So, over�ow

or loss of a

ura
y
an be avoided.

Finally, the new optimization ma
hinery
an also bene�t from the use

of pre
onditioning strategies, whi
h plays a key role in the presen
e of very

ill-
onditioned problems. However, in the
ase of the matri
es with inde�-

nite symmetri
 part where generi
 pre
onditioning te
hniques are still under

development, the OPAPLS method seems to be a
ompetitive approa
h for

this kind of problems.

Referen
es

[1℄ D. Bertsekas. Nonlinear Programming. Athena S
ienti�
, Belmont, Mas-

sa
husetts, 2 edition, 1999. ISBN 978-1886529007.

[2℄ G. Golub and C. Van Loan. Matrix
omputations. Johns Hopkins Uni-

versity Press, 3 edition, 1996. ISBN 978-0801854149.

[3℄ M.R. Hestenes. Conjugate Dire
tion Methods in Optimization. Springer-

Verlag New York, 1 edition, 1980. ISBN 978-1-4612-6048-6.

[4℄ Y. Saad. Iterative methods for sparse linear systems. SIAM,

Philadelphia, 1 edition, 2003. ISBN 978-0-89871-534-7, doi:

10.1137/1.9780898718003.

[5℄ C. Brezinski. Proje
tion methods for systems of equations. North Hol-

land, Amsterdam, 1 edition, 1997. ISBN 978-0444827777.

[6℄ A. Björ
k. Numeri
al methods for least square problems. SIAM, Philadel-

phia, 1996. ISBN 978-0-89871-360-2.

[7℄ P.C Hansen, V. Pereya, and G. S
herer. Least Squares Data Fitting

with Appli
ations. Johns Hopkins University Press, Maryland, USA, 1

edition, 2013. ISBN 9781421407869.

[8℄ E.G. Birgin, J.M. Martínez, and M. Raydan. Algorithm 813: SPG - soft-

ware for
onvex-
onstrained optimization. ACM Transa
tions on Math-

emati
al Software, 27(3):340�349, 2001. doi: 10.1145/502800.502803.

A
onvex optimization approa
h for solving large s
ale linear systems 76

[9℄ E.G. Birgin, J.M. Martínez, and M. Raydan. Nonmonotone spe
tral

proje
ted gradient methods on
onvex sets. SIAM J. Opt., 10(4):1196�

1211, 2000. doi: 10.1137/S1052623497330963.

[10℄ Raydan M. The barzilai and borwein gradient method for the large-s
ale

un
onstrained minimization problem. SIAM J. Opt., 7(1):26�33, 1997.

doi: 10.1137/S1052623494266365.

[11℄ E.G. Birgin, J.M. Martínez, and M. Raydan. Spe
tral proje
ted gradi-

ent methods: Review and perspe
tives. Journal of Statisti
al Sofware,

60(3):1�21, 2014. doi: 10.18637/jss.v060.i03.

[12℄ M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero, J.M. Martínez, and S.A.

Santos. Augmented lagrangian algorithms based on the spe
tral pro-

je
ted gradient method for solving nonlinear programming problems.

Journal of Optimization Theory and Appli
ations, 123(3):497�517, 2004.

doi: 10.1007/s10957-004-5720-5.

[13℄ M.A. Gomes-Ruggiero, J.M. Martínez, and S.A Santos. Spe
tral

proje
ted gradient method with inexa
t restoration for minimization

with non
onvex
onstraints. SIAM Journal on S
ienti�
 Computing,

31(3):1628�1652, 2009. doi: 10.1137/070707828.

[14℄ R. Es
alante and M. Raydan. Alternating proje
tion methods. SIAM,

Philadelphia, 1 edition, 2011. ISBN 978-1-611971-93-4.

[15℄ C. Brezinski. Variations on ri
hardson's method and a

eleration. Bull.

So
. Math. Belg., 3(Supplement):33�44, 1996. doi: 10.1.1.11.7024.

[16℄ W. La Cruz and M. Raydan. Residual iterative s
hemes for large-

s
ale nonsymmetri
 positive de�nite linear systems. Computa
ional

and applied mathemati
s, 27(2):151�173, 2008. doi: 10.1590/S0101-

82052008000200003.

