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Abstrat

In this paper, a reliable algorithm for solving the nonlinear Hammerstein inte-

gral equation arising from hemial phenomenon is presented. The ondutor-like

sreening model for real solvents (COSMO-RS) integral equation will be solved by

the shifted Legendre olloation method. This method approximates the unknown

funtion with Legendre polynomials. The merits of this algorithm lie in the fat

that, on the one hand, the problem will be redued to a nonlinear system of alge-

brai equations. On the other hand, we show that the e�ieny and auray of

the shifted Legendre olloation method for solving these equations are remarkable.

Also, this method is using a simple omputational manner and its error analysis

will be disussed by illustrating some theorems. Finally, two numerial experiments

are given to on�rm the superiority and e�ieny of presented method with respet

to some other well-known methods suh as the Bernstein olloation method, Haar

wavelet method and Sin olloation method.
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1 Introdution

In reent years, a number of methods have been proposed and applied suess-

fully to obtain the approximate solution of various types of integral equations.

It was found that the spetral methods are valid methods to obtain approxi-

mate solutions of integral equations [1�10℄. In this paper, we apply the shifted

Legendre olloation method (LCM) to solve COSMO-RS integral equation

whih was �rst presented in 1995 by A. Klamt [11℄. The COSMO-RS model

is a quantum hemistry the equilibrium thermodynamis method with the

purpose of prediting hemial potential µ in liquids and is a novel approah

for the desription of salvation phenomena. In COSMO-RS alulations, the

solute moleules are investigated in a virtual ondutor environment. In suh

an environment, the solute moleule indues a polarization harge density σ
on the interfae between the moleule and the ondutor. It proesses the

sreening harge density σ on the surfae of moleules to alulate the hem-

ial potential µ of eah speies in solution. The stored COSMO results suh

as sreening hange density is used to alulate the hemial potential of the

moleules in a liquid solvent or mixture in COSMO-RS [12℄. Consider the

following COSMO-RS integral equation [13℄

µS(σ) = −RT ln

[∫
PS(σ

′) exp(−
Eint(σ, σ

′)− µS(σ
′)

RT
)dσ′

]
, (1)

where R is the gas onstant, T is the temperature and the term Eint(σ, σ
′)

denotes the interation energy expression for the segments with sreening

harge density σ and σ′
, respetively. The moleular interation in solvent

is PS(σ) and the hemial potential of the surfae segments is desribed by

µS(σ) whih is to be determined. The σ-pro�le for the solvent of S, PS(σ),
whih might be a mixture of several ompounds an be written by adding

P i
S(σ) of the omponents weights by their mole fration χi in mixtures by

[14℄:

PS(σ) =

N∑

i

χiP
i
S(σ).

The hemial potential of the surfae segments is desribed µS(δ) and should

be determined. The domain of integration is determined by the harater-

istis of the σ-pro�le. The details of this model an be found in [11, 15, 16℄.

In [15℄, re�nement and parameterization of this method was presented. In

[17℄, Banerjee and Singh have used COSMO-RS to predit the vapor-liquid



35 Hesameddini, Shahbazi

equilibria of ioni liquid systems. The performane of a COSMO-RS method

in omparison to lassial group ontribution methods is presented in [18℄.

In [12, 19℄, Banerjee and Franke have demonstrated the auray and appli-

ability of the COSMO-RS method.

Eq. (1) is the Hammerstein type nonlinear integral equations. There has

been a notable interest in the numerial analysis of solutions of Hammer-

stein integral equations [20�27℄. The Petrov-Galerkin, Galerkin, olloation,

degenerate kernel and Nyström methods are most frequently used proje-

tion methods for solving the equations of this type [20, 28�34℄. The lassi-

al method of suessive approximation for Fredholm-Hammerstein integral

equations was introdued in [35℄. Brunner [36℄, applied a olloation-type

method and Ordokhani [37℄ applied rationalized Haar funtion to nonlin-

ear Volterra-Fredholm-Hammerstein integral equations. A variation of the

Nyström method was presented in [38℄. A olloation type method was

developed in [38℄. The asymptoti error expansion of a olloation type

method for Volterra-Hammerstein integral equations has been onsidered in

[39℄. Maleknejad have used a numerial approah based on the Sin quadra-

ture whih has exponential type onvergene rate to solve Eq. (1) [13℄. In

[14℄, Eq. (1) has been solved by the Bernstein olloation method (BCM),

Haar wavelet method (HWM), and Sin olloation method (SCM).

In this work, we will extend the LCM to approximate the solution of

Eq. (1). The properties of Legendre polynomials are used to redue the

problem into a system of algebrai equations. Besides, an estimation of the

error bound for this method will be given. The obtained upper bound for the

error indiates the onvergene property of this algorithm. Finally, we apply

this method to two numerial experiments in order to show the e�ieny of

presented method. These results on�rm that the shifted Legendre olloa-

tion method is very e�etive and more aurate than BCM, HWM and SCM

for solving COSMO-RS integral equation.

The rest of this paper is organized as follows. Preliminaries and nota-

tions needed hereafter are given in Setion 2. In Setion 3, the method for

approximating the solution of Eq. (1) will be disussed. Setion 4 is devoted

to the onvergene analysis of proposed method. Setion 5 o�ers two numer-

ial experiments to illustrate the e�ieny of this algorithm. Finally, a brief

onlusion is made in Setion 6.
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2 Preliminaries

The well-known Legendre polynomials are de�ned on the interval [−1, 1] and
an be determined with the aid of the following reurrene formula [40℄

Li+1 (z) =
2i+ 1

i+ 1
zLi (z)−

i

i+ 1
Li−1 (z) , i = 1, 2, ...,

where L0 (z) = 1 and L1 (z) = z. In order to use these polynomials on the

interval x ∈ [a, b], we de�ne the so-alled shifted Legendre polynomials by

introduing the hange of variable z = 2
b−a

x− b+a
b−a

. Let the shifted Legendre

polynomials Li(
2

b−a
x − b+a

b−a
) be denoted by Pi(x). We onsider the spae

L2[a, b] equipped with the following inner produt and norm

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ‖y‖2 = 〈y, y〉
1
2 .

The set of shifted Legendre polynomials forms a omplete L2[a, b]-orthogo-
nal system suh that the orthogonality ondition is

∫ b

a

Pi (x)Pj (x) dx =

{
b−a
2i+1

for i = j,

0 for i 6= j.
(2)

A funtion y(x), square integrable on [a, b], may be expressed in terms of the

shifted Legendre polynomials as

y (x) =

∞∑

j=0

cjPj (x) ,

where the oe�ients cj are given by

cj =

(
2

b− a
j −

b+ a

b− a

)∫ b

a

y (x)Pj (x) dx, j = 1, 2, ....

We onsider the �rst (N +1)−terms of shifted Legendre polynomials. So we

have

y (x) ≃
N∑

j=0

cjPj (x) = CTP (x), (3)
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where the shifted Legendre oe�ient vetor C and the shifted Legendre

vetor P (x) are given by

C = [c0, c1, ..., cN ]
T , (4)

and

P (x) = [P0 (x) , P1 (x) , ..., PN (x)]T . (5)

3 Method of solution

In this setion, an e�ient method for approximating the solution of Eq. (1),

by using the shifted Legendre polynomials will be illustrated.

Eq. (1), an be written as:

−
µS(σ)

RT
= ln

[∫ b

a

K(σ, σ′) exp

(
µS(σ

′)

RT

)
dσ′

]
, (6)

where K(σ, σ′) = PS(σ
′)Ω(σ, σ′) and Ω(σ, σ′) = exp

(
−Eint(σ,σ

′)
RT

)
. Substitut-

ing y(σ) = exp
(

−−µS(σ)
RT

)
in Eq. (6), results in

y(σ) =

∫ b

a

K(σ, σ′)(y(σ′))−1dσ′, (7)

whih is the well-known nonlinear Hammerstein integral equation. The gen-

eral form of nonlinear Hammerstein integral equation is given by [41℄

y(x) = g(x) +

∫ b

a

K(x, t)F (t, y(t))dt, a ≤ x ≤ b, (8)

where K(x, t), g(x) and F (t, y(t)) are known funtions and y(x) is the un-

known funtion whih should be determined. In order to approximate the

solution of Eq. (8), substituting relation (3) in Eq. (8), yields

CTP (x) = g(x) +

∫ b

a

K(x, t)F (t, CTP (t))dt, (9)

where

F (t, CTP (t)) =
1

CTP (t)
.
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Considering

ATP (t) := F (t, CTP (t)), (10)

where

A = [a0, a1, ..., aN ]
T , (11)

then, Eq. (9) an be rewritten as

CTP (x) = g(x) +

∫ b

a

K(x, t)ATP (t)dt. (12)

Therefore,

CTP (x) = g(x) + AT

∫ b

a

K(x, t)P (t)dt. (13)

Using Eqs. (10) and (13), we get

ATP (x) = F

(
x, g(x) + AT

∫ b

a

K(x, t)P (t)dt

)
. (14)

Colloating Eq. (14) at N + 1 roots of the shifted Legendre polynomial

PN+1(x), xj , the following system of algebrati equations will be obtained

ATP (xj) = F

(
xj , g(xj) + AT

∫ b

a

K(xj , t)P (t)dt

)
. (15)

Through this system, the unknown oe�ients A are determined and then

using Eq. (10), C is resulted.

4 Convergene analysis

In this setion, we will determin an estimation of the error bound for the ap-

proximate solution in the shifted Legendre olloation method for the non-

linear Hammerstein integral equation (8) on interval [a, b]. The existene

and uniqueness of the solution of this equation are disussed by the Banah's

�xed point theorem in [42℄ under the following assumptions:

(1) g is a ontinuous funtion on the interval [a, b],
(2) K is a ontinuous funtion on the interval [a, b]× [a, b],
(3) F is a ontinuous funtion in the domain

W = {t; a ≤ t ≤ b, |y| ≤ ∞},
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and satis�es the Lipshitz ondition with respet to its two argument:

|F (x, y1)− F (x, y2)| ≤ M |y1 − y2| ,

and

M1M(b− a) < 1,

where

M1 = max
(x,t)∈[a,b]×[a,b]

|K(x, t)|.

To disuss about the onvergene analysis, at �rst we reall the following

de�nitions.

De�nition 1. ([43℄) Funtion q(x) ∈ Pn (the spae of all polynomials of

degree ≤ n) is the best polynomial approximation for f(x) on [a, b] provided
that ‖f − q‖ ≤ ‖f − p‖, ∀p ∈ Pn.

De�nition 2. ([43℄) A funtion F (x, y) is said to satisfy in the Lipshitz

ondition if there is a onstant M > 0 suh that |F (x, y1)− F (x, y2)| ≤
M |y1 − y2| , for all y1 and y2 on [a, b].

Theorem 1. Suppose that y(x) =
∑N

j=0 cjPj (x) and yN(x) =
∑N

j=0 cjPj (x)
are the best approximation and the approximate solution obtained by the pro-

posed method, respetively. Then, we have

‖y − yN‖2 ≤ ‖C − C‖2

(
(b− a)

N∑

i=0

b− a

2i+ 1

) 1
2

, (16)

where, the norm on the right hand side is the usual Eulidean norm for

vetors,

C = [c0, c1, ..., cN ]
T , (17)

and

C = [c0, c1, ..., cN ]
T . (18)

Proof. The mentioned norm indiates that

‖y − yN‖2 =



∫ b

a

(
N∑

i=0

(ci − ci)Pi (x)

)2

dx




1
2

. (19)
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Using the Holder's inequality, one obtains

∫ b

a

(
N∑

i=0

(ci − ci)Pi (x)

)2

dx ≤

∫ b

a

(
N∑

i=0

|ci − ci|
2

)(
N∑

i=0

|Pi (x)|
2

)
dx

=

(
N∑

i=0

|ci − ci|
2

)(
N∑

i=0

∫ b

a

|Pi (x)|
2dx

)
. (20)

Considering relation (2), results in

N∑

i=0

∫ b

a

|Pi (x)|
2dx =

N∑

i=0

b− a

2i+ 1
. (21)

Using relations (19), (20) and (21), we onlude that

‖y − yN‖2 ≤

(
N∑

i=0

|ci − ci|
2

) 1
2
(

N∑

i=0

b− a

2i+ 1

) 1
2

= ‖C − C‖2

(
(b− a)

N∑

i=0

1

2i+ 1

) 1
2

, (22)

and the proof is ompleted.

Theorem 2. Considering the assumptions of Theorem 1 and the nonlinear

Fredholm-Hammerstein integral equation (8), let

K2
1 =

∫ b

a

(∫ b

a

|K(x, t)|2 dt

)
dx <∞,

and F (t, y(t)) ∈ C([a, b] × R) satis�es the Lipshitz ondition in the seond

variable. Then, the following result holds

‖y − yN‖2 ≤
(b− a)

1
2 (1 +K1C1(b− a)

1
2 )‖C − C‖2

(∑N
i=0

1
2i+1

) 1
2

1− (b− a)
1
2K1C1

, (23)

where C1 is the Lipshitz onstant.
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Proof. We an write the integral equation (8) as follows

g(x) = y(x)−

∫ b

a

K(x, t)F (t, y(t))dt. (24)

Substituting yN(x) in this equation, results in

ĝ(x) = yN(x)−

∫ b

a

K(x, t)F (t, yN(t))dt. (25)

Also, sine y(x) is the best approximate solution, we have

y(x) = g(x) +

∫ b

a

K(x, t)F (t, y(t))dt. (26)

Subtrating Eqs. (24) from (25), we get

y(x)− yN(x) = g(x)− ĝ(x) +

∫ b

a

K(x, t) (F (t, y(t))− F (t, yN(t))) dt. (27)

Let

u(x) =

∫ b

a

K(x, t) (F (t, y(t))− F (t, yN(t))) dt, (28)

then, we an write

‖y − yN‖2 ≤ ‖g − ĝ‖2 + ‖u‖2 . (29)

If K2
1 =

∫ b

a

(∫ b

a
|K(x, t)|2 dt

)
dx, then aording to the Holder's inequality,

one obtains

‖u‖22 =

∫ b

a

|u(x)|2 dx

≤

∫ b

a

(∫ b

a

|K(x, t)||F (t, y(t))− F (t, yN(t))|dt

)2

dx

≤

∫ b

a

(∫ b

a

|K(x, t)|2 dt

)(∫ b

a

|F (t, y(t))− F (t, yN(t))|
2 dt

)
dx. (30)

Using the Lipshitz ondition, results in

|F (t, y(t))− F (t, yN(t))| ≤ C1|y(t)− yN(t)|, (31)
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where C1 > 0 is the Lipshitz onstant. Substituting this bound in (30), one

obtains

‖u‖22 ≤ K2
1

∫ b

a

(∫ b

a

|F (t, y(t))− F (t, yN(t))|
2 dt

)
dx

≤ K2
1C

2
1

∫ b

a

(∫ b

a

|y(t)− yN(t)|
2 dt

)
dx

= K2
1C

2
1

∫ b

a

‖y − yN‖
2
2dx

= K2
1C

2
1(b− a)‖y − yN‖

2
2. (32)

Using (29) and (32), we have

‖y − yN‖2 ≤ ‖g − ĝ‖2 +K1C1(b− a)
1
2‖y − yN‖2, (33)

then,

‖y − yN‖2 ≤
‖g − ĝ‖2

1− (b− a)
1
2K1C1

. (34)

In order to �nd a bound on ‖g − ĝ‖, subtrating Eq. (25) from (26), we get

g(x)− ĝ(x) = y(x)− yN(x) +

∫ b

a

K(x, t) (F (t, y(t))− F (t, yN(t))) dt. (35)

Similarly, using the Lipshitz ondition and the Holder's inequality, result

in

‖g − ĝ‖2 ≤ ‖y − yN‖2 +K1C1(b− a)
1
2‖y − yN‖2

= (1 +K1C1(b− a)
1
2 )‖y − yN‖2, (36)

and from Theorem 1, one obtains

‖g − ĝ‖2 ≤
(
1 +K1C1(b− a)

1
2

)
‖C − C‖2

(
(b− a)

N∑

i=0

1

2i+ 1

) 1
2

= (b− a)
1
2 (1 +K1C1(b− a)

1
2 )‖C − C‖2

(
N∑

i=0

1

2i+ 1

) 1
2

. (37)
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Substituting this bound in (34), results in

‖y − yN‖2 ≤
(b− a)

1
2 (1 +K1C1(b− a)

1
2 )‖C − C‖2

(∑N
i=0

1
2i+1

) 1
2

1− (b− a)
1
2K1C1

. (38)

This ompletes the proof.

5 Numerial experiments

In this setion, two numerial experiments are given to demonstrate the

apability of proposed method.

At the �rst experiment, onsider the following COSMO-RS integral equa-

tion ([14℄)

y(σ) =

∫ b

a

PS(σ
′)Ω(σ, σ′)(y(σ′))−1dσ′,

for a partiular ase of the energy expression, namely the eletrostati mis�t

energy. In this ase, the relevant part of the kernel of integral equation is

given by Ω(σ, σ′) = exp−(σ + σ′)2 and the analytial funtion as syntheti

σ-pro�le is

PS(σ) =

{
exp(−(5σ + 2.5)2) + 1

25σ2+1
+ (sin(5σ+2.5))2

(5σ−2.5)2
+ q(5σ), −2 ≤ σ < 2,

0, otherwise.

where q(σ) =

{
−(σ − 7)(σ − 9), 7 ≤ σ < 9,
0, otherwise.

So, COSMO-RS integral equations will be

y(σ) =

∫ 3

−3

PS(σ
′)Ω(σ, σ′)(y(σ′))−1dσ′. (39)

Table 1 shows the numerial results whih are obtained by our method

and some other well-known methods suh as BCM, HWM and SCM. In BPM,

n terms have been applied in Bernstein series expansion and in HWM, the

interval [a, b] is divided into m equal subintervals, also the funtion y(σ)
expanded into m terms of Haar wavelet series. We see that our method are

in a good agreement with those methods and even, we obtained these results

with less amount of N .
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Tab. 1: Numerial results for the �rst experiment.

LCM BCM HWM SCM

x N = 10 N = 20 N = 40 N = 60 n = 20 n = 40 n = 60 m = 32 m = 64 m = 128 N = 20 N = 40 N = 60
-3 0.33987 0.33988 0.33985 0.33986 0.33983 0.3399 0.33989 0.44725 0.38618 0.3624 0.41505 0.31313 0.34715

-2.5 1.03931 1.03929 1.03829 1.03729 1.0436 1.03996 1.037 1.00784 1.0684 1.02392 1.25782 0.95974 1.0586

-2 1.99738 1.99737 1.968736 1.96736 1.9687 1.96368 1.96735 2.06715 1.94737 1.9819 2.36792 1.82947 2.00682

-1.5 2.39345 2.39343 2.39345 2.39345 2.39346 2.39354 2.39345 2.42834 2.39556 2.39436 2.84492 2.24043 2.43812

-1 2.04523 2.04521 2.04523 2.04523 2.0452 2.0453 2.04523 2.11768 2.0326 2.05572 2.36157 1.93929 2.07666

-0.5 1.49405 1.49405 1.49405 1.49405 1.49406 1.49409 1.49405 1.47893 1.51148 1.48742 1.62531 1.45005 1.50733

0 1.10484 1.10484 1.10484 1.10484 1.10484 1.10484 1.10484 1.04319 1.07366 1.08914 1.12284 1.09871 1.10684

0.5 0.76102 0.76102 0.76102 0.76102 0.76102 0.76102 0.76102 0.78163 0.74959 0.76651 0.74178 0.76831 0.75897

1 0.41419 0.41419 0.41419 0.41419 0.41419 0.41419 0.41419 0.39251 0.42374 0.40917 0.39492 0.42196 0.41195

1.5 0.16382 0.16382 0.16382 0.16382 0.16382 0.16381 0.16382 0.13146 0.14740 0.15548 0.15365 0.16812 0.16255

2 0.04623 0.04623 0.04623 0.04623 0.04623 0.04623 0.04623 0.05002 0.04415 0.04725 0.04255 0.04789 0.04572

2.5 0.00967 0.00967 0.00967 0.00967 0.00967 0.00967 0.00967 0.00860 0.01018 0.00942 0.00865 0.01019 0.00950

3 0.00163 0.00163 0.00163 0.00163 0.00163 0.00163 0.00163 0.03384 0.03375 0.03367 0.00140 0.00177 0.00158

At the seond experiment, Consider the nonlinear Hammerstein integral

equation ([14℄)

y(x) = g(x) +

∫ b

a

K(x, t)(y(t))−1dt, a ≤ x ≤ b. (40)

where g(x) = 21−11 exp(10)
100

exp(−10(1 + x)) + 1
1+x

, K(x, t) = exp(−10(x+ t)),

a = 0 and b = 1. The exat solution of this equation is y(x) = 1
1+x

. We

implement the suggested method with N = 2, N = 5 and N = 8. Tables

2, 3 and Figure 1 show the numerial results for the seond experiment.

Table 2 shows the absolute error eN (x) = |y(x)− yN(x)| for the suggested

method, where y(x) and yN (x) are the exat and omputed solution by our

method, respetively. Also, this table ompares these results with some other

well-known methods suh as BCM, HWM and SCM. These results on�rm

that the Legendre approximation method for solving this experiment is very

e�etive and more aurate than BCM, HWM and SCM. In Table 3, one an

see the values of ‖eN‖2 =
(∫ 1

0
e2N(x)dx

) 1
2

, ηN =
∑N

i=0

(
1

2i+1

) 1
2
and ‖C−C‖2.

Also the value of K1C1 for this experiment is 0.0024. These show that the

upper bound of the error is very small and near to ‖eN‖2. The omputing

times (seonds) to obtain the numerial solution yN are also given. In Figure

1, the numerial results by our method with N = 2, N = 5 and N = 8 are

depited. We see that, as N is inreased, the error is dereased and also

the error term eN(x) obtained by the proposed method is dereased as N is

inreased.
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Tab. 2: Comparison of the absolute errors eN (x) for the seond experiment.

x LCM(N = 8) BCM(n = 10) HWM(m = 32) SCM(N = 10)
0 1.454182e-18 0 0.0153187 0.00775417
0.1 1.895847e-17 2.22045e-16 0.00765666 0.0028526
0.2 1.136562e-17 3.33067e-16 0.0021544 0.00104941
0.3 2.793701e-19 3.33067e-16 0.00185752 0.000386057
0.4 3.115230e-19 1.11022e-16 0.00481696 0.000142023
0.5 7.577227e-19 0 0.00687241 0.0000522472
0.6 2.151335e-20 1.11022e-16 0.0036406 0.0000192207
0.7 2.729578e-19 1.11022e-16 0.00107926 7.07089e-6

0.8 2.425443e-20 1.11022e-16 0.00096621 2.60123e-6

0.9 0 0 0.00260984 9.56941e-7

1 0 0 0.00393701 3.52039e-7

Tab. 3: Numerial results for the seond experiment.

N ‖eN‖2 ηN ‖C ′ − C‖2 Computing time

2 1.38069e-16 1.23828 6.7514e-16 1.5346
5 3.20194e-17 1.37048 6.0263e-17 2.1561
8 6.10294e-19 1.44244 1.2604e-18 3.9649

6 Conlusion

In this paper, the shifted Legendre olloation method was applied to obtain

the solution of COSMO-RS integral equations. The properties of Legendre

polynomials were used to onvert the integral equation into a system of al-

gebrai equations whih ould be solved more easily. Also, the onvergene

property of our method for solving COSMO-RS integral equation has been

disussed. We saw that the solutions ould be more aurate by inreasing

N . The obtained results showed that the LCM for solving COSMO-RS inte-

gral equation was very e�etive with high auray in omparison with some

other well-known methods suh as BCM, HWM and SCM.
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