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Abstract

In this paper, a reliable algorithm for solving the nonlinear Hammerstein inte-
gral equation arising from chemical phenomenon is presented. The conductor-like
screening model for real solvents (COSMO-RS) integral equation will be solved by
the shifted Legendre collocation method. This method approximates the unknown
function with Legendre polynomials. The merits of this algorithm lie in the fact
that, on the one hand, the problem will be reduced to a nonlinear system of alge-
braic equations. On the other hand, we show that the efficiency and accuracy of
the shifted Legendre collocation method for solving these equations are remarkable.
Also, this method is using a simple computational manner and its error analysis
will be discussed by illustrating some theorems. Finally, two numerical experiments
are given to confirm the superiority and efficiency of presented method with respect
to some other well-known methods such as the Bernstein collocation method, Haar
wavelet method and Sinc collocation method.
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1 Introduction

In recent years, a number of methods have been proposed and applied success-
fully to obtain the approximate solution of various types of integral equations.
It was found that the spectral methods are valid methods to obtain approxi-
mate solutions of integral equations [1-10|. In this paper, we apply the shifted
Legendre collocation method (LCM) to solve COSMO-RS integral equation
which was first presented in 1995 by A. Klamt [11]. The COSMO-RS model
is a quantum chemistry the equilibrium thermodynamics method with the
purpose of predicting chemical potential x4 in liquids and is a novel approach
for the description of salvation phenomena. In COSMO-RS calculations, the
solute molecules are investigated in a virtual conductor environment. In such
an environment, the solute molecule induces a polarization charge density o
on the interface between the molecule and the conductor. It processes the
screening charge density o on the surface of molecules to calculate the chem-
ical potential u of each species in solution. The stored COSMO results such
as screening change density is used to calculate the chemical potential of the
molecules in a liquid solvent or mixture in COSMO-RS [12]. Consider the
following COSMO-RS integral equation [13]

Eini(0,0') = ps(0)
RT

ps(oc) = —RT In {/ Ps(c") exp(— Ydo'| (1)
where R is the gas constant, 7" is the temperature and the term FE;,;(o,0")
denotes the interaction energy expression for the segments with screening
charge density o and o', respectively. The molecular interaction in solvent
is Ps(0) and the chemical potential of the surface segments is described by
ps(o) which is to be determined. The o-profile for the solvent of S, Ps(o),
which might be a mixture of several compounds can be written by adding

Pi(o) of the components weights by their mole fraction y; in mixtures by
[14]:

Ps() = > wiPio)

The chemical potential of the surface segments is described (d) and should
be determined. The domain of integration is determined by the character-
istics of the o-profile. The details of this model can be found in 11,15, 16].
In [15], refinement and parameterization of this method was presented. In
[17], Banerjee and Singh have used COSMO-RS to predict the vapor-liquid
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equilibria of ionic liquid systems. The performance of a COSMO-RS method
in comparison to classical group contribution methods is presented in [18|.
In [12,19], Banerjee and Franke have demonstrated the accuracy and appli-
cability of the COSMO-RS method.

Eq. (1) is the Hammerstein type nonlinear integral equations. There has
been a notable interest in the numerical analysis of solutions of Hammer-
stein integral equations [20-27|. The Petrov-Galerkin, Galerkin, collocation,
degenerate kernel and Nystrom methods are most frequently used projec-
tion methods for solving the equations of this type [20,28-34|. The classi-
cal method of successive approximation for Fredholm-Hammerstein integral
equations was introduced in [35]. Brunner [36], applied a collocation-type
method and Ordokhani [37| applied rationalized Haar function to nonlin-
ear Volterra-Fredholm-Hammerstein integral equations. A variation of the
Nystrom method was presented in [38]. A collocation type method was
developed in [38]. The asymptotic error expansion of a collocation type
method for Volterra-Hammerstein integral equations has been considered in
[39]. Maleknejad have used a numerical approach based on the Sinc quadra-
ture which has exponential type convergence rate to solve Eq. (1) [13]. In
[14], Eq. (1) has been solved by the Bernstein collocation method (BCM),
Haar wavelet method (HWM), and Sinc collocation method (SCM).

In this work, we will extend the LCM to approximate the solution of
Eq. (1). The properties of Legendre polynomials are used to reduce the
problem into a system of algebraic equations. Besides, an estimation of the
error bound for this method will be given. The obtained upper bound for the
error indicates the convergence property of this algorithm. Finally, we apply
this method to two numerical experiments in order to show the efficiency of
presented method. These results confirm that the shifted Legendre colloca-
tion method is very effective and more accurate than BCM, HWM and SCM
for solving COSMO-RS integral equation.

The rest of this paper is organized as follows. Preliminaries and nota-
tions needed hereafter are given in Section 2. In Section 3, the method for
approximating the solution of Eq. (1) will be discussed. Section 4 is devoted
to the convergence analysis of proposed method. Section 5 offers two numer-
ical experiments to illustrate the efficiency of this algorithm. Finally, a brief
conclusion is made in Section 6.
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2 Preliminaries

The well-known Legendre polynomials are defined on the interval [—1, 1] and
can be determined with the aid of the following recurrence formula [40]

2t +1 l

Liyi (2) = i—i—lZLi(Z)_zHLl

Li,1 (Z), 1= 1, 2,...,

where Lo (z) = 1 and L; (z) = z. In order to use these polynomials on the
interval x € [a,b], we define the so-called shifted Legendre polynomials by
introducing the change of variable z = ﬁaj — ZJ_F—Z Let the shifted Legendre
polynomials L;(;2-x — 2%) be denoted by P;(z). We consider the space
L?[a, b] equipped with the following inner product and norm

<f>9>:/ F@)g(x)dz, |lyll2 = (y,)2.

The set of shifted Legendre polynomials forms a complete L?[a, b]-orthogo-
nal system such that the orthogonality condition is

b b—a : :
A fori=j
. ) — 21+1 ’
/a P; (z) P; (z) dx { 5 for i 4 j (2)

A function y(x), square integrable on [a, b], may be expressed in terms of the
shifted Legendre polynomials as

y(z) ZZCJPJ(@,

where the coefficients c¢; are given by

2 b+a b
= i — P =1, 2, ..
¢ (b—aj b—a)/a y(z)P(z)dr, j=1, 2,

We consider the first (V4 1)—terms of shifted Legendre polynomials. So we
have

y (r) ~ Z ¢;Pj () = CTP(z), (3)
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where the shifted Legendre coefficient vector C' and the shifted Legendre
vector P(x) are given by

]T

: (4)

C = [Co,Cl, ..., CN
and
P (z) =[Py (x),P(2),..., Py (2)]". (5)
3 Method of solution

In this section, an efficient method for approximating the solution of Eq. (1),
by using the shifted Legendre polynomials will be illustrated.
Eq. (1), can be written as:

U K(o,0) exp('u‘;%(T))d ] (6)

where K(o,0') = Ps(0")Q(0,0") and Q(0,0") = exp <M> . Substitut-

RT
ing y(o) = exp (%i(a)) in Eq. (6), results in

b
- / K(0.0')(y(0")\do", (7)

which is the well-known nonlinear Hammerstein integral equation. The gen-
eral form of nonlinear Hammerstein integral equation is given by [41]

va) = g(e) + [ K(n.OFGy(o)it o<z <0, (®)

where K(z,t), g(z) and F(t,y(t)) are known functions and y(x) is the un-
known function which should be determined. In order to approximate the
solution of Eq. (8), substituting relation (3) in Eq. (8), yields

TPz / K(x, 8)F(t,CTP(#))dt. ()

where
1

F(t,CTP(t)) = TR
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Considering
ATP(t) .= F(t,CTP(t)), (10)

where
A =lag, ay,...,an]", (11)

then, Eq. (9) can be rewritten as

CTP(z) = g(x) + / b K(z,t)ATP(t)dt. (12)

Therefore, ,
CTP(z) = g(x) + AT/ K(x,t)P(t)dt. (13)

Using Eqgs. (10) and (13), we get

ATP(z)=F (x,g(x) + AT /ab K(x,t)P(t)dt) : (14)

Collocating Eq. (14) at N 4 1 roots of the shifted Legendre polynomial
Pnii(x), z;, the following system of algebratic equations will be obtained

ATP(z;) = F <xj, g(z;) + AT / b K(xj,t)P(t)dt> | (15)

Through this system, the unknown coefficients A are determined and then
using Eq. (10), C' is resulted.

4 Convergence analysis

In this section, we will determin an estimation of the error bound for the ap-
proximate solution in the shifted Legendre collocation method for the non-
linear Hammerstein integral equation (8) on interval [a,b]. The existence
and uniqueness of the solution of this equation are discussed by the Banach’s
fixed point theorem in [42] under the following assumptions:

(1) g is a continuous function on the interval [a, b],

(2) K is a continuous function on the interval [a, b] X [a, ],

(3) F'is a continuous function in the domain

W ={t;a <t <b |yl < oo},
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and satisfies the Lipschitz condition with respect to its two argument:
|F(I7y1) - F(I7y2)‘ < M‘yl - y2| )

and
MlM(b — CL) <1,

where

My = max |K(xz,t)|.
(z,t)E€[a,b] X [a,b]

To discuss about the convergence analysis, at first we recall the following
definitions.

Definition 1. ([43]) Function q(z) € P, (the space of all polynomials of
degree < n) is the best polynomial approzimation for f(x) on |a,b] provided

Definition 2. (/43/) A function F(x,y) is said to satisfy in the Lipschitz
condition if there is a constant M > 0 such that |F(x,y1) — F(z,y92)| <
M |y1 — yol|, for all y1 and y, on |a,b.

Theorem 1. Suppose that Y(z) = Z;V:O ¢ Pj(x) and yy(z) = Z;V:O c; P ()
are the best approrimation and the approrimate solution obtained by the pro-
posed method, respectively. Then, we have

N 3

_ — b—a

17— unll, < !\0—0Hz<(b—a)z — 1) , (16)
i=0

where, the norm on the right hand side is the usual Euclidean norm for
vectors,
C =[G, e, en], (17)

and
C = [co,c1, - en]”. (18)

Proof. The mentioned norm indicates that

17— ynlly = / (Z @ — )b (x)) dx | (19)

1=0
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Using the Holder’s inequality, one obtains

[ oo (E14) )
= (Zr—r) (Z / rmxwdx). (20)

Considering relation (2), results in

Z/|P 2da Zmﬂ. (21)

Using relations (19), (20) and (21), we conclude that

N % N b—a %

17wl < (Z \a«—ci\2> (Z 2¢+1>

B v
=HC—0H2<(b—a)ZQH1> 7 (22)

and the proof is completed. O

Theorem 2. Considering the assumptions of Theorem 1 and the nonlinear
Fredholm-Hammerstein integral equation (8), let

b s b
Kf:/ (/ \K(a:,t)\2dt)dx<oo,

and F (t,y(t)) € C([a,b] x R) satisfies the Lipschitz condition in the second
variable. Then, the following result holds

[N
=

(b—a) (1+K101(b—a)%)]|0 Cll <Zz 02&1)2

1— (b — &)§K101

ly —ynll2 < , (23)

where C1 is the Lipschitz constant.
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Proof. We can write the integral equation (8) as follows

9(z) = y(z) - / K (. 0)F(t, y(£))dt. (24)

Substituting yx(x) in this equation, results in

3(x) = yu(a) - / K (2 ) F(t, y (1)) dt. (25)

Also, since F(z) is the best approximate solution, we have

7(z) = g(x) + / K () F(t, 7(1))dt. (26)

Subtracting Eqgs. (24) from (25), we get

yla) = uxle) = gla) = gle) + [ K, 0) (Flt,y(0) — F(t,yw(e) dr. (27)
Let ,
) = [ K@) (F(0) = Pt () . (28)
then, we can write
Iy = yls < llg = 3l + lull,. (29)

If K? = fab <f; ]K(a:,t)]th) dx, then according to the Holder’s inequality,
one obtains

il = [ oo e
</ b (/ VK ) () — P, yN<t>>rdt)2dx

< [([ wtoear) ([ 1Fson - oo ) a0

Using the Lipschitz condition, results in

[E(t y(t) = F(tyn(0)] < Cily(t) —yn(t)], (31)
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where C} > 0 is the Lipschitz constant. Substituting this bound in (30), one

obtains
HUHSSK%/ (/ Pt y(8) — Flt,yn(t ))\th) i

< K202 / ( / \y(t)—yw)r?dt) s

b
— K20 / ly - ywl2de
= K2C2(b— a)|ly — yn |2 (32)
Using (29) and (32), we have
ly — ywlla < lg = Gll, + K1C1(b — a) ||y — yw o, (33)

then,

lg — 9l
34
ly = ynll2 < TR (34)

In order to find a bound on ||g — gl|, subtracting Eq. (25) from (26), we get

o(z) — 5(2) = (@) — yn (e / K(2,t) (F( 7)) — F(t, yn (1)) dt. (35)

Similarly, using the Lipschitz condition and the Holder’s inequality, result
in

lg —3ll2 <117 — ynll2 +K101<b—a>ﬂry—y]vug
=(1+ K,Ci(b—a)2 )HZ/ yn |2, (36)

and from Theorem 1, one obtains

lg —gll2 < (1 + K, Cy(b— a)%) IC = C|| ((b - a)

D=
N

M= 1=
»

+ —
—_

N——

|

= (b—a)? (1+ K,Cy(b - a) (37)

I
o
[\
<.
+ =
—_
N———
I

)IC - CHz(

7
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Substituting this bound in (34), results in

=

(b—a)* (1+ KaCab = 0))|C = Clla (o 55 )
1—(()—@)%}(101 ‘

ly —ynll2 < (38)

This completes the proof. O

5 Numerical experiments

In this section, two numerical experiments are given to demonstrate the
capability of proposed method.

At the first experiment, consider the following COSMO-RS integral equa-
tion ([14])

b
y(0) = / Ps(o))o, ") (y(o")) " \do",

for a particular case of the energy expression, namely the electrostatic misfit
energy. In this case, the relevant part of the kernel of integral equation is
given by Q(0,0’) = exp —(0 + 0’)? and the analytical function as synthetic
o-profile is

in(50+2.5))2
Ps(o) = exp(—(50 + 2‘5)2) + 25a12+1 + ¢ (525—;25)52)) +q(50), —2<0<2
0, otherwise.

—(c—=T)(c—-9), T<o<9,
0, otherwise.
So, COSMO-RS integral equations will be

where ¢(o) =

y(o) = / Ps(e)2o.0) (o)) (39)

Table 1 shows the numerical results which are obtained by our method
and some other well-known methods such as BCM, HWM and SCM. In BPM,
n terms have been applied in Bernstein series expansion and in HWM, the
interval [a,b] is divided into m equal subintervals, also the function y(o)
expanded into m terms of Haar wavelet series. We see that our method are
in a good agreement with those methods and even, we obtained these results
with less amount of .
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Tab. 1: Numerical results for the first experiment.
LCM BCM HWM SCM

z N=10 N=20 N=40 N=60 n=20 n=40 n=60 m=32 m=64 m=128 N=20 N=40 N =60
-3 0.33987 0.33988  0.33985 0.33986 0.33983 0.3399 0.33989 0.44725 0.38618 0.3624  0.41505 0.31313 0.34715
-2.5 1.03931 1.03929 1.03829 1.03729 1.0436 1.03996 1.037 1.00784 1.0684  1.02392 1.25782 0.95974 1.0586
-2 1.99738 1.99737 1.968736 1.96736 1.9687 1.96368 1.96735 2.06715 1.94737 1.9819 236792 1.82947 2.00682
-1.52.39345  2.39343  2.39345  2.39345 2.39346  2.39354 2.39345 2.42834 2.39556 2.39436 2.84492 2.24043 2.43812
-1 2.04523  2.04521  2.04523  2.04523 2.0452  2.0453 2.04523 2.11768 2.0326  2.05572 2.36157 1.93929 2.07666
-0.5 1.49405 1.49405 1.49405 1.49405 1.49406 1.49409 1.49405 1.47893 1.51148 1.48742 1.62531 1.45005 1.50733
1.10484 1.10484 1.10484 1.10484 1.10484 1.10484 1.10484 1.04319 1.07366 1.08914 1.12284 1.09871 1.10684

0.5 0.76102 0.76102 0.76102 0.76102 0.76102 0.76102 0.76102 0.78163 0.74959 0.76651 0.74178 0.76831 0.75897
1 0.41419 0.41419 0.41419 0.41419 0.41419 0.41419 0.41419 0.39251 0.42374 0.40917 0.39492 0.42196 0.41195
1.5 0.16382 0.16382 0.16382 0.16382 0.16382 0.16381 0.16382 0.13146 0.14740 0.15548 0.15365 0.16812 0.16255
2 0.04623 0.04623 0.04623 0.04623 0.04623 0.04623 0.04623 0.05002 0.04415 0.04725 0.04255 0.04789 0.04572
2.5 0.00967 0.00967 0.00967 0.00967 0.00967 0.00967 0.00967 0.00860 0.01018 0.00942 0.00865 0.01019 0.00950
3 0.00163 0.00163 0.00163 0.00163 0.00163 0.00163 0.00163 0.03384 0.03375 0.03367 0.00140 0.00177 0.00158

At the second experiment, Consider the nonlinear Hammerstein integral
equation (|14])

y(z) = g(z) + / K )(y(t)""dt, a <z <b. (40)

where g(z) = 25200 oxp(—10(1 + @) + 11, K(2,t) = exp(—10(z + 1)),
1

a =0 and b = 1. The exact solution of this equation is y(z) = Tz We
implement the suggested method with N =2, N =5 and N = 8. Tables
2, 3 and Figure 1 show the numerical results for the second experiment.
Table 2 shows the absolute error ex(z) = |y(x) — yn(x)| for the suggested
method, where y(x) and yy (x) are the exact and computed solution by our
method, respectively. Also, this table compares these results with some other
well-known methods such as BCM, HWM and SCM. These results confirm
that the Legendre approximation method for solving this experiment is very

effective and more accurate than BCM, HWM and SCM. In Table 3, one can

1
see the values of |lex], = (fol e%(x)dx) oy =N, (2;1)% and ||C — C|s.
Also the value of K,C; for this experiment is 0.0024. These show that the
upper bound of the error is very small and near to ||ey|2. The computing
times (seconds) to obtain the numerical solution yy are also given. In Figure
1, the numerical results by our method with N =2, N =5 and N = 8 are
depicted. We see that, as /N is increased, the error is decreased and also
the error term ey () obtained by the proposed method is decreased as N is

increased.
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Tab. 2: Comparison of the absolute errors ex(z) for the second experiment.

x LOM(N =8) BCM(n =10) HWM(m = 32) SCM(N = 10)
0 1.454182e-18 0 0.0153187 0.00775417
0.1 1.895847e-17  2.22045¢-16  0.00765666 0.0028526
0.2 1.136562e-17  3.33067¢-16 0.0021544 0.00104941
0.3 2.793701e-19  3.33067¢-16  0.00185752  0.000386057
0.4 3.115230e-19  1.11022¢-16  0.00481696  0.000142023
0.5 7.577227e-19 0 0.00687241  0.0000522472
0.6 2.151335e-20  1.11022¢-16 0.0036406  0.0000192207
0.7 2.729578e-19  1.11022¢-16  0.00107926 7.07089e-6
0.8 2.425443¢-20  1.11022¢-16  0.00096621 2.60123e-6
0.9 0 0 0.00260984 9.56941e-7
1 0 0 0.00393701 3.52039¢-7

Tab. 3: Numerical results for the second experiment.

N

lenll,

1IN

1" = Clls

Computing time

2 1.38069e-16 1.23828 6.7514e-16
5 3.20194e-17 1.37048 6.0263e-17
8 6.10294e-19 1.44244 1.2604e-18

1.5346

2.1561
3.9649

6 Conclusion

In this paper, the shifted Legendre collocation method was applied to obtain
the solution of COSMO-RS integral equations. The properties of Legendre
polynomials were used to convert the integral equation into a system of al-
gebraic equations which could be solved more easily. Also, the convergence
property of our method for solving COSMO-RS integral equation has been
discussed. We saw that the solutions could be more accurate by increasing
N. The obtained results showed that the LCM for solving COSMO-RS inte-
gral equation was very effective with high accuracy in comparison with some
other well-known methods such as BCM, HWM and SCM.
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