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Abstrat

In this work, we onsidered two-person zero-sum games with fuzzy payo�s and ma-

trix games with payo�s of trapezoidal intuitionisti fuzzy numbers (TrIFNs). The

onepts of TrIFNs and their arithmeti operations were used. The ut-set based

method for matrix games with payo�s of TrIFNs was also onsidered. Compute

the interval-type value of any alfa-onstrategies by simplex method for linear pro-

gramming. The proposed method is illustrated with a numerial example.

Keywords: Intuitionisti fuzzy set, matrix game, linear programming.

1 Introdution

The onept of an intuitionisti fuzzy set was proposed by Atanassov in 1986

[1℄. This onept refered to the re�et of the relation among " 1 minus the

degree of membership","the degree of non-membership" and " the degree

of hesitation". The intuitionisti fuzzy set was rasterized by the degree of
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membership and the degree of non-membership. The intuitionisti fuzzy set

had more abundant and �exible than the fuzzy set with unertain informa-

tion. Ishibuhi and Tanaka [2℄, Chanas and Kuhta [3℄, studies multiob-

jetive programming in optimization of interval objetive funtions, solving

interval-valued objetive optimization problems. More spei�ally, interval-

valued objetive optimization problems ould be onverted into bi-objetive

mathematial programming models. Then, the bi-objetive mathematial

programming models were also solved using the existing methods of multi-

objetive programming. Cevikel and Ahlatçoglu [4℄ found fuzzy payo�s and

fuzzy goals of two-person zero-sum games. The payo� matrix with elements

was represented as a fuzzy number. For any pair of the strategies, a player

reeived a payo� that meant as a fuzzy number. Nan et al [5℄, foused a

lexiographi method for matrix games with payo�s of triangular intuition-

isti fuzzy numbers. Moreover Nan et al [6℄ also introdued a new ranking

method based on the value and used to solving matrix games with payo�s on

trapezoidal intuitionisti fuzzy numbers (TrIFNs) fuzzy goals. Hene, there

were also found the use of linear programming method for solving matrix

games [7℄-[8℄. Aggarwal et al [9℄, solved the matrix games with I-fuzzy pay-

o�s: Pareto-optimal seurity strategies approah. Therefore, in this work,

two-person zero-sum games with fuzzy payo�s, matrix games with payo�s

of TrIFNs were onsidered. The onepts of TrIFNs and their arithmeti

operations were uesd. The matrix games of the ut-set based method with

payo�s of TrIFNs was aimed. The auxiliary linear programming models were

omputed the interval-type value of any alfa-onstrategies. This paper is or-

ganized as follows. In setion 2, the de�nition, operations of TrIFNs and a

methodology for matrix games with payo�s TrIFN were foused. In setion

3, matrix games with payo�s of TrIFNs were formulated. In setion 4, an

appliation to voting share problem was reported. In the last setion, setion

5, onlusion was summerized.

2 Mathematial Preliminaries

In this setion, we summarize some basi onept intuitionisti fuzzy set by

Atanassov [1℄, notation, de�nition and operation of trapezoidal intuitionisti

fuzzy number whih are used throughout the paper.
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2.1 Some de�nitions of TrIFNs

De�nition 1. [1℄ Let X be a nonempty set of the universe. If there are two

mapping on the set X:

µÃ : X → [0, 1]

x 7→ µÃ(x)

and

νÃ : X → [0, 1]

x 7→ νÃ(x)

with the ondition 0 ≤ µÃ(x) + νÃ(x) ≤ 1. The µÃ and νÃ are alled de-

termining and intuitionisti fuzzy set Ã on the universal set X, denote by

{〈x;µÃ(x), νÃ(x)〉|x ∈ X} we alled µÃ and νÃ are membership funtion and

nonmembership funtion of Ã, respetively. µÃ(x) and νÃ(x) are alled the

membership degree and nonmembership degree of an element x belonging to

Ã ⊆ X, respetively. F (X) is alled the set of the intuitionisti fuzzy set on

the universal set X.

De�nition 2. A TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉 is a speial intuitionisti

fuzzy set on the real number set R, whose membership and nonmembership

funtions are de�ned as follows:

µÃ(x) =





0 if x < l

tÃ(x− l)/(c− l) if l ≤ x < c

tÃ if c ≤ x ≤ d

tÃ(r − x)/(r − d) if d < x ≤ r

0 if x > r

(1)

and

νÃ(x) =





1 if x < l

[c− x+ zÃ(x− l)]/(c− l) if l ≤ x < c

zÃ if c ≤ x ≤ d

[x− d+ zÃ(r − x)/(r − d)] if d < x ≤ r

1 if x > r

(2)

respetively, where l ≤ c ≤ d ≤ r, the values tÃ and zÃ are maximum

membership degree and minimum nonmembership degree of Ã, respetively,
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zÃ

0 l c d r x

1

Fig. 1: A TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉

suh that they satisfy the following ondition: tÃ ∈ [0, 1], zÃ ∈ [0, 1] and
tÃ + zÃ ∈ [0, 1].

Let

πÃ(x) = 1− µÃ(x)− νÃ(x) (3)

πÃ(x) is alled the hesitany degree of an element x ∈ Ã. It is the degree of

indeterminay membership of the element x to Ã.
From De�nition 2, it is obvious that µÃ(x) + νÃ(x) = 1 for any x ∈ R

if tÃ = 1 and zÃ = 0. Hene, the TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉 degenerates

to Ã = 〈(l, c, d, r); 1, 0〉, whih is a trapezoidal fuzzy number [10℄. Therefore,

the onept of the TrIFN is generalization of that of the trapezoidal fuzzy

number.

From Ã = 〈(l, c, d, r); tÃ, zÃ〉 if c = d = p then Ã = 〈(l, p, r); tÃ, zÃ〉 that

is Ã = 〈(l, p, r); tÃ, zÃ〉 is a triangular intuitionisti fuzzy number (TIFN),

whih is partiular ase of TrIFN. Likewise to algebrai operations of TIFN

and TrIFN are de�ned as follows.

De�nition 3. Let Ã = 〈(l1, c1, d1, r1); tÃ, zÃ〉 and B̃ = 〈(l2, c2, d2, r2); tB̃, zB̃〉
be two TrIFNs with tÃ 6= tB̃ and zÃ 6= zB̃, γ 6= 0 be any real number. Then,

the algebrai operations of TrIFNs are de�ned as follows:

Ã+ B̃ = 〈(l1 + l2, c1 + c2, d1 + d2, r1 + r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉, (4)
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Ã− B̃ = 〈(l1 − r2, c1 − d2, d1 − c2, r1 − l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉, (5)

ÃB̃ =





〈(l1l2, c1c2, d1d2, r1r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã > 0, B̃ > 0

〈(l1r2, c1d2, d1c2, r1l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ > 0

〈(r1r2, d1d2, c1c2, l1l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ < 0,

(6)

Ã/B̃ =





〈(l1/r2, c1/d2, d1/c2, r1/l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã > 0, B̃ > 0

〈(r1/r2, d1/d2, c1/c2, l1/l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ > 0

〈(r1/l2, d1/c2, c1/d2, l1/r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ < 0,

(7)

γ/Ã =

{
〈(γl1, γc1, γd1, γr1); tÃ, zÃ〉 if γ > 0

〈(γr1, γd1, γc1, γl1); tÃ, zÃ〉 if γ < 0
(8)

and

Ã−1 = 〈(1/r1, 1/d1, 1/c1, 1/l1); tÃ, zÃ〉 if Ã 6= 0 (9)

where the symbols ∧ is the minimum operator and ∨ is the maximum opera-

tor.

2.2 A methodology for matrix games with payo�s

TrIFN

Let S1 = {ρ1, ρ2, . . . , ρm} and S2 = {τ1, τ2, . . . τn} be sets of pure strategies

for players I and II, respetively. The vetor x = (x1, x2, . . . , xm)
T
is mixed

strategies for player I where xi (i = 1, 2, . . . , m) is probability in player I. The

set of mixed strategies for player I is represented by X = {x|

m∑

i=1

xi = 1, xi ≥

0 (i = 1, 2, . . . , m)}.
Similarly, the vetor y = (y1, y2, . . . , yn)

T
is mixed strategies for player II

where yj (j = 1, 2, . . . , n) is probability in player II. The set of mixed strate-

gies for player II is Y = {y|
n∑

j=1

yj = 1, yj ≥ 0 (j = 1, 2, . . . , n)}. Assume that
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the payo� of players I is expressed with an TrIFN

D̃ij = 〈(lij, cij, dij, rij); tD̃ij
, zD̃ij

〉,

where lij ≤ cij ≤ dij ≤ rij , tD̃ij
∈ [0, 1] and zD̃ij

∈ [0, 1](i = 1, 2, . . . , m; j =

1, 2, . . . , n). Therefore, the payo� player I at allm×n pure strategy situations
an be onisely expressed in the matrix format as follows:

D̃ =




D̃11 D̃12 · · · D̃1n

D̃21 D̃22 · · · D̃2n
.

.

.

.

.

.

.

.

.

.

.

.

D̃m1 D̃m2 · · · D̃mn




denote by D̃ = (〈lij , cij, dij, rij〉)m×n or D̃ = (D̃ij)m×n.

From D̃ij = 〈(lij, cij, dij, rij); tD̃ij
, zD̃ij

〉 if cij = dij = pij(i = 1, 2, . . . , m; j =

1, 2, . . . , n) is redued to D̃ij = 〈(lij, pij, rij); tD̃ij
, zD̃ij

〉 suh that D̃ij =

〈(lij, pij, rij);
tD̃ij

, zD̃ij
〉 is all matrix games with pay�s of TIFN, whih is partiular ase

of matrix games with payo�s of TrIFN.

De�nition 4. [11℄ Let

ν̃ = 〈(ν1, ν2, ν3, ν4); tν̃ , zν̃〉 and ω̃ = 〈(ω1, ω2, ω3, ω4); tω̃, zω̃〉

be TrIFNs. If there are mixed strategies x∗ ∈ X and y∗ ∈ Y so that for any

mixed strategies x ∈ X and y ∈ Y they satisfy the two onditions as follows:

(i) x∗T D̃y≥̃ν̃ and

(ii) xT D̃y∗≤̃ω̃, then (x∗, y∗, ν̃, ω̃) is alled a reasonable solution of the matrix

game D̃ with payo�s of TrIFN. x∗ and y∗ are alled reasonable strategy for

player I and II, respetively. ν̃ and ω̃ are alled reasonable values of players

I and II, respetively.

The symbol "≤̃", "≥̃" and "=̃" are an intuitionisti fuzzy version of the

order relation "≤", "≥" and "=" on the real number set. The sets of all

reasonable values ν̃ and ω̃ for players I and II are denoted by V and W,

respetively.
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De�nition 5. [11℄ Assume that there exist reasonable values ν̃∗ ∈ V and

ω̃∗ ∈ W for playersI and II, respetively. If there do not exist any reasonable

values ν̃ ∈ V (ν̃ 6= ν̃∗) and ω̃ ∈ W (ω̃ 6= ω̃∗) so that they satisfy the onditions

as follows:

(i) ν̃≥̃ν̃∗ and,

(ii) ω̃≤̃ω̃∗
, then (x∗, y∗, ν̃∗, ω̃∗) is alled a solution of the matrix game D̃ with

payo�s of trapezoidal intuitionisti fuzzy numbers. x∗ and y∗ are alled the

maximin strategy and minimax strategy for players I and II, respetively. ν̃∗

and ω̃∗
are alled the gain-�oor of player I and the loss-eiling of player II,

respetively. x∗T D̃y∗ is alled the value of the matrix game D̃ with payo�s of

TrIFN.

2.3 Cut sets of TrIFN

De�nition 6. [5℄ A (α, λ)- ut set of Ã = 〈(l, c, d, r); tÃ, zÃ〉 is a risp subset
of R, whih is de�ned as follows:

Ãλ
α = {x|µÃ(x) ≥ α, νÃ(x) ≤ λ},

where 0 ≤ α ≤ tÃ, zÃ ≤ λ ≤ 1 and 0 ≤ α + λ ≤ 1.

De�nition 7. [5℄ The α-ut set and λ-ut set of Ã = 〈(l, c, d, r); tÃ, zÃ〉 are
a risp subset of R, whih is de�ned as follows:

Ãα = {x|µÃ(x) ≥ α}

and

Ãλ = {x|νÃ(x) ≤ λ}

respetively.

Using the membership funtion of Ã = 〈(l, c, d, r); tÃ, zÃ〉 and De�nition

7 suh that Ãα = {x|µÃ(x) ≥ α} and Ãλ = {x|νÃ(x) ≤ λ} are losed interval

and alulated as follows:

Ãα =
[
LÃ(α), RÃ(α)

]
=

[
(tÃ − α)l + αc

tÃ
,
(tÃ − α)r + αd

tÃ

]
(10)

and

Ãλ =
[
L′
Ã
(λ), R′

Ã
(λ)
]
=

[
(1− λ)c+ (λ− zÃ)l

1− zÃ
,
(1− λ)d+ (λ− zÃ)r

1− zÃ

]
(11)

respetively.
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De�nition 8. [12℄ Assume that the α-ut set and λ-ut set of any TrIFNs Ã

and B̃ are Ãα = [LÃ(α), RÃ(α)], Ã
λ = [L′

Ã
(λ), R′

Ã
(λ)], B̃α = [LB̃(α), RB̃(α)]

and B̃λ = [L′
B̃
(λ), R′

B̃
(λ)], respetively. Then the ranking order of the TrIFNs

Ã and B̃ is stipulated aording to the two ases as follws:

(i) If LB̃(α) ≥ LÃ(α) , RB̃(α) ≥ RÃ(α) , L′
B̃
(λ) ≥ L′

Ã
(λ) and R′

B̃
(λ) ≥

R′
Ã
(λ), then B̃ ≥ Ã

(ii) If LB̃(α) ≤ LÃ(α), RB̃(α) ≤ RÃ(α), L
′
B̃
(λ) ≤ L′

Ã
(λ) and R′

B̃
(λ) ≤ R′

Ã
(λ),

then B̃ ≤ Ã.

3 Mathematial programming model for the TrIFN

matrix game

As the TrIFN matrix game is a zero - sum game, from De�nition 3 expeted

payo� for player I is omputed as follows:

E(x, y) = xT D̃y

=
n∑

i=1

n∑

j=1

D̃ijxiyj

= 〈(

m∑

i=1

n∑

j=1

lijxiyj,

m∑

i=1

n∑

j=1

cijxiyj ,

m∑

i=1

n∑

j=1

dijxiyj,

m∑

i=1

n∑

j=1

rijxiyj);

∧ {tD̃ij
},∨{zD̃ij

}〉

whih is a TrIFN.

And the expeted payo� for player II obtained as follows:

E(x, y) = xT (−D̃)y

=
n∑

i=1

n∑

j=1

(−D̃ij)xiyj

= 〈(−

m∑

i=1

n∑

j=1

rijxiyj,−

m∑

i=1

n∑

j=1

dijxiyj,−

m∑

i=1

n∑

j=1

cijxiyj,

−
m∑

i=1

n∑

j=1

lijxiyj);∧{tD̃ij
},∨{zD̃ij

}〉.
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Assume that player I is a maximizing player and player II is a minimizing

player. Player I should hoose a mixed strategy x ∈ X that maximizes the

minimum expeted gain of player II, i.e.,

ν̃ = max
x∈X

min
y∈Y

{E(x, y)}, (12)

whih is alled player I's gain-�oor.

Similarly, player II should hoose a mixed strategy y ∈ Y that minimizes

the maximum expeted loss of player I, i.e.,

ω̃ = min
y∈Y

max
x∈X

{E(x, y)}, (13)

whih is alled player II's loss-eiling.

Hene, player I's gain-�oor and player II's loss eiling denoted by

ν̃ = 〈(ν1, ν2, ν3, ν4); tν̃ , zν̃〉

and

ω̃ = 〈(ω1, ω2, ω3, ω4); tω̃, zω̃〉.

From De�nitions 4, 5 and Eqs.(12) and (13) the maximin strategy x∗

and gain-�oor ν̃∗ of player I and the minimax strategy y∗ and loss-eiling ω̃∗

of player II an be generate by solving an intuitionisti fuzzy mathematial

programming model onstruted as follows:

max{ν̃}

s.t.





m∑

i=1

D̃ijxiyj≥̃ν̃ (j = 1, 2, . . . , n)(y ∈ Y )

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(14)

and

min{ω̃}

s.t.





n∑

j=1

D̃ijxiyj≤̃ω̃ (i = 1, 2, . . . , m)(x ∈ X)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n),

(15)
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respetively, where ν̃ and ω̃ are TrIFNs.

From Eqs.(14), (15) and theorem [6℄ an be onverted into an intuition-

isti fuzzy mathematial programming models as follows:

max{ν̃}

s.t.





m∑

i=1

D̃ijxi≥̃ν̃ (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(16)

and

min{ω̃}

s.t.





n∑

j=1

D̃ijyj≤̃ω̃ (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n)

(17)

respetively. From De�nitions 6 and 8 an be transformed into the interval-

valued bi-objetive mathematial programming models as follows:

max{ν̃α, ν̃
λ}

s.t.





m∑

i=1

(D̃ij)αxi ≥ ν̃α (j = 1, 2, . . . , n)

m∑

i=1

(D̃ij)
λxi ≥ ν̃λ (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(18)

the α-ut set and λ-ut set of the TrIFNs ν̃ and D̃ij = (i = 1, 2, . . . , m; j =
1, 2, . . . , n) are denoted by
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ν̃α = [νLα , ν
R
α ], ν̃λ = [νλL, ν

λ
R], (D̃ij)α = [LD̃ij

(α), RD̃ij
(α)]

and

(D̃ij)
λ = [L′

D̃ij
(λ), R′

D̃ij
(λ)],

respetively. From Eq.(18) an be written as the following interval-valued

bi-objet mathematial programming model:

max{[νLα , ν
R
α ], [ν

λ
L, ν

λ
R]}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(19)

where νLα , ν
R
α , ν

λ
L, ν

λ
R and xi(i = 1, 2, . . . , m) are deision variables.

In Eq.(19) two interval-valued objetive funtions, we will using the linear

weighted averaging method of multiobjetive deision making, their weights

are the same as 1/2 hene, Eq.(19) an be aggregated into the interval-valued

mathematial programming model as follows:
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max

{[
νLα + νλL

2
,
νRα + νλR

2

]}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m).

(20)

From Eq.(20) and Ishibuhi and Ianaka [2℄ the maximization problem

with the interval- valued objetive funtion an be written as follows:

max

{
νLα + νλL

2
,
νLα + νλL + νRα + νλR

4

}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m).

(21)

From Eq.(21) and using the linear weighted averaging method of multi-

objetive deision making [13℄ - [14℄ an be written as follows:
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max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(22)

where ξ ∈ [0, 1].

From Eqs.(10) and (11) we an obtain the α-ut set and λ-ut set of the

TrIFNs D̃ij = 〈(lij , cij, dij, rij); tD̃ij
, zD̃ij

〉(i = 1, 2, . . . , m; j = 1, 2, . . . , n) as
follows:

(D̃ij)α =
[
LD̃ij

(α), RD̃ij
(α)
]
=

[
(tD̃ij

− α)lij + αcij

tD̃ij

,
(tD̃ij

− α)rij + αdij

tD̃ij

]

(23)

and

(D̃ij)
λ =

[
L′
D̃ij

(λ), R′
D̃ij

(λ)
]

=

[
(1− λ)aij + (λ− zD̃ij

)lij

1− zD̃ij

,
(1− λ)dij + (λ− uD̃ij

)rij

1− zD̃ij

]
(24)

respetively.

From Eq.(22) an rewritten as the following linear programming model:
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max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





m∑

i=1

(tD̃ij
− α)lij + αcij

tD̃ij

xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

(tD̃ij
− α)rij + αdij

tD̃ij

xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

(1− λ)cij + (λ− zD̃ij
)lij

1− zD̃ij

xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

(1− λ)dij + (λ− zD̃ij
)rij

1− zD̃ij

xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(25)

where ξ ∈ [0, 1], α ∈ [0, tD̃], λ ∈ [zD̃, 1] and α + λ ∈ [0, 1].

Using the simplex method of linear programming, we an obtain the opti-

mal solution of Eq.(25), denote by (x∗(α, λ), νL∗α , νR∗
α , νλ∗L , ν

λ∗
R ). where x∗(α, λ)

is the maximin strategy of player I at the 〈α, λ〉-on�dene level. νL∗α and

νR∗
α are the lower and upper bounds of the gain-�oor ν̃∗ of player I at the

α-on�dene level, that is α- ut set ν̃∗α of ν̃∗. Similarly, νλ∗L and νλ∗R are the

lower and upper bounds of the gain-�oor ν̃∗ of player I at the λ-on�dene
level, that is that is λ-ut set ν̃∗λ of ν̃∗.

In the same way, from De�ntion 8 and Eq.(17) an be written as the

following interval-valued bi-objetive mathematial programming model:

min{ω̃α, ω̃
λ}

s.t.





n∑

j=1

(D̃ij)αyj ≤ ω̃α (i = 1, 2, . . . , m)

n∑

j=1

(D̃ij)
λyj ≤ ω̃λ (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(26)
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The α-ut set and λ-ut set of the TrIFN ω̃ are denote by

ω̃α =
[
ωL
α , ω

R
α

]
and ω̃λ =

[
ωλ
L, ω

λ
R

]
,

respetively.

From Eq.[26℄ an be written as the folowing interval-valued bi-objetive

mathematial programming model:

min{[ωL
α , ω

R
α ], [ω

λ
L, ω

λ
R]}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

R (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n)

(27)

where ωL
α , ω

R
α , ω

λ
L, ω

λ
R and yj (i = 1, 2, . . . , n) are deision variables.

From Eq.(27) and use the linear weighted veraging method of multiob-

jetive deisionmaking [13℄ - [14℄ an be aggregated into the interval-valued

mathematial programming model as follows:
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min

{[
ωL
α + ωλ

L

2
,
ωR
α + ωλ

R

2

]}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

R (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

m∑

i=1

yj = 1

yj ≥ 0 (i = 1, 2, . . . , n).

(28)

From Eq.(28) and the maximization problem with the interval-valued ob-

jetive funtion [2℄ an be written as follows:

min

{
ωR
α + ωλ

R

2
+
ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

α (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(29)

Similary, using the linear weighted averaging method of multiobjetive

deision making, from Eqs.(23), (24) and (29) an be further aggregated and

onvert into the linear programming model as follows:
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min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





n∑

j=1

(tD̃ij
− α)lij + αcij

tD̃ij

yj ≤ ωL
α (i = 1, 2, . . . , m)

n∑

j=1

(tD̃ij
− α)rij + αdij

tD̃ij

yj ≤ ωR
α (i = 1, 2, . . . , m)

n∑

j=1

(1− λ)cij + (λ− zD̃ij
)lij

1− zD̃ij

yi ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

j=1

(1− λ)dij + (λ− zD̃ij
)rij

1− zD̃ij

yi ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(30)

For any adequately given values of the parameters ξ, α and λ, using the

simplex medthod of linear programming, we an obtain the optimal solution

of Eq.(30), denote by (y∗(α, λ), ωL∗
α , ωR∗

α , ωλ∗
L , ω

λ∗
R ) where y∗(α, λ) is the min-

imax strategy of player II at the 〈α, λ〉-on�dene level. ωL∗
α and ωR∗

α are the

lower and upper bounds of the gain-�oor ω̃∗
of player II at the α-on�dene

level, that is α- ut set ω̃∗
α of ω̃∗. similarly, ωλ∗

L and ωλ∗
R are the lower and

upper bounds of the gain-�oor ω̃∗
of player II at the λ-on�dene level, that

is that is λ- ut set ω̃∗
λ of ω̃∗.

4 An appliation to voting share problem

In this examples 1 and 2, using Eqs.(25) and (30) to solve the problem.

Example 1.

Assume that there is an eletion where two major politial parties M and

W partiipate and total number of voters in that regions is stable. It means

that the inrease in perentage of votes for one politial party results in the

same for the other politial party. Suppose M has two strategies as

ρ1: the ampaign by big rallies and superstar.

ρ2: o-operating with other small politial parties to redue seured votes of

the opposition.
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Simultaneously W takes two strategies:

τ1: Making lot of promises to the people.

τ2: ampaigning by use of mixed media suh as publiation and television.

Let us onsider matrix game D with payo�s of TrIFN, where the payo�

matrix of the politial parties M is given as follows:

D̃ =

[
〈(155, 165, 175, 180); 0.7, 0.2〉 〈(130, 146, 150, 165); 0.6, 0.2〉
〈(75, 85, 95, 100); 0.6, 0.3〉 〈(160, 170, 184, 190); 0.8, 0.1〉

]

where the element 〈(155, 165, 175, 180); 0.7, 0.2〉 in the matrix D̃ is TrIFN

represent that when M hoose the strategy ρ1 and W hoose the strategy τ1
then votes of the politial parties M is between 155 and 180 the maximum

on�dene level and minimum non-on�dene level of the head eletion ex-

ponent of D̃ are 0.7 and 0.2, respetively. In this ase, the hestiane degree

is 0.1 other elements in D̃ may be identially explained.

From eqs.(25) and (30) the parameterized linear programming is obtained

as follows:

max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





(0.7− α)155 + 165α

0.7
x1 +

(0.6− α)75 + 85α

0.6
x2 ≥ νLα

(0.6− α)130 + 146α

0.6
x1 +

(0.8− α)160 + 170α

0.8
x2 ≥ νLα

(0.7− α)180 + 175α

0.7
x1 +

(0.6− α)100 + 95α

0.6
x2 ≥ νRα

(0.6− α)165 + 150α

0.6
x1 +

(0.8− α)190 + 184α

0.8
x2 ≥ νRα

(1− λ)165 + (λ− 0.2)155

0.8
x1 +

(1− λ)85 + (λ− 0.3)75

0.7
x2 ≥ νλL

(1− λ)146 + (λ− 0.2)130

0.8
x1 +

(1− λ)170 + (λ− 0.1)160

0.9
x2 ≥ νλL

(1− λ)175 + (λ− 0.2)180

0.8
x1 +

(1− λ)95 + (λ− 0.3)100

0.7
x2 ≥ νλR

(1− λ)150 + (λ− 0.2)165

0.8
x1 +

(1− λ)184 + (λ− 0.1)190

0.9
x2 ≥ νλR

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

(31)
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and

min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





(0.7− α)155 + 165α

0.7
y1 +

(0.6− α)130 + 146α

0.6
y2 ≤ ωL

α

(0.6− α)75 + 85α

0.6
y1 +

(0.8− α)160 + 170α

0.8
y2 ≤ ωL

α

(0.7− α)180 + 175α

0.7
y1 +

(0.6− α)165 + 150α

0.6
y2 ≤ ωR

α

(0.6− α)100 + 95α

0.6
y1 +

(0.8− α)190 + 184α

0.8
y2 ≤ ωR

α

(1− λ)165 + (λ− 0.2)155

0.8
y1 +

(1− λ)146 + (λ− 0.2)130

0.8
y2 ≤ ωλ

L

(1− λ)85 + (λ− 0.3)75

0.7
y1 +

(1− λ)170 + (λ− 0.1)160

0.9
y2 ≤ ωλ

L

(1− λ)175 + (λ− 0.2)180

0.8
y1 +

(1− λ)150 + (λ− 0.2)165

0.8
y2 ≤ ωλ

R

(1− λ)95 + (λ− 0.3)100

0.7
y1 +

(1− λ)184 + (λ− 0.1)190

0.9
y2 ≤ ωλ

R

y1 + y2 = 1

y1 ≥, y2 ≥ 0

(32)

respetively.

For the given ξ = 0.8, α ∈ [0, 0.6] and λ ∈ [0.3, 1]. The greatest possible
value of α and the smallest possible value of λ are omputed as follows:

min{tD̃ij
|i = 1, 2; J = 1, 2} = min{0.7, 0.6, 0.6, 0.8} = 0.6

and

max{zD̃ij
|i = 1, 2; J = 1, 2} = max{0.2, 0.2, 0.3, 0.1} = 0.3

respetively.

Solving Eqs.(31) and (32) we omputed by simplex method for linear

programming. The result as follows:

Player M's gain-�oor ν̃∗ stay in the ranges ν̃∗〈α,λ〉 = [136.82, 161.82]. When

〈α, λ〉 = 〈0.6, 0.3〉, ν̃∗〈α,λ〉 = [148.18, 157.75] is the most possible value of the

gain-�oor ν̃∗ of player M, where x∗T (α, λ) = (0.824, 0.176). And Player W's
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loss-eiling ω̃∗
stay in the ranges ω̃∗

〈α,λ〉 = [139.76, 168.57]. When 〈α, λ〉 =

〈0.6, 0.3〉 , ω̃∗
〈α,λ〉 = [150.05, 159.13] is the most possible value of the loss-

eiling ω̃∗
of player W, where y∗T (α, λ) = (0.306, 0.694). Thus, the ap-

proximate values of player M's gain-�oor ν̃∗ and player W's loss-eiling

ω̃∗
whih are TrIFNs are ν̃∗ = 〈(136.82, 148.18, 157.75, 161.82); 0.6, 0.3〉 and

ω̃∗ = 〈(139.76, 150.05, 159.13, 168.57); 0.6, 0.3〉, respetively.

Example 2.

From example 1 we will redued matrix game D̃ with payo�s of TrIFN

to matrix game D̃ of TIFN as follows:

D̃ =

[
〈(155, 170, 180); 0.7, 0.2〉 〈(130, 148, 165); 0.6, 0.2〉
〈(75, 90, 100); 0.6, 0.3〉 〈(160, 177, 190); 0.8, 0.1〉

]

From eqs.(25) and (30) the parameterized linear programming is obtained

as follows:

max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





(0.7− α)155 + 170α

0.7
x1 +

(0.6− α)75 + 90α

0.6
x2 ≥ νLα

(0.6− α)130 + 148α

0.6
x1 +

(0.8− α)160 + 177α

0.8
x2 ≥ νLα

(0.7− α)180 + 170α

0.7
x1 +

(0.6− α)100 + 90α

0.6
x2 ≥ νRα

(0.6− α)165 + 148α

0.6
x1 +

(0.8− α)190 + 177α

0.8
x2 ≥ νRα

(1− λ)170 + (λ− 0.2)155

0.8
x1 +

(1− λ)90 + (λ− 0.3)75

0.7
x2 ≥ νλL

(1− λ)148 + (λ− 0.2)130

0.8
x1 +

(1− λ)177 + (λ− 0.1)160

0.9
x2 ≥ νλL

(1− λ)170 + (λ− 0.2)180

0.8
x1 +

(1− λ)90 + (λ− 0.3)100

0.7
x2 ≥ νλR

(1− λ)148 + (λ− 0.2)165

0.8
x1 +

(1− λ)177 + (λ− 0.1)190

0.9
x2 ≥ νλR

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

(33)

and
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min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





(0.7− α)155 + 170α

0.7
y1 +

(0.6− α)130 + 148α

0.6
y2 ≤ ωL

α

(0.6− α)75 + 90α

0.6
y1 +

(0.8− α)160 + 177α

0.8
y2 ≤ ωL

α

(0.7− α)180 + 170α

0.7
y1 +

(0.6− α)165 + 148α

0.6
y2 ≤ ωR

α

(0.6− α)100 + 90α

0.6
y1 +

(0.8− α)190 + 177α

0.8
y2 ≤ ωR

α

(1− λ)170 + (λ− 0.2)155

0.8
y1 +

(1− λ)148 + (λ− 0.2)130

0.8
y2 ≤ ωλ

L

(1− λ)90 + (λ− 0.3)75

0.7
y1 +

(1− λ)177 + (λ− 0.1)160

0.9
y2 ≤ ωλ

L

(1− λ)170 + (λ− 0.2)180

0.8
y1 +

(1− λ)148 + (λ− 0.2)165

0.8
y2 ≤ ωλ

R

(1− λ)90 + (λ− 0.3)100

0.7
y1 +

(1− λ)177 + (λ− 0.1)190

0.9
y2 ≤ ωλ

R

y1 + y2 = 1

y1 ≥, y2 ≥ 0

(34)

respetively.

Solving Eqs.(33) and (34) we omputed by simplex method for linear

programming. The result as follows: Player M's gain-�oor ν̃∗ stay in the

ranges ν̃∗〈α,λ〉 = [136.82, 161.82]. When 〈α, λ〉 = 〈0.6, 0.3〉, ν̃∗〈α,λ〉 = 152.22 is

the most possible value of the gain-�oor ν̃∗ of player M, where x∗T (α, λ) =
(0.806, 0.194). And Player W's loss-eiling ω̃∗

stay in the ranges ω̃∗
〈α,λ〉 =

[139.76, 168.57]. When 〈α, λ〉 = 〈0.6, 0.3〉 , ω̃∗
〈α,λ〉 = 155.13 is the most possi-

ble value of the loss-eiling ω̃∗
of player W, where y∗T (α, λ) = (0.284, 0.716).

Thus, the approximate values of player M's gain-�oor ν̃∗ and player W's loss-

eiling ω̃∗
whih are TrIFNs are ν̃∗ = 〈(136.82, 152.22, 161.82); 0.6, 0.3〉 and

ω̃∗ = 〈(139.76, 155.13, 168.57); 0.6, 0.3〉, respetively.

From examples 1 and 2 we will �nd the estimate values of player M's

gain-�oor ν̃∗ and player W's loss-eiling ω̃∗
for matrix game with payo�s of

TIFN and matrix game with payo�s of TrIFN are a little di�erent. The

matrix game with payo�s of TIFN is the most possible single value, while

the matrix game with payo�s of TrIFN is the range the most possible.
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5 Conlusion

Game theory is about the strategy of the deision of player. Good deisions

require aurate and preise data. But in some ases the information available

to a fuzzy unertainty will a�et the deision and payo�s.

In this work we have examples of two-person zero-sum games whih only

two players who have de�ned the strategy of eah player on two strategies. To

�nd the best response we have used the onept of the ut sets and onept of

solution of matrix games with payo�s of TrIFNs. Intuitionisti fuzzy linear

programming models are established for two playes, whih hange into bi-

objetive parameterized linear programmingmodel. Two linear programming

models are onstruted to generate the maximin and minimax strategies for

players it is seen the solving TrIFN matrix games be omes to solving a pair

of intuitionisti fuzzy linear programming problems. This is one example

with respet to the eletion. We also an apply to the issue of market share,

inventory management[15℄, [16℄, �nane[17℄, management and eonomis.
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