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Abstrat

An expliit numerial sheme developed by Von Rosenberg for the onvetion-

di�usion equation in one spatial dimension is reviewed and analyzed. The on-

vergene of this sheme is outlined and a omparative study was established with

an expliit standard �nite di�erene sheme. The results show that Von Rosen-

berg's sheme onsiderably improves the stability ondition and auray in di�ult

problems assoiated with very small di�usion oe�ients. This study extends and

orrets the original work presented by Von Rosenberg, whih represents an origi-

nal ontribution.
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1 Introdution

Numerial methods are very important beause they solve omplex problems

in engineering and sienes [1℄. In partiular, numerial methods are widely

used for solving partial di�erential equations. The purpose of this researh is

the study of an expliit numerial sheme developed by D.U. Von Rosenberg,

[2℄, for the one dimensional onvetion di�usion equation. This sheme has
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impressive performane at solving onvetion di�usion problems with large

speeds and low di�usion oe�ients.

Von Rosenberg's method was presented for �rst time in [2℄, it was adapted

to the variable oe�ient ase in [3℄, and it was extended to multidimensional

problems in [4℄. However, a omplete analysis of onvergene of the method,

even in one dimension, is not available in the tehnial literature to the best

of our knowledged, so this paper �lls that gap.

The ontent of this paper has been distributed in six setions. First

setion is this short introdution. Seond setion gives a desription of the

onvetion di�usion equation in the ontext of this artile. Third setion

states Von Rosenberg's method. Setion four is devoted to onverge analysis

of the method. Finally, setions �ve and six ontain a numerial omparative

study and the onlusions.

2 Equations

In this paper the onvetion di�usion equation is represented by the following

equation

D
∂2u

∂x2
− v

∂u

∂x
=

∂u

∂t
. (1)

In this equation u is the �uid property, x is the spatial variable (x ≥ 0),
t is the time variable (t ≥ 0), D is the di�usion oe�ient and v is the �uid

veloity. For onveniene and without lost of generality, v and D are positive

onstants.

The onvetion and di�usion equation represent mathematially a phys-

ial proess of heat transfer that simultaneously ombines both forms of

transmission. However, there are other physial proesses suh as �uid �ow

in porous media whih is also governed by the same equation. [5, 6℄. Conse-

quently, it will be assumed that all variables in Eq. (1) are dimensionless.

The general upstream boundary ondition for Eq. (1) for all t is

v(g(t)− u(0, t)) +D
∂u

∂x
(0, t) = 0. (2)

As D approahes 0, this ondition simpli�es to

u(0, t) = g(t) (3)
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and g is a given funtion. Sine D is small for the ases of interest, the

numerial solutions were obtained with Eq. (3). Upstream ondition is similar

to Eq. (3) but evaluated at the upper side of the spae interval of integration,

namely u(L, t) = h(t), h a known funtion, if x in Eq. (1) runs on [0, L]. In
this work and [2℄ h(t) is the null funtion if no expliit mention of it is made.

In order to solve the onvetion di�usion equations an initial ondition is

required

u(x, 0) = f(x) (4)

where f is a given funtion.

3 Von Rosenberg's Method

Next we present the Von Rosenberg's method (VR) using one dimensional

onvetion-di�usion equation (1), it ombines the Crank-Niholson and Fi-

nite Di�erene (FD) methods.

Von Rosenberg's method is expliit and onsequently the relationship

must be satis�ed

△x

v△t
= 1

where we all Q = △x
v△t

for easy referene.

When the method is stated, we use the next parameter

R =
2D

v△x
,

whih plays a fundamental role in this setion. In these expressions △t is the
time step and △x is the size of the mesh blok in spae.

To approximate the di�usion term we use a Crank-Niholson type ap-

proximation obtaining

D
∂2u

∂x2
≈ D

2(∆x)2
[un

i+1 − 2un
i + un

i−1 + un+1
i+1 − 2un+1

i + un+1
i−1 ].

Then taking into aount Q = 1 the last expression is equivalent to

D
∂2u

∂x2
≈ (

1

∆t
) (

R

4
)[un+1

i+1 − 2un+1
i + un+1

i−1 + un
i+1 − 2un

i + un
i−1]. (5)
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To approximate the onvetion term two di�erent disretizations are av-

eraged as funtions of R. The �rst one is an expliit approximation type

upwind

(
∂u

∂t
+ v

∂u

∂x
)i−1/2,n+1/2 ≈

un+1
i − un

i

∆t
+ v

un
i − un

i−1

∆x

whih taking into aount that Q = 1 transforms into

(
∂u

∂t
+ v

∂u

∂x
)i−1/2,n+1/2 ≈

un+1
i − un

i−1

∆t
. (6)

The seond of the approximations is a entered type Crank-Niholson

approah

(
∂u

∂t
+ v

∂u

∂x
)i,n+1/2 ≈

un+1
i − un

i

∆t
+ v

1

2
(
un
i+1 − un

i−1

2∆x
+

un+1
i+1 − un+1

i−1

2∆x
).

Whih onsidering the restrition Q = 1 an be written as

(
∂u

∂t
+ v

∂u

∂x
)i,n+1/2 ≈

1

∆t
[(un+1

i − un
i ) +

1

4
(un+1

i+1 − un+1
i−1 + un

i+1 − un
i−1)]. (7)

Combining Eq. (6) with Eq. (7) using as weights (1 − R) and R respe-

tively, it results

(
∂u

∂t
+ v

∂u

∂x
)i−1/2(1−R),n+1/2

≈ 1

∆t
[un+1

i − un
i−1 +

R

4
(3un

i−1 + un+1
i+1 + un

i+1 − un+1
i−1 − 4un

i )]. (8)

Substituting expressions Eq. (8) and Eq. (5) as approximations in Eq. (1)

results

(

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

)

≈ 1

2(∆t)

[

(2 +R)un+1
i − (2−R)un

i−1 − R
(

un
i + un+1

i−1

)]

. (9)

If initial and boundary onditions, as desribed in the previous setion,

are taken into aount then the Von Rosenberg's method beomes an expliit

sheme.
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4 Convergene study

In this setion a onvergene analysis of the Von Rosenberg's method is pre-

sented under the boundary onditions desribed in setion 3. For simpliity,

it will be assumed that g(t) = 1 and f(x) = 0.

4.1 Consisteny

Let G ⊂ R
2
an open set and u : G → R. Using the following notation

u(xi, tn) = un
i

The trunation error is obtained by substituting the Taylor's formula

u, around the point where the �nite di�erenes Von Rosenberg method are

entered [2℄, ie, xi−(1/2)(1−R), tn+1/2.

Substituting the Taylor's formula for u, on the right side of the following

expression

(

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

)

≈ 1

2(∆t)

[

(2 +R)un+1
i − (2−R)un

i−1 − Run+1
i−1 −Run

i

]

. (10)

And realling that Q = ∆x
v∆t

= 1 and R = 2D
v∆x

, so

(∆x)2

2(∆t)
R = D, we obtain

the expansion of the one dimensional onvetion-di�usion equation

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2
=

[(2 +R)un+1
i − (2− R)un

i−1 −Run+1
i−1 − Run

i ]

2(∆t)

+ [1 + 3R2]v
∂3u

∂x3

(∆x)2

24
+ [1−R2]

∂3u

∂x2t

(∆x)2

8

+
∂3u

∂xt2
(∆x)(∆t)

8
+

∂3u

∂t3
(∆t)2

24
+H.O.T.

With trunation error

[1 + 3R2]v
∂3u

∂x3

(∆x)2

24
+ [1−R2]

∂3u

∂x2t

(∆x)2

8
+

∂3u

∂xt2
(∆x)(∆t)

8
+

∂3u

∂t3
(∆t)2

24
+H.O.T.
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Reall that H.O.T. is the sum of remainder terms in Taylor's formula.

This trunation error is of quadrati order for both spae and time, ie,

O((∆x)2, (∆t)2).
Therefore, by the above study, the sheme Von Rosenberg is onsistent,

sine the trunation error vanishes when ∆x → 0 y ∆t → 0.
Observation

In the artile by Von Rosenberg [2℄ there is an error in the expression of

the trunation error. The orret trunation error is the one presented in

this subsetion.

4.2 Stability

To study the stability of Von Rosenberg method will use the Gershgorin

irle theorem [6, 7℄.

The di�erene equation for the Von Rosenberg equation for an homoge-

neous onvetion-di�usion equations is:

A Un+1 = B Un +R F1 + (2− R) F2

where

A =











(2 +R) 0 . . . 0
−R (2 +R) . . . 0
.

.

.

.

.

.

.
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.

.

.
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, B =











R 0 . . . 0
(2−R) R . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . (2−R) R











Un+1 = (un+1
1 , un+1

2 , . . . , un+1
N−1)

t

Un = (un
1 , u

n
2 , . . . , un

N−1)
t

F1 = (un+1
0 , 0, . . . , 0)t

F2 = (un
0 , 0, . . . , 0)t

The stability study is perfomed by applying Gershgorin theorem to esti-

mate the eigenvalues of these matries. We begin by estimating the eigen-

values of matrix A, where we obtain

2 ≤ λ ≤ 2(R + 1) (11)
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For making the study of the eigenvalues of matrix A−1
the reiproal of

the inequality Eq. (11) is used.

1

2
≥ 1

λ
≥ 1

2(R + 1)
(12)

We will do the same study for the matrix B, where we obtain

2(R− 1) ≤ β ≤ 2 (13)

Estimation of the eigenvalues for A−1B, is obtained by multiplying in-

equalities Eq. (12) and Eq. (13).

1 ≥ β.
1

λ
≥ R− 1

R + 1
(14)

As

R−1
R+1

≥ −1 beause R = 2D
v ∆x

> 0 then

∣

∣

∣

∣

β

λ

∣

∣

∣

∣

≤ 1

and, the Von Rosenbetg method is stable when the ondition Q = 1 is

satis�ed.

4.3 Convergene

The onvergene of the Von Rosenberg method follows by an appliation of

the well known Lax equivalene theorem [6, 7℄.

5 Numerial experiments

Two numerial examples will be presented and analyzed, eah example will

be omposed of two graphis, the di�usion of the �rst graph will be 0.001 and
the seond 0.1. For eah example the Von Rosenberg method shows a better

performane than an expliit standard �nite di�erene sheme. In order to

appreiate the auray of the Von Rosenberg method a table with the errors

between analyti and numerial solutions is presented with eah �gure. Those

tables show that Von Rosenberg method produes better approximations.

Table 1 shows some notation used in the analysis of the examples.
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Tab. 1: Notation used for tables of examples.

Notation Desription

ua(x, t) Analytial solution values

u(x, t) Values approah to numerial solution by the Von Rosenberg

method

udf(x, t) Values approah to numerial solution by the Finite Di�erene

method

|ua(x, t)− u(x, t)| Absolute error for the solutions obtained by the Von Rosenberg

method

|ua(x, t)− udf(x, t)| Absolute error for the solutions obtained by the Finite Di�erene

method

Example 1

For this example, we will use the boundary ondition Eq. (3) where g(t) = 1
and initial ondition Eq. (4) where f(x) = 0. The spatial and temporal

domain of this example is [0, 8]. For this �rst example, by the Von Rosenberg

method, forty steps were used in spae (N = 40) and forty steps in time

(M = 40) and the �nite di�erene method used N = 40 and M = 1000.
Fig. 1 shows the �rst graph of Example 1 (Example 1a).

Table 2 shows some numerial results. Fig. 2 shows the seond graph in

Example 1 (Example 1b).

Table 3 shows some orresponding numerial results assoiated to Fig. 2.

In the graphs for Example 1 it an be seen that the Von Rosenberg method

is the best approximation to the analytial solution. This an also be seen

in the tables, where errors by the method of Von Rosenberg are smaller

than the Finite Di�erene method. Consequently, Von Rosenberg's method

is the most favorable option for the numerial approximations for the one-

dimensional onvetion-di�usion equation, with the boundary ondition and

initial ondition onsidered in this example.

Example 2

For this example the spatial interval [0, 8] is used and the time interval [0, 4],
the �uid veloity is v = 1 and the time hart is t = 4. The boundary
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onditions are

u(0, t) = 0, u(8, t) = 0, t > 0.

The initial ondition for this example,







u(x, 0) = 1, for 0.1 < x < 1.1

u(x, 0) = 0, in another ase

For the Von Rosenberg method, steps in spae and time are, N = 40 and

M = 40. For the �nite di�erene method, steps in spae are, N = 40 and

the ∆t = (∆x)2

4(∆x v+2D)
.

For the one dimensional onvetion-di�usion equation with boundary ondi-

tions and initial ondition mentioned above, we don't have analytial solu-

tion, so we take as analyti solution the �nite di�erene approximation with

N = 4000.
Fig. 3 shows the �rst graph of Example 2 (Example 2a).

Table 4 shows some numerial results. Fig. 4 shows the seond graph of

Example 2 (Example 2b).

Some numerial results are shown in the table 5.

Results from Example 2 show that numerial approximation produed by

Von Rosenberg method are the best.

6 Conlusions

The results obtained indiate that the Von Rosenberg method produes the

best approximations for the solutions of the onvetion-di�usion equation. As

we have seen in the examples, always the method of Von Rosenberg brings

the best results. To demonstrate the auray of the Von Rosenberg method,

very small broadast values were used in the examples (this orresponds to

0 < R ≤ 1), it is in that ase where the other numerial methods with few

steps of spae and time do not onverge so quikly. For very high broadasts,

D > 1, not showed in the examples, numerial tests were performed and the

solution obtained by the method of Von Rosenberg onverges to the analytial

solution.

Main advantages of Von Rosenberg method are its easy implementation

and formulation, it is the ombination of Centered Finite Di�erene method
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and the impliit Crank-Niholson method. Another advantage is that the

trunation error is of quadrati order for both spae and time. The ana-

lytial study of onvergene of the method of Von Rosenberg orrets the

onsisteny analysis presented in [2℄ and omplement the stability analysis,

whih is omitted in [2℄. Consequently the onvergene study is an original

ontribution of this work.
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Fig. 1: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analytial solution (D = 0.001, t = 4).

Tab. 2: Results of Example 1a (D = 0.001, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t) − udf(x, t)|
0 1.00000 1.00000 1.00000 0.00000 0.00000

2.4 1.00000 1.00000 0.97992 0.00000 0.02007

4.4 0.00000 0.00443 0.35569 0.00443 0.35569

6.4 0.00000 0.00000 0.00713 0.00000 0.00713

8 0.00000 0.00000 0.00000 0.00000 0.00000
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Fig. 2: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analytial solution (D = 0.1, t = 4).

Tab. 3: Results of Example 1b (D = 0.1, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t)− udf(x, t)|
0 1.00000 1.00000 1.00000 0.00000 0.00000

2.4 0.97422 0.98182 0.93346 0.00759 0.04076

4.4 0.36537 0.34938 0.42798 0.01599 0.06260

6.4 0.00457 0.00999 0.03825 0.00541 0.03367

8 0.00000 0.00000 0.00000 0.00000 0.00000
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Fig. 3: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analytial solution (D = 0.001, t = 4).

Tab. 4: Results of Example 2a (D = 0.001, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t) − udf(x, t)|
0 0.00000 0.00000 0.00000 0.00000 0.00000

2.4 0.00000 0.00000 0.00490 0.00000 0.00490

4.4 0.99230 0.99600 0.43360 0.00370 0.55870

6.4 0.00000 0.00000 0.07910 0.00000 0.07910

8 0.00000 0.00000 0.00000 0.00000 0.00000
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Fig. 4: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analytial solution (D = 0.1, t = 4).

Tab. 5: Results of Example 2b (D = 0.1, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t)− udf(x, t)|
0 0.00000 0.00000 0.00000 0.00000 0.00000

2.4 0.02290 0.00850 0.04240 0.01440 0.01950

4.4 0.39890 0.41220 0.29180 0.01330 0.10710

6.4 0.06870 0.09670 0.14330 0.02800 0.07460

8 0.00000 0.00000 0.00000 0.00000 0.00000




