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Abstract

An explicit numerical scheme developed by Von Rosenberg for the convection-
diffusion equation in one spatial dimension is reviewed and analyzed. The con-
vergence of this scheme is outlined and a comparative study was established with
an explicit standard finite difference scheme. The results show that Von Rosen-
berg’s scheme considerably improves the stability condition and accuracy in difficult
problems associated with very small diffusion coefficients. This study extends and
corrects the original work presented by Von Rosenberg, which represents an origi-
nal contribution.
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1 Introduction

Numerical methods are very important because they solve complex problems
in engineering and sciences [1]. In particular, numerical methods are widely
used for solving partial differential equations. The purpose of this research is
the study of an explicit numerical scheme developed by D.U. Von Rosenberg,
[2], for the one dimensional convection diffusion equation. This scheme has
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impressive performance at solving convection diffusion problems with large
speeds and low diffusion coefficients.

Von Rosenberg’s method was presented for first time in [2], it was adapted
to the variable coefficient case in [3], and it was extended to multidimensional
problems in [4]. However, a complete analysis of convergence of the method,
even in one dimension, is not available in the technical literature to the best
of our knowledged, so this paper fills that gap.

The content of this paper has been distributed in six sections. First
section is this short introduction. Second section gives a description of the
convection diffusion equation in the context of this article. Third section
states Von Rosenberg’s method. Section four is devoted to converge analysis
of the method. Finally, sections five and six contain a numerical comparative
study and the conclusions.

2 Equations

In this paper the convection diffusion equation is represented by the following
equation
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In this equation u is the fluid property, = is the spatial variable (x > 0),
t is the time variable (t > 0), D is the diffusion coefficient and v is the fluid
velocity. For convenience and without lost of generality, v and D are positive
constants.

The convection and diffusion equation represent mathematically a phys-
ical process of heat transfer that simultaneously combines both forms of
transmission. However, there are other physical processes such as fluid flow
in porous media which is also governed by the same equation. [5,6]. Conse-
quently, it will be assumed that all variables in Eq. (1) are dimensionless.

The general upstream boundary condition for Eq. (1) for all ¢ is

u(g(t) — u(0,1)) + D%(O,t) ~0. 2)

As D approaches 0, this condition simplifies to

w(0,t) = g(t) (3)
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and ¢ is a given function. Since D is small for the cases of interest, the
numerical solutions were obtained with Eq. (3). Upstream condition is similar
to Eq. (3) but evaluated at the upper side of the space interval of integration,
namely u(L,t) = h(t), h a known function, if  in Eq. (1) runs on [0, L]. In
this work and [2] A(t) is the null function if no explicit mention of it is made.
In order to solve the convection diffusion equations an initial condition is
required

u(z,0) = f(x) (4)

where f is a given function.

3 Von Rosenberg’'s Method

Next we present the Von Rosenberg’s method (VR) using one dimensional
convection-diffusion equation (1), it combines the Crank-Nicholson and Fi-
nite Difference (FD) methods.

Von Rosenberg’s method is explicit and consequently the relationship

must be satisfied
Az B

vAt
where we call () = % for easy reference.
When the method is stated, we use the next parameter
2D
R=——
vAx
which plays a fundamental role in this section. In these expressions At is the
time step and Ax is the size of the mesh block in space.
To approximate the diffusion term we use a Crank-Nicholson type ap-
proximation obtaining
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Then taking into account () = 1 the last expression is equivalent to
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To approximate the convection term two different discretizations are av-
eraged as functions of R. The first one is an explicit approximation type
upwind

(0u N au) ul Tt — N ul —ul
— tuao)iciamnte R v
ot xR At Az

which taking into account that () = 1 transforms into
ou  Ou ultt —
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The second of the approximations is a centered type Crank-Nicholson
approach
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Which considering the restriction () = 1 can be written as

(E + Ua_x)i,nﬂ/? ~ E[(“i“ — Uy ) + Z(ui—:_ll - “z‘—+11 + Ui — uifl)]‘ (7)

Combining Eq. (6) with Eq. (7) using as weights (1 — R) and R respec-
tively, it results

ou ou
(E + U%)i—l/ﬂl—R),n—f—l/Q
1 n+1 n R n n+1 n n+1 n
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Substituting expressions Eq. (8) and Eq. (5) as approximations in Eq. (1)

results
ou ou d%u
(a . D@)
1
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If initial and boundary conditions, as described in the previous section,
are taken into account then the Von Rosenberg’s method becomes an explicit
scheme.
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4 Convergence study

In this section a convergence analysis of the Von Rosenberg’s method is pre-
sented under the boundary conditions described in section 3. For simplicity,
it will be assumed that g(t) = 1 and f(z) =

4.1 Consistency

Let G C R? an open set and u : G — R. Using the following notation

u(zi, tn) = ul'

The truncation error is obtained by substituting the Taylor’s formula

u, around the point where the finite differences Von Rosenberg method are
centered (2], ie, z;_a/2)1-R)» tnt1/2-

Substituting the Taylor’s formula for u, on the right side of the following

expression
ou  Ou 0%u
(E T D@)
1 n n n n
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And recalling that Q = =land R= 225 (Q?Xt R = D, we obtain

the expansion of the one dlmensmnal convection- dlffusmn equation
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With truncation error
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Recall that H.O.T. is the sum of remainder terms in Taylor’s formula.
This truncation error is of quadratic order for both space and time, ie,
O((Ax)?, (At)?).

Therefore, by the above study, the scheme Von Rosenberg is consistent,
since the truncation error vanishes when Az — 0y At — 0.

Observation

In the article by Von Rosenberg [2] there is an error in the expression of
the truncation error. The correct truncation error is the one presented in
this subsection.

4.2 Stability

To study the stability of Von Rosenberg method will use the Gershgorin
circle theorem [6,7].

The difference equation for the Von Rosenberg equation for an homoge-
neous convection-diffusion equations is:

AU =BU"+RF +(2—-R) F

where
(2+ R) 0 0 R 0 0
—R (2+ R) 0 (2—R) R 0
A= . , B=
0 —R (24+R) 0 (2—R) R
Ur = (urllv ugv . 7“?/’—1)t
Fy = (ugtt,0, ... ,0)
F2 - (uga 07 7O)t

The stability study is perfomed by applying Gershgorin theorem to esti-
mate the eigenvalues of these matrices. We begin by estimating the eigen-
values of matrix A, where we obtain

2<A<2(R+1) (11)
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For making the study of the eigenvalues of matrix A~! the reciprocal of
the inequality Eq. (11) is used.

L1, 1 (12)
27 N7 2(R+1)

We will do the same study for the matrix B, where we obtain
2(R—1)< B <2 (13)

Estimation of the eigenvalues for A™!B, is obtained by multiplying in-
equalities Eq. (12) and Eq. (13).

1 1
1>pis B
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and, the Von Rosenbetg method is stable when the condition @) = 1 is
satisfied.

4.3 Convergence

The convergence of the Von Rosenberg method follows by an application of
the well known Lax equivalence theorem [6,7].

5 Numerical experiments

Two numerical examples will be presented and analyzed, each example will
be composed of two graphics, the diffusion of the first graph will be 0.001 and
the second 0.1. For each example the Von Rosenberg method shows a better
performance than an explicit standard finite difference scheme. In order to
appreciate the accuracy of the Von Rosenberg method a table with the errors
between analytic and numerical solutions is presented with each figure. Those
tables show that Von Rosenberg method produces better approximations.
Table 1 shows some notation used in the analysis of the examples.
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Tab. 1: Notation used for tables of examples.

Notation Description

ua(x,t) Analytical solution values

u(z,t) Values approach to numerical solution by the Von Rosenberg
method

udf (z,t) Values approach to numerical solution by the Finite Difference
method

|lua(z, t) — u(z,t)| Absolute error for the solutions obtained by the Von Rosenberg
method

|lua(z, t) — udf (x,t)] Absolute error for the solutions obtained by the Finite Difference
method

Exzample 1

For this example, we will use the boundary condition Eq. (3) where g(¢) =1
and initial condition Eq. (4) where f(x) = 0. The spatial and temporal
domain of this example is [0, 8]. For this first example, by the Von Rosenberg
method, forty steps were used in space (N = 40) and forty steps in time
(M = 40) and the finite difference method used N = 40 and M = 1000.
Fig. 1 shows the first graph of Example 1 (Example 1a).

Table 2 shows some numerical results. Fig. 2 shows the second graph in
Example 1 (Example 1b).

Table 3 shows some corresponding numerical results associated to Fig. 2.

In the graphs for Example 1 it can be seen that the Von Rosenberg method
is the best approximation to the analytical solution. This can also be seen
in the tables, where errors by the method of Von Rosenberg are smaller
than the Finite Difference method. Consequently, Von Rosenberg’s method
is the most favorable option for the numerical approximations for the one-
dimensional convection-diffusion equation, with the boundary condition and
initial condition considered in this example.

Ezxzample 2
For this example the spatial interval [0, 8] is used and the time interval [0, 4],
the fluid velocity is v = 1 and the time chart is ¢ = 4. The boundary
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conditions are
w(0,t) =0, u(8,t)=0, t=>0.
The initial condition for this example,

u(z,0) =1, for 0.1l<zx<l1.1
u(z,0) =0, in another case

For the Von Rosenberg method, steps in space and time are, N = 40 and
M = 40. For tlge finite difference method, steps in space are, N = 40 and
the At = ;o0

For the one dimensional convection-diffusion equation with boundary condi-
tions and initial condition mentioned above, we don’t have analytical solu-
tion, so we take as analytic solution the finite difference approximation with
N = 4000.

Fig. 3 shows the first graph of Example 2 (Example 2a).

Table 4 shows some numerical results. Fig. 4 shows the second graph of
Example 2 (Example 2b).

Some numerical results are shown in the table 5.

Results from Example 2 show that numerical approximation produced by
Von Rosenberg method are the best.

6 Conclusions

The results obtained indicate that the Von Rosenberg method produces the
best approximations for the solutions of the convection-diffusion equation. As
we have seen in the examples, always the method of Von Rosenberg brings
the best results. To demonstrate the accuracy of the Von Rosenberg method,
very small broadcast values were used in the examples (this corresponds to
0 < R < 1), it is in that case where the other numerical methods with few
steps of space and time do not converge so quickly. For very high broadcasts,
D > 1, not showed in the examples, numerical tests were performed and the
solution obtained by the method of Von Rosenberg converges to the analytical
solution.

Main advantages of Von Rosenberg method are its easy implementation
and formulation, it is the combination of Centered Finite Difference method
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and the implicit Crank-Nicholson method. Another advantage is that the
truncation error is of quadratic order for both space and time. The ana-
lytical study of convergence of the method of Von Rosenberg corrects the
consistency analysis presented in [2] and complement the stability analysis,
which is omitted in [2]. Consequently the convergence study is an original
contribution of this work.
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Fig. 1. Comparison of the solutions obtained with (VR) and (FD) methods
vs. analytical solution (D = 0.001, t = 4).

Tab. 2: Results of Example 1la (D = 0.001, ¢t = 4).

r  wa(z,t)  u(x,t) udf(x,t) |ua(z,t) —u(z,t)] |ua(z,t) — udf (z,t)]
0 1.00000 1.00000 1.00000 0.00000 0.00000
2.4 1.00000 1.00000 0.97992 0.00000 0.02007
4.4 0.00000 0.00443 0.35569 0.00443 0.35569
6.4 0.00000 0.00000 0.00713 0.00000 0.00713
8 0.00000 0.00000  0.00000 0.00000 0.00000
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Fig. 2: Comparison of the solutions obtained with (VR) and (FD) methods
vs. analytical solution (D = 0.1, t = 4).

Tab. 3: Results of Example 1b (D = 0.1, t = 4).

r  wa(z,t)  u(x,t) udf(x,t) |ua(z,t) —u(z,t)] |ua(z,t) — udf (z,t)]
0 1.00000 1.00000 1.00000 0.00000 0.00000
2.4 097422 0.98182 0.93346 0.00759 0.04076
4.4 0.36537 0.34938 0.42798 0.01599 0.06260
6.4 0.00457 0.00999 0.03825 0.00541 0.03367
8 0.00000 0.00000  0.00000 0.00000 0.00000
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Fig. 3: Comparison of the solutions obtained with (VR) and (FD) methods
vs. analytical solution (D = 0.001, t = 4).

Tab. 4: Results of Example 2a (D = 0.001, ¢ = 4).

r  wa(z,t)  u(x,t) udf(x,t) |ua(z,t) —u(z,t)] |ua(z,t) — udf (z,t)]
0 0.00000 0.00000  0.00000 0.00000 0.00000
2.4 0.00000 0.00000 0.00490 0.00000 0.00490
4.4 099230 0.99600 0.43360 0.00370 0.55870
6.4 0.00000 0.00000 0.07910 0.00000 0.07910
8 0.00000 0.00000  0.00000 0.00000 0.00000
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Fig. 4. Comparison of the solutions obtained with (VR) and (FD) methods
vs. analytical solution (D = 0.1, t = 4).

Tab. 5: Results of Example 2b (D = 0.1, t = 4).
x ua(x?t) u(x?t) Udf(xvt) \ua(x,t) — u(x?t)| |ua(aj,t) — Udf(x?t”

0 0.00000  0.00000  0.00000 0.00000 0.00000
2.4 0.02290 0.00850  0.04240 0.01440 0.01950
4.4 0.39890 0.41220 0.29180 0.01330 0.10710
6.4 0.06870 0.09670 0.14330 0.02800 0.07460

8 0.00000 0.00000  0.00000 0.00000 0.00000






