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Abstra
t

An expli
it numeri
al s
heme developed by Von Rosenberg for the 
onve
tion-

di�usion equation in one spatial dimension is reviewed and analyzed. The 
on-

vergen
e of this s
heme is outlined and a 
omparative study was established with

an expli
it standard �nite di�eren
e s
heme. The results show that Von Rosen-

berg's s
heme 
onsiderably improves the stability 
ondition and a

ura
y in di�
ult

problems asso
iated with very small di�usion 
oe�
ients. This study extends and


orre
ts the original work presented by Von Rosenberg, whi
h represents an origi-

nal 
ontribution.

Keywords: Conve
tion, di�usion, expli
it, �nite di�eren
e, stability.

1 Introdu
tion

Numeri
al methods are very important be
ause they solve 
omplex problems

in engineering and s
ien
es [1℄. In parti
ular, numeri
al methods are widely

used for solving partial di�erential equations. The purpose of this resear
h is

the study of an expli
it numeri
al s
heme developed by D.U. Von Rosenberg,

[2℄, for the one dimensional 
onve
tion di�usion equation. This s
heme has
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impressive performan
e at solving 
onve
tion di�usion problems with large

speeds and low di�usion 
oe�
ients.

Von Rosenberg's method was presented for �rst time in [2℄, it was adapted

to the variable 
oe�
ient 
ase in [3℄, and it was extended to multidimensional

problems in [4℄. However, a 
omplete analysis of 
onvergen
e of the method,

even in one dimension, is not available in the te
hni
al literature to the best

of our knowledged, so this paper �lls that gap.

The 
ontent of this paper has been distributed in six se
tions. First

se
tion is this short introdu
tion. Se
ond se
tion gives a des
ription of the


onve
tion di�usion equation in the 
ontext of this arti
le. Third se
tion

states Von Rosenberg's method. Se
tion four is devoted to 
onverge analysis

of the method. Finally, se
tions �ve and six 
ontain a numeri
al 
omparative

study and the 
on
lusions.

2 Equations

In this paper the 
onve
tion di�usion equation is represented by the following

equation

D
∂2u

∂x2
− v

∂u

∂x
=

∂u

∂t
. (1)

In this equation u is the �uid property, x is the spatial variable (x ≥ 0),
t is the time variable (t ≥ 0), D is the di�usion 
oe�
ient and v is the �uid

velo
ity. For 
onvenien
e and without lost of generality, v and D are positive


onstants.

The 
onve
tion and di�usion equation represent mathemati
ally a phys-

i
al pro
ess of heat transfer that simultaneously 
ombines both forms of

transmission. However, there are other physi
al pro
esses su
h as �uid �ow

in porous media whi
h is also governed by the same equation. [5, 6℄. Conse-

quently, it will be assumed that all variables in Eq. (1) are dimensionless.

The general upstream boundary 
ondition for Eq. (1) for all t is

v(g(t)− u(0, t)) +D
∂u

∂x
(0, t) = 0. (2)

As D approa
hes 0, this 
ondition simpli�es to

u(0, t) = g(t) (3)
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and g is a given fun
tion. Sin
e D is small for the 
ases of interest, the

numeri
al solutions were obtained with Eq. (3). Upstream 
ondition is similar

to Eq. (3) but evaluated at the upper side of the spa
e interval of integration,

namely u(L, t) = h(t), h a known fun
tion, if x in Eq. (1) runs on [0, L]. In
this work and [2℄ h(t) is the null fun
tion if no expli
it mention of it is made.

In order to solve the 
onve
tion di�usion equations an initial 
ondition is

required

u(x, 0) = f(x) (4)

where f is a given fun
tion.

3 Von Rosenberg's Method

Next we present the Von Rosenberg's method (VR) using one dimensional


onve
tion-di�usion equation (1), it 
ombines the Crank-Ni
holson and Fi-

nite Di�eren
e (FD) methods.

Von Rosenberg's method is expli
it and 
onsequently the relationship

must be satis�ed

△x

v△t
= 1

where we 
all Q = △x
v△t

for easy referen
e.

When the method is stated, we use the next parameter

R =
2D

v△x
,

whi
h plays a fundamental role in this se
tion. In these expressions △t is the
time step and △x is the size of the mesh blo
k in spa
e.

To approximate the di�usion term we use a Crank-Ni
holson type ap-

proximation obtaining

D
∂2u

∂x2
≈ D

2(∆x)2
[un

i+1 − 2un
i + un

i−1 + un+1
i+1 − 2un+1

i + un+1
i−1 ].

Then taking into a

ount Q = 1 the last expression is equivalent to

D
∂2u

∂x2
≈ (

1

∆t
) (

R

4
)[un+1

i+1 − 2un+1
i + un+1

i−1 + un
i+1 − 2un

i + un
i−1]. (5)
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To approximate the 
onve
tion term two di�erent dis
retizations are av-

eraged as fun
tions of R. The �rst one is an expli
it approximation type

upwind

(
∂u

∂t
+ v

∂u

∂x
)i−1/2,n+1/2 ≈

un+1
i − un

i

∆t
+ v

un
i − un

i−1

∆x

whi
h taking into a

ount that Q = 1 transforms into

(
∂u

∂t
+ v

∂u

∂x
)i−1/2,n+1/2 ≈

un+1
i − un

i−1

∆t
. (6)

The se
ond of the approximations is a 
entered type Crank-Ni
holson

approa
h

(
∂u

∂t
+ v

∂u

∂x
)i,n+1/2 ≈

un+1
i − un

i

∆t
+ v

1

2
(
un
i+1 − un

i−1

2∆x
+

un+1
i+1 − un+1

i−1

2∆x
).

Whi
h 
onsidering the restri
tion Q = 1 
an be written as

(
∂u

∂t
+ v

∂u

∂x
)i,n+1/2 ≈

1

∆t
[(un+1

i − un
i ) +

1

4
(un+1

i+1 − un+1
i−1 + un

i+1 − un
i−1)]. (7)

Combining Eq. (6) with Eq. (7) using as weights (1 − R) and R respe
-

tively, it results

(
∂u

∂t
+ v

∂u

∂x
)i−1/2(1−R),n+1/2

≈ 1

∆t
[un+1

i − un
i−1 +

R

4
(3un

i−1 + un+1
i+1 + un

i+1 − un+1
i−1 − 4un

i )]. (8)

Substituting expressions Eq. (8) and Eq. (5) as approximations in Eq. (1)

results

(

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

)

≈ 1

2(∆t)

[

(2 +R)un+1
i − (2−R)un

i−1 − R
(

un
i + un+1

i−1

)]

. (9)

If initial and boundary 
onditions, as des
ribed in the previous se
tion,

are taken into a

ount then the Von Rosenberg's method be
omes an expli
it

s
heme.
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4 Convergen
e study

In this se
tion a 
onvergen
e analysis of the Von Rosenberg's method is pre-

sented under the boundary 
onditions des
ribed in se
tion 3. For simpli
ity,

it will be assumed that g(t) = 1 and f(x) = 0.

4.1 Consisten
y

Let G ⊂ R
2
an open set and u : G → R. Using the following notation

u(xi, tn) = un
i

The trun
ation error is obtained by substituting the Taylor's formula

u, around the point where the �nite di�eren
es Von Rosenberg method are


entered [2℄, ie, xi−(1/2)(1−R), tn+1/2.

Substituting the Taylor's formula for u, on the right side of the following

expression

(

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2

)

≈ 1

2(∆t)

[

(2 +R)un+1
i − (2−R)un

i−1 − Run+1
i−1 −Run

i

]

. (10)

And re
alling that Q = ∆x
v∆t

= 1 and R = 2D
v∆x

, so

(∆x)2

2(∆t)
R = D, we obtain

the expansion of the one dimensional 
onve
tion-di�usion equation

∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2
=

[(2 +R)un+1
i − (2− R)un

i−1 −Run+1
i−1 − Run

i ]

2(∆t)

+ [1 + 3R2]v
∂3u

∂x3

(∆x)2

24
+ [1−R2]

∂3u

∂x2t

(∆x)2

8

+
∂3u

∂xt2
(∆x)(∆t)

8
+

∂3u

∂t3
(∆t)2

24
+H.O.T.

With trun
ation error

[1 + 3R2]v
∂3u

∂x3

(∆x)2

24
+ [1−R2]

∂3u

∂x2t

(∆x)2

8
+

∂3u

∂xt2
(∆x)(∆t)

8
+

∂3u

∂t3
(∆t)2

24
+H.O.T.
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Re
all that H.O.T. is the sum of remainder terms in Taylor's formula.

This trun
ation error is of quadrati
 order for both spa
e and time, ie,

O((∆x)2, (∆t)2).
Therefore, by the above study, the s
heme Von Rosenberg is 
onsistent,

sin
e the trun
ation error vanishes when ∆x → 0 y ∆t → 0.
Observation

In the arti
le by Von Rosenberg [2℄ there is an error in the expression of

the trun
ation error. The 
orre
t trun
ation error is the one presented in

this subse
tion.

4.2 Stability

To study the stability of Von Rosenberg method will use the Gershgorin


ir
le theorem [6, 7℄.

The di�eren
e equation for the Von Rosenberg equation for an homoge-

neous 
onve
tion-di�usion equations is:

A Un+1 = B Un +R F1 + (2− R) F2

where

A =











(2 +R) 0 . . . 0
−R (2 +R) . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

0 . . . −R (2 +R)











, B =











R 0 . . . 0
(2−R) R . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . (2−R) R











Un+1 = (un+1
1 , un+1

2 , . . . , un+1
N−1)

t

Un = (un
1 , u

n
2 , . . . , un

N−1)
t

F1 = (un+1
0 , 0, . . . , 0)t

F2 = (un
0 , 0, . . . , 0)t

The stability study is perfomed by applying Gershgorin theorem to esti-

mate the eigenvalues of these matri
es. We begin by estimating the eigen-

values of matrix A, where we obtain

2 ≤ λ ≤ 2(R + 1) (11)
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For making the study of the eigenvalues of matrix A−1
the re
ipro
al of

the inequality Eq. (11) is used.

1

2
≥ 1

λ
≥ 1

2(R + 1)
(12)

We will do the same study for the matrix B, where we obtain

2(R− 1) ≤ β ≤ 2 (13)

Estimation of the eigenvalues for A−1B, is obtained by multiplying in-

equalities Eq. (12) and Eq. (13).

1 ≥ β.
1

λ
≥ R− 1

R + 1
(14)

As

R−1
R+1

≥ −1 be
ause R = 2D
v ∆x

> 0 then

∣

∣

∣

∣

β

λ

∣

∣

∣

∣

≤ 1

and, the Von Rosenbetg method is stable when the 
ondition Q = 1 is

satis�ed.

4.3 Convergen
e

The 
onvergen
e of the Von Rosenberg method follows by an appli
ation of

the well known Lax equivalen
e theorem [6, 7℄.

5 Numeri
al experiments

Two numeri
al examples will be presented and analyzed, ea
h example will

be 
omposed of two graphi
s, the di�usion of the �rst graph will be 0.001 and
the se
ond 0.1. For ea
h example the Von Rosenberg method shows a better

performan
e than an expli
it standard �nite di�eren
e s
heme. In order to

appre
iate the a

ura
y of the Von Rosenberg method a table with the errors

between analyti
 and numeri
al solutions is presented with ea
h �gure. Those

tables show that Von Rosenberg method produ
es better approximations.

Table 1 shows some notation used in the analysis of the examples.
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Tab. 1: Notation used for tables of examples.

Notation Des
ription

ua(x, t) Analyti
al solution values

u(x, t) Values approa
h to numeri
al solution by the Von Rosenberg

method

udf(x, t) Values approa
h to numeri
al solution by the Finite Di�eren
e

method

|ua(x, t)− u(x, t)| Absolute error for the solutions obtained by the Von Rosenberg

method

|ua(x, t)− udf(x, t)| Absolute error for the solutions obtained by the Finite Di�eren
e

method

Example 1

For this example, we will use the boundary 
ondition Eq. (3) where g(t) = 1
and initial 
ondition Eq. (4) where f(x) = 0. The spatial and temporal

domain of this example is [0, 8]. For this �rst example, by the Von Rosenberg

method, forty steps were used in spa
e (N = 40) and forty steps in time

(M = 40) and the �nite di�eren
e method used N = 40 and M = 1000.
Fig. 1 shows the �rst graph of Example 1 (Example 1a).

Table 2 shows some numeri
al results. Fig. 2 shows the se
ond graph in

Example 1 (Example 1b).

Table 3 shows some 
orresponding numeri
al results asso
iated to Fig. 2.

In the graphs for Example 1 it 
an be seen that the Von Rosenberg method

is the best approximation to the analyti
al solution. This 
an also be seen

in the tables, where errors by the method of Von Rosenberg are smaller

than the Finite Di�eren
e method. Consequently, Von Rosenberg's method

is the most favorable option for the numeri
al approximations for the one-

dimensional 
onve
tion-di�usion equation, with the boundary 
ondition and

initial 
ondition 
onsidered in this example.

Example 2

For this example the spatial interval [0, 8] is used and the time interval [0, 4],
the �uid velo
ity is v = 1 and the time 
hart is t = 4. The boundary
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onditions are

u(0, t) = 0, u(8, t) = 0, t > 0.

The initial 
ondition for this example,







u(x, 0) = 1, for 0.1 < x < 1.1

u(x, 0) = 0, in another 
ase

For the Von Rosenberg method, steps in spa
e and time are, N = 40 and

M = 40. For the �nite di�eren
e method, steps in spa
e are, N = 40 and

the ∆t = (∆x)2

4(∆x v+2D)
.

For the one dimensional 
onve
tion-di�usion equation with boundary 
ondi-

tions and initial 
ondition mentioned above, we don't have analyti
al solu-

tion, so we take as analyti
 solution the �nite di�eren
e approximation with

N = 4000.
Fig. 3 shows the �rst graph of Example 2 (Example 2a).

Table 4 shows some numeri
al results. Fig. 4 shows the se
ond graph of

Example 2 (Example 2b).

Some numeri
al results are shown in the table 5.

Results from Example 2 show that numeri
al approximation produ
ed by

Von Rosenberg method are the best.

6 Con
lusions

The results obtained indi
ate that the Von Rosenberg method produ
es the

best approximations for the solutions of the 
onve
tion-di�usion equation. As

we have seen in the examples, always the method of Von Rosenberg brings

the best results. To demonstrate the a

ura
y of the Von Rosenberg method,

very small broad
ast values were used in the examples (this 
orresponds to

0 < R ≤ 1), it is in that 
ase where the other numeri
al methods with few

steps of spa
e and time do not 
onverge so qui
kly. For very high broad
asts,

D > 1, not showed in the examples, numeri
al tests were performed and the

solution obtained by the method of Von Rosenberg 
onverges to the analyti
al

solution.

Main advantages of Von Rosenberg method are its easy implementation

and formulation, it is the 
ombination of Centered Finite Di�eren
e method
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and the impli
it Crank-Ni
holson method. Another advantage is that the

trun
ation error is of quadrati
 order for both spa
e and time. The ana-

lyti
al study of 
onvergen
e of the method of Von Rosenberg 
orre
ts the


onsisten
y analysis presented in [2℄ and 
omplement the stability analysis,

whi
h is omitted in [2℄. Consequently the 
onvergen
e study is an original


ontribution of this work.
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Fig. 1: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analyti
al solution (D = 0.001, t = 4).

Tab. 2: Results of Example 1a (D = 0.001, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t) − udf(x, t)|
0 1.00000 1.00000 1.00000 0.00000 0.00000

2.4 1.00000 1.00000 0.97992 0.00000 0.02007

4.4 0.00000 0.00443 0.35569 0.00443 0.35569

6.4 0.00000 0.00000 0.00713 0.00000 0.00713

8 0.00000 0.00000 0.00000 0.00000 0.00000



The Von Rosenberg's method for the 
onve
tion-di�usion eq. 58

Fig. 2: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analyti
al solution (D = 0.1, t = 4).

Tab. 3: Results of Example 1b (D = 0.1, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t)− udf(x, t)|
0 1.00000 1.00000 1.00000 0.00000 0.00000

2.4 0.97422 0.98182 0.93346 0.00759 0.04076

4.4 0.36537 0.34938 0.42798 0.01599 0.06260

6.4 0.00457 0.00999 0.03825 0.00541 0.03367

8 0.00000 0.00000 0.00000 0.00000 0.00000
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Fig. 3: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analyti
al solution (D = 0.001, t = 4).

Tab. 4: Results of Example 2a (D = 0.001, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t) − udf(x, t)|
0 0.00000 0.00000 0.00000 0.00000 0.00000

2.4 0.00000 0.00000 0.00490 0.00000 0.00490

4.4 0.99230 0.99600 0.43360 0.00370 0.55870

6.4 0.00000 0.00000 0.07910 0.00000 0.07910

8 0.00000 0.00000 0.00000 0.00000 0.00000
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Fig. 4: Comparison of the solutions obtained with (VR) and (FD) methods

vs. analyti
al solution (D = 0.1, t = 4).

Tab. 5: Results of Example 2b (D = 0.1, t = 4).
x ua(x, t) u(x, t) udf(x, t) |ua(x, t)− u(x, t)| |ua(x, t)− udf(x, t)|
0 0.00000 0.00000 0.00000 0.00000 0.00000

2.4 0.02290 0.00850 0.04240 0.01440 0.01950

4.4 0.39890 0.41220 0.29180 0.01330 0.10710

6.4 0.06870 0.09670 0.14330 0.02800 0.07460

8 0.00000 0.00000 0.00000 0.00000 0.00000




