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Abstrat

Mimeti �nite di�erene (MFD) approximations of ontinuous gradient and di-

vergene operators satisfy a disrete version of the Gauss-Divergene theorem on

staggered grids. On the mimeti approximation of this integral onservation prin-

iple, an unique boundary �ux operator is introdued that also intervenes on the

disretization of a given boundary value problem (BVP). In this work, we present

a seond-order MFD sheme for seismi wave propagation on staggered grids that

disretized free surfae and absorbing boundary onditions (ABC) with same a-

uray order. This sheme is time expliit after oupling a entral three-level �nite

di�erene (FD) stenil for numerial integration. Here, we brie�y disuss the on-

vergene properties of this sheme and show its higher auray on a hallenging
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test when ompared to a traditional FD method. Preliminary appliations to 2-D

seismi senarios are also presented and show the potential of the mimeti �nite

di�erene method.

Keywords: Aousti waves, staggered grids, mimeti �nite di�erenes, absorbing

onditions.

1 Introdution

For Earth models with simple geometry, �nite di�erenes (FD) shemes have

been widely used for seismi wave propagation given its simple formulation,

easy implementation, and low omputational ost. A variety of staggered

grids (SG) have been employed on FD disretization to ahieve aurate re-

sults on aousti and elasti models, even with the inlusion of anisotropi

onstitutions [1�3℄. Some FD shemes have adapted the traditional ghost-

point implementation of boundary onditions aounting for ertain geomet-

rial omplexities [4, 5℄. However, �nite di�erene seismi appliations still

su�er from two main de�ienies: the numerial treatment of boundary on-

ditions is not systemati leading to ase dependent approahes that may be

highly sensitive to instabilities or inauraies and the FD disretization of

individual di�erential operators present on a boundary value problem, leads

to a global sheme that do not neessarily preserve the underlying physial

priniples.

A great improvement on �nite di�erene disretization is due to the ex-

tensive work on disrete onservative operators developed in [6℄. Two modern

�nite di�erene families on staggered grids omes from this pioneering work.

The �rst one is based on the support operators, Divergene D and Gra-

dient G, both providing seond-order auray at interior grid points, but

redued to �rst order at domain boundaries. This method has been exten-

sively applied to di�usion, eletromagneti, and visoelasti problems even

on non-uniform meshes [7�9℄. The seond onstrution method of onserva-

tive operators presents disrete D and G that exhibit seond, fourth, and

even sixth order auray along all grid loations inluding boundaries. This

latter method is introdued in [10℄, and later reformulated in [11℄. For a sys-

temati numerial treatment of Neumann and Robin boundary onditions,

authors in [12℄ develop a new operator B to approximate boundary �uxes of

a given vetor �eld. Thus, the numerial solution of a given boundary value



11 Solano, Guevara, González, Rojas, Otero

problem based on D, G and B, automatially satisfy a partiular disrete

version of the fundamental Green-Stoke-Gauss Theorem. This remarkable

attribute allows the disrete solution to preserve the onservation properties

ful�lled by ontinuous solutions. As a result, operators D, G and B, have

been referred as mimeti. Appliations of the mimeti operators D and G to

aousti and elasti wave propagation an be found in [13�15℄. In the last ref-

erene, an implementation of free surfaes (FS) on 3-D deformed grids allows

aounting for realisti topography, and outgoing waves are damped thanks

to e�ient absorbing boundary onditions. Another appliations of D and

G onern the fritional propagation of shear ruptures on embedding elasti

media [16,17℄. Even though these methods show aurate results on seismi

appliations, their formulation lak of the boundary operator B, therefore

those are not mimeti shemes.

Reently, [18℄ proposed a new disretization of the aousti wave equation

on 1-D and 2-D domains based on the three mimeti operators D, G and B.

Spatial disretization in [18℄ is limited to seond order auray, but these

mimeti formulation and onvergene analysis are easily extensible to the

ase of four-order shemes, that are ommonly used on seismi modeling.

In this work, we review the methodology proposed in [18℄ and presents new

interesting appliations in one and two dimensions.

This paper is organized in the following way: Setion 2 presents formula-

tions of the aousti wave equation of seismi interest in 1-D and 2-D media.

Setion 3 gives a brief review of 1-D mimeti disretization operators. In

setion 4, we disuss the formulation of a fully mimeti method for aousti

motion on 1-D and 2-D retangular staggered grid. The ombined operator

DG approximates the Laplaian at interior grid nodes, while BG allows the

implementation of free surfae and absorbing boundary onditions at grid

edges. Remarkably, the operator BG also adds a signi�ant ontribution

to the Laplaian at grid points neighbors to boundary lines. A onvergene

analysis of these shemes are also disussed in this setion. Setion 5 presents

the appliation of our 1-D mimeti method to a numerial test that exhibits

strong gradients at edges, in addition to a omparison against a ghost-point

based �nite di�erene sheme. Next (see setion 6), two interesting 2-D

tests are given in setion 6 where satisfatory results are observed. The �rst

test involves a homogeneous veloity model, while the seond one onsiders

a three-layered heterogeneous medium with horizontal strati�ation. These

tests are used to assess the e�ieny of Reynold absorbing boundary ondi-

tions [19℄ by omparing wave patterns under rigid boundaries. Conlusions
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and some guidelines for future works are given in setion 7.

2 The aousti wave equation

In this work, we model seismi motion by means of the aousti wave equation

written in a seond order di�erential formulation. The mimeti disretization

proeeds on a staggered grid and for this reason the disrete solution and its

spatial gradients are plaed at di�erent grid loations shifted by half of the

spaing. This fat renders higher auray to the staggered grid di�eren-

tiation as ompared to traditional �nite di�erene methods based on nodal

grids.

2.1 1-D formulation

In a 1-D aousti medium, the partile displaement satisfy the following

equation

∂2u

∂t2
− c2

∂2u

∂x2
= f(x, t), (1)

where c represents the wave speed and f(x, t) is the soure term. In the

following setions, we assume that x ∈ [0, a], t ≥ 0, and the initial ondition

is u(x, 0) = ∂u
∂t

= 0. We also onsider boundary onditions of the form

∂u

∂x
(0, t) = f1(t), (2)

[

∂u

∂t
+ c

∂u

∂x

]

(a, t) = f2(t). (3)

In the ase when f1(t) = f2(t) = 0, Eq. (2) represents a free surfae (FS)
Neumman-type boundary ondition, while Eq. (3) models outgoing waves

through x = a that Reynolds [19℄ de�nes as a �rst order absorbing operator.

2.2 2-D formulation

In seismi appliations, the propagation of primary (P) waves satisfy a multi-

dimensional version of above formulation (1). In this work, we only onsider

the following wave propagation model on a 2-D retangular domain

∂2u

∂t2
− c2∇2u = f(x, z, t), (x, z) ∈ [0, a]× [0, b], (4)
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where u represents the aousti pressure. In this equation, ∇2
is the Lapla-

ian operator, and similarly to the 1-D ase c and f denotes the wave speed

and the seismi soure, respetively. In this ase, we assoiate the retangle

edges x = 0, x = a and z = b to arti�ial absorbing boundary onditions,

and onsider the boundary z = 0 as a free surfae. Thus,

(

∂u

∂t
− c

∂u

∂x

)

(0, z, t) = 0, (5)

(

∂u

∂t
+ c

∂u

∂x

)

(a, z, t) = 0, (6)

(

∂u

∂t
+ c

∂u

∂z

)

(x, b, t) = 0, (7)

u(x, 0, t) = 0. (8)

It is appropriate to note, that the free surfae boundary (8) is given as a

Dirihlet ondition.

3 Review of 1-D mimeti disretization

The mimeti �nite di�erene disretization of a boundary value problem

in the spatial domain proeeds by substituting the ontinuous di�erential

operators gradient (∇), divergene (∇·) and the normal derivative ( ∂
∂~n
) at

boundaries by the disrete versions G, D, and B proposed in [12℄ and [10℄.

These mimeti operators satisfy the following approximation to the Green's

Identity

〈Dv, u〉Q + 〈v,Gu〉P = 〈Bv, u〉I , (9)

with the weighted inner produt 〈·, ·〉A de�ned by

〈x, y〉A = xtAy, x, y ∈ R
n,

where A is a positive de�nite matrix. In this ase, I represents the identity

matrix, Q and P are weight diagonal matries whose elements agree with

the oe�ients of mid-point quadrature and

3

8
Newton-Cotes quadrature,

respetively. The above disrete priniple (9) holds beause the boundary

�ux operator is given by

B = QD +GtP. (10)
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The matrix representations of operators D, G and B depend on the dis-

retization of salar and vetor �elds u and v, respetively. In the 1-D ase,

Castillo and ollaborators disretized the domain [0, a] by using uniform ells

[xi, xi+1] with nodes xi = ih for i = 0, . . . , n and grid step h = a
n
. This grid

beomes staggered by inluding the ell enters xi+ 1

2

= xi+xi+1

2
. Disrete val-

ues of the funtion u are onsidered at ell enters xi+ 1

2

in addition to the

boundary values at x0 and xn. Evaluations of the funtion v are plaed only

at grid nodes. For simpliity, Figure 1(a) just depits the grid distribution

of disrete u values whih are olleted in the vetor ~u. Similarly, a vetor ~v
allows storing evaluations of the �eld v.

Fig. 1: 1-D staggered grid for disretization of funtion u using mimeti op-

erators B, G and D. The operator L = DG is the Laplaian dis-

retization and F = BG arises from the approximation of boundary

onditions.

Numerial di�erentiation of u is omputed by G~u, whih renders n +
1 approximations to

du
dx

at eah grid node. In the same way, D~v yields

approximations of

dv
dx

at the n ell enters. Seond order aurate mimeti

gradient and divergene operators are given by

G =
1

h
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D =
1
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The �rst and last rows of G orresponds to lateral disretization of bound-

ary values of

du
dx
, whih oinide with the Taylor-based FD-SG stenils. The

remaining rows of G, as well as non-zero rows of operator D are given by the

lassial staggered grid entral formula for di�erentiation at interior mesh

points with a seond order auray. Authors in [10, 11℄ onstruted higher-

order versions of these di�erential operators and methods given in next se-

tion ould be easily be extended aordingly. On the other hand, the mimeti

operatorD exhibits �rst and last zero rows to allow a onvenient aommoda-

tions of Neumann or Robin boundary onditions, as we show in next setion.

Aording to above expressions for D and G, the �ux operator B follows

from Eq.(10)

B =
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Notie that the �rst and last rows in B represent the outward normal

vetor at grid boundaries, thus the same rows in the omposed operator BG
allows approximating

∂u
∂~n

at these edges (denoted as F in Figure 1(b)). The

non zero interior rows of B add an important ontribution to the Laplaian

approximation L = DG at the two nearest ell enters to eah grid boundary
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(denoted as F+L in Figure 1(b)). The remaining zero rows in B do not a�et

Laplaian alulations at interior ell enters (as also shown by Figure 1(b)).

4 Mimeti �nite di�erene shemes for aousti wave

propagation.

4.1 1-D ase.

Based upon the matrix struture of MFD operators given above, here we

present the disrete iterative formulas that onform our 1-D sheme. Let

uk
i+ 1

2

denotes the disrete pressure at time t = k∆t and ell enter xi+ 1

2

,

where ∆t represents the time step. We apply standard entral di�erentiation

in time and the MFD disretization of Laplaian Li+ 1

2

for i = 2, . . . , n− 2 to

write

uk+1

i+ 1

2

− 2uk
i+ 1

2

+ uk−1

i+ 1

2

∆t2
=
( c

h

)2[

uk
i+ 3

2

− 2uk
i+ 1

2

+ uk
i− 1

2

]

. (11)

This equation represents the mimeti sheme at interior ell enters, but

grid points x 1

2

and x 3

2

require of using the following lateral mimeti approx-

imations for the Laplaian

(L+ F ) 1

2

=

(

8c2

3h2
− c

3h

)

uk
0 +

(

c

2h
− 4c2

h2

)

uk
1

2

+

(

4c2

3h2
− c

6h

)

uk
3

2

, (12)

(L+ F ) 3

2

=

(

c

3h

)

uk
0 +

(

c2

h2
− c

2h

)

uk
1

2

+

(

c

6h
− 2c2

h2

)

uk
3

2

+

(

c2

h2

)

uk
5

2

(13)

After oupling these singular Laplaian stenils to the same three-step

time disretization used before, the method update equations at ell enters

x 1

2

and x 3

2

are fully stated. Disrete equations at xn− 1

2

and xn− 3

2

are anal-

ogous, so we omit them. A similar proedure is followed at the boundary

point x0 where disretization in spae omes from the ontribution of both

the �ux and gradient operators

F0 = − 8

3h
uk
0 +

3

h
uk

1

2

− 1

3h
uk

3

2

. (14)

Lastly, the disretization of the absorbing boundary onditions at node xn

(3), is given by using a step-forward di�erene for the time variable ombined
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to a similar disretization of (14), with a sign hange given by the outward

normal at x = a.

A formal onsisteny and stability analysis of this mimeti sheme is given

in [18℄, and here we only disuss some singular related fats. The disrete

updating equations for both boundary onditions, as well as those applied

at enters xi+ 1

2

for i = 2, . . . , n − 2, present quadrati trunation errors in

spae. The spatial disretization degrades to �rst order only for the ases of

the Laplaian approximations at x 1

2

and x 3

2

where Taylor expansions yields

to

(L+F ) 1

2

− c2
∂2u

∂x2
(x 1

2

) =
1

8
h
∂2u

∂x2
, (L+F ) 3

2

− c2
∂2u

∂x2
(x 3

2

) = −1

8
h
∂2u

∂x2
. (15)

The study of trunation errors at symmetri loations xn− 1

2

and xn− 3

2

is

analogous. Thus, our 1-D mimeti sheme is formally O(h). On the other

hand, a stability analysis under periodi boundary onditions and based on

the eigenvalue estimation of the ampli�ation matrix proved that this sheme

is stable for a limiting Courant value of

c∆t
h

<
√
3

2
. As a referene basis,

we also implement a traditional �nite di�erene method based on the same

time disretization and using the interior Laplaian approximations at all ell

enters L 3

2

,...,Ln− 3

2

(i.e., omitting BG interior ontributions and just leaving

the standard entral FD). However, we had follow Strikwerda (setion 8.2 in

[20℄) to implement the free surfae ondition by adding the ghost or imaginary

ell enter x− 1

2

= −h
2
to the 1-D staggered grid. Then, we use the interior

disrete update (11) at x 1

2

with grid step

h
2
, and substitute imaginary u− 1

2

in

terms of u0 and u 1

2

by means of a seond order average. Thus, the mimeti

alulation at the free surfae boundary (14) is now replaed by

uk+1
0 − 2uk

0 + uk−1
0

∆t2
=

(

c

h

)2
[

4uk
1

2

− 8uk
0 + 4uk

− 1

2

]

. (16)

The remaining updating equations of this ghost-point based FD sheme

at loations x 1

2

,xn− 1

2

, and xn are given in [18℄. This method is also formally

O(h), and presents a Courant limit of

c∆t
h

< 1

2
under same boundary ondi-

tions, whih reveals its higher stability restrition ompared to the mimeti

�nite di�erene method.
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4.2 2-D ase.

The extension of the mimeti mesh to 2-D or 3-D retangular domains is

obtained as the tensor produt of the one-dimensional grid in eah oordinate

diretion, after omitting the orner points. Figure 2 presents the 2-D grid

for the mimeti disretization. The gradient operator is now a vetor with

two omponents Gx and Gz, whih are omputed at the mid point of the

four edges of every grid blok, as depited in panel (a) with star symbols.

Thus, gradient omponents are also de�ned at boundaries along with the

disrete solution u, and it is shown by irles in panel (b). In addition, the

grid presents u values at the enter of every ell as illustrated by square

symbols. These grid loations also hold the evaluations of the divergene

operator D, that is only de�ned at domain's interior as depited in both

panels. Finally, panel (b) presents grid loations of main operators of a

2-D mimeti disretization. The implementation of boundary onditions by

means of the �ux operator F = BG is arried out at irles. The ontribution

of F is added to the Laplaian L = DG approximation at near-boundary

(empty) square points. The omputation of the standard Laplaian in �nite

di�erene is performed at interior (�lled) square enters.

Next, we present some details of the mimeti disretization of the 2-D

wave equation (4) to (8). Without loss of generality, a ommon grid spaing

h is assumed on both diretions, and we onsider an uniform partition of

Nx ×Nz ells of the domain D, with Nx grid intervals along the x axis, and

Nz grid intervals along the z axis. The time step is again denoted by ∆t.
On this grid, uk

ij is the numerial approximation of u(xi, zj, tk), and (xi, zj)
is one of the boundary or mid-ell points illustrated on Figure 2 in panel (b).

Beause of the 2-D mimeti sheme is not a omplex generalization of the one-

dimensional ase, we only present the disrete updating stenils at ertain

mesh points. The �rst three ases orrespond to alulations at boundary

points and ell enters nearby. By symmetry and after a sign hange, the

ounterpart update equations at remaining edges and neighbor points an be

written in the same way.

(i) Node ◦: u(xi, zj) for i = 0 and j ∈ {1

2
, . . . , Nz − 1

2
},

uk+1
ij = uk

ij +

(

c∆t
h

)[

− 8

3
uk
ij + 3uk

i+ 1

2
j
− 1

3
uk
i+ 3

2
j

]

.
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(ii) Node �: u(xi, zj) for i ∈ {1

2
, Nx − 1

2
} and j ∈ {1

2
, Nz − 1

2
},

uk+1
ij = 2uk

ij − uk−1
ij +∆t2

[(

8c2

3h2 − c
3h

)

uk
i− 1

2
,j
+

(

c
2h

− 6c2

h2

)

uk
i,j

+

(

4c2

3h2 − c
6h

)

uk
i±1,j +

(

c2

h2

)

uk
i,j+1 +

(

c2

h2

)

uk
i,j− 1

2

]

.

(iii) Node �: u(xi, zj) for i ∈ {3

2
, Nx − 3

2
} and j ∈ {5

2
, . . . , Nz − 5

2
},

uk+1
ij = 2uk

ij − uk−1
ij +∆t2

[(

c2

h2 − c
2h

)

uk
i∓1,j +

(

c
6h

− 4c2

h2

)

uk
i,j

+

(

c
3h

)

uk
i− 3

2
,j
+

(

c2

h2

)

uk
i±1,j +

(

c2

h2

)

uk
i,j−1 +

(

c2

h2

)

uk
i,j+1

]

.

(iv) Node �: u(xi, zj) for i ∈ {5

2
, . . . , Nx − 5

2
} and j ∈ {5

2
, . . . , Nz − 5

2
},

uk+1
ij = 2uk

ij − uk−1
ij +

(

c∆t
h

)2[

uk
i−1,j + uk

i+1,j − 4uk
ij + uk

i,j−1 + uk
i,j+1

]

.

5 A 1-D onvergene test.

The goal of this setion is assessing the auray and empirial onvergene

of our 1-D mimeti sheme on a numerial tests whose ontinuous solutions

exhibit signi�ant gradients at x = 0. For omparison purposes, we also

solve this test using the ghost-point based �nite di�erene method desribed

in setion 4.1. We set up initial and boundary onditions in the wave model

(1)-(3) in suh a way that the exat solution orresponds to

u(x, t) = cos(2πx)[sin(2πt) + cos(2πt)]e−αx, (17)

and hoose x ∈ [0, 1] and 0 ≤ t ≤ 1 as the problem's domain. Notie that

α is the ontrol parameter for the mild solution boundary layer at x = 0.
Figure 3 depits the absolute L2 errors of both mimeti and traditional �nite

di�erene solutions for sixteen grid sizes in the range n = 40 to n = 120 in



Modeling seismi wave propagation using staggered-grid mimeti FD 20

jumps of �ve, and using a ommon time step ∆t = 0.55h. In our experi-

ments, we observe higher auray on mimeti results for α values above 25,
but we only show one representative ase orresponding to α = 37. Notie

that the �nite di�erene sheme yields a L2 error at the �nest grid, whih is

nearly the same ahieved by the mimeti sheme at n = 95. This represents
a 20% memory saving and also implies a redution on the omputing ost.

This omputational advantage is minor on oarser grids, and arises from the

faster (almost quadrati) mimeti onvergene. It is important to remark

that the formal O(h) trunation errors of Laplaian near-boundary mimeti

disretization, do not a�et the pratial onvergene on this hard problem.

On the other hand, the traditional sheme with a proven quadrati onver-

gene delivers superlinear rates at the most. Convergene rate (CR) give on

legend of Figure 3 orrespond to linear-square �ttings of quanti�ed errors.

6 Simulations on 2-D media

In this setion, we present two numerial tests where shallow point soures

indue seismi motion that we reord on surfae reeivers. The �rst one is an

homogeneous squared medium, and the tests involves a three-layered retan-

gular model with horizontal strati�ation. In both tests, we have used only

the new mimeti sheme under two di�erent types of boundary onditions.

6.1 A homogeneous veloity model

This numerial test is based upon the researh undertaken by Reynolds in

[19℄ where an homogeneous medium is perturbed by a Riker soure loated

at 37m below the surfae. This ross setion is square with a lateral exten-

sion of 488m and onstant P-wave speed of 1500 m/s. Figure 4(a) shows

this simple Earth model, and Figure 4(b) depits the staggered grid used on

our numerial alulations. This grid is uniform with 500× 500 total evalu-

ations of the disrete solutions. Wave patterns are reorded by one hundred

reeptors loated at the top of the model (free surfae), eah of them with a

separation of 5m from its neighbors.

On this model, we numerially solve two di�erent boundary problems,

both with a free surfae at the top edge. The �rst problem onsiders �rst

order Reynolds' absorbing boundary onditions at the bottom and lateral

edges, to model the expeted behavior of seismi waves. The seond problem
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replaes the absorbing boundary ondition by Rigid-wall onditions as a way

to assess the e�ieny of the former absorbing tehniques. Seismi traes of

the �rst problem an be observed in Figure 5(a) where one an appreiate

only the arrival of the diret wave triggered by the soure point. On the

other hand, on solutions to the seond problem re�eted waves arriving at

times 0.1s and 0.2s respond to the fat that diret waves boune o� of the

lateral walls whih are shown in Figure 5(b).

6.2 A layered veloity model.

This problem is based on the model given in [21℄ with variable wave speed

as shown in Figure 6(a). This earthbound model orresponds to a retan-

gular setion with dimensions 300m long (horizontal diretion) and 150m

deep (vertial diretion). This ross setion is splitted into three layers with

horizontal strati�ation with speeds given in Figure 6(a). As is spei�ed in

Figure 6(a), this region is overed by a uniform distributed staggered grid

with a total of 300×150 disrete evaluations of the unknown solution (square

ells with 1m edge size). In this model, we use a point soure loated at

the enter of the x dimension and near from the top boundary, generating

a signal whih is later reeived by 100 geophones loated at the top of the

terrain and separated by 3m from eah other. In order to study the behav-

ior of exited waves, we analyze seismi traes obtained in both boundary

problems used in the homogeneous ase (Figure 6(b)).

The seismi traes orresponding to this boundary problem are show in

Figure 7(a). The �rst wave obtained between initial time and 0.05s orre-

sponds to the diret wave generated by the soure term. The primary wave

orresponding to the �rst layer, whih is loated 48m deep from the soure,

has an arrival time of 0.077s. On the other hand, the arrival time of the

seondary wave is 0.12s, whih orresponds to the rebounds generated by

the ollision of �rst wave with the multiple layers. Seismi traes are in

onsisteny with [21℄. After 0.12s of simulation, seismi traes shows little

re�etions as a onsequene of the �rst order absorbing boundary onditions.

With the purpose of ompare the e�etiveness of boundary onditions, we

have onsidered a seond problem with Dirihlet type boundary onditions

based on expressions (8), and their traes are show in Figure 7(b). The

simulation time in both problems is 0.15s and the time step is taken as

∆t = (0.55)h/cmax, where cmax represents the highest wave speed of the

model.
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7 Conlusions

We present a new numerial sheme based on seond order mimeti �nite dif-

ferenes to solve the seismi wave equation under a ombination of di�erent

boundary onditions. A formal onvergene analysis proves that the mimeti

sheme has an stability range

√
3 times larger than the limit of a traditional

�nite di�erene method under the same boundary onditions. Respet to the

same method, the mimeti sheme delivers more aurate numerial results

that onverge almost quadratially to exat solutions with extreme gradients

at boundaries. On 2-D seismi senarios, the results of this mimeti sheme

are good and physially onsistent with expeted wave patterns on both ho-

mogeneous and heterogeneous domains. Currently, absorbing boundaries are

based on the �rst-order Reynolds operators, however we plan to enhane this

implementation feature by using higher-order operators or related tehniques.

For future works, we also want to extend and apply the mimeti sheme to

three-dimensional seismi models.
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(a)

(b)

Fig. 2: 2-D grid for MFD disretization. A generi ell with alulations

of Gx, Gz, and D is shown in panel (a). Panel (b) illustrates the

omputation of the �ux operator F , L+F and the laplaian operator

L.
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Fig. 3: Absolute L2 errors of MFD and traditional FD solutions to the 1-D

test problem desribed in setion 5 for α = 37. Fitted onvergene

rates (CR) are given on orresponding legend.
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Fig. 4: (a) A homogeneous and square veloity model. (b) Computational

region with a staggered grid. The star symbol represents the seismi

soure point.

(a) (b)

Fig. 5: (a) Seismi traes for absorbing onditions. (b) Seismi traes for

Dirihlet onditions.
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Fig. 6: (a) Veloity model and geometry. (b) Computational region with a

staggered grid.

(a) (b)

Fig. 7: (a) Seismi traes for absorbing onditions. (b) Seismi traes for

Dirihlet onditions.


