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Abstrat

In this paper, we introdued a new �exible extension of the Generalized Half-

Normal lifetime model as well as a new log-loation regression model based on

the proposed model. Some useful haraterization results are presented and some

mathematial properties are derived. The maximum likelihood method is used

to estimate the model parameters by means of a graphial Monte Carlo simula-

tion study. We show that the new log-loation regression lifetime model an be

very useful in analysing real data and provide more realisti �ts than other re-

gression models. Index plot of the modi�ed deviane residual and Q-Q plot for

modi�ed deviane residual are presented to illustrate that our new model is more

appropriate to HIV data set than other ompetitive models like log-odd log-logisti

generalized half-normal regression model and log-generalized half-normal regression

model. The sensitivity analysis is used via the index plot of generalized ook dis-

tane to disover the possible in�uential observations.
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1 Introdution

The Generalized Half-Normal (GHN) density funtion (Cooray and Ananda

[1℄) with shape parameter λ > 0 and sale parameter θ > 0 is given by (for

x > 0)

g(x;λ, θ) =

√
2

π
(λ/x) (x/θ)λ exp

[
−1

2
(x/θ)2λ

]
.

The orresponding umulative distribution funtion (df) depends on the

error funtion

G(x;λ, θ) =
{
2Φ
[
(x/θ)λ

]
− 1
}
= erf

[
(x/θ)λ /

√
2
]
, (1)

where

Φ (x) =
1

2

[
1 + erf

(
x/

√
2
)]
,

and

erf (x) =
2√
π

∫ x

0

exp(−t2)dt.

Its nth moment is given by (Cooray and Ananda, 2008) as

E(Xn) = Γ (n + λ/2λ) θn

√
2

n
λ

π
,

where Γ (.) is the gamma funtion. The Half-Normal (HN) distribution is a

sub-model when λ = 1.

The goal of this paper is to propose the �rst generalization of the general-

ized half-normal distribution using the BurrX-G (�BrX-G� for short) family

of distributions. For an arbitrary baseline df G(x), Yousof et al. [2℄ proposed
the probability density funtion (pdf) f(x) and the df F (x) of the BrX-G
family of distributions with an additional shape parameter δ > 0 de�ned (for

x ≥ 0) by

F (x; δ, ξ) =

(
1− exp

{
−
[
G(x; ξ)

G(x; ξ)

]2})δ

. (2)
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The BrX-G density funtion is

f(x; δ, ξ) =
2δg(x; ξ)G(x; ξ)

G(x; ξ)3

× exp

{
−
[
G(x; ξ)

G(x; ξ)

]2}(
1− exp

{
−
[
G(x; ξ)

G(x; ξ)

]2})δ−1

,

where δ > 0 is the shape parameter and ξ = ξk = ( ξ1, ξ2, ...) is a parameter

vetor. Based on the BrX-G family, we onstrut a new GHN distribution and

provide a omprehensive desription of some of its mathematial properties.

We prove empirially that the BrXGHN model provides better �ts than other

ompetitive models, eah one having the same number of parameters, by

means of two appliations to real data. We hope that the new distribution

will attrat wider appliations in reliability, engineering and other areas of

researh. Inserting (1) into (2) we get

F (x; δ, λ, θ) =


1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






δ

, x ≥ 0. (3)

The orresponding pdf an be expressed as

f(x; δ, λ, θ) =2δλθ−λ
√

2

π
xλ−1 exp

[
−1

2

(x
θ

)2λ]{
2Φ
[
(x/θ)λ

]
− 1
}

×
{
2− 2Φ

[
(x/θ)λ

]}−3

exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



×

Ai︷ ︸︸ ︷
1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






δ−1

, x > 0.

(4)

The justi�ation for the pratiality of the BrXGHN lifetime model is

based on the fatigue rak growth under variable stress or yli load. Also

we are motivated to introdue the BrXGHN lifetimemodel beause it exhibits

inreasing as well as bathtub hazard rates as illustrated in Figure 2. It is
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shown in Subsetion 3.1 that the BrXGHN lifetime model an be viewed as a

mixture of the two-parameter GHN distributions introdued by Cooray and

Ananda (2008). It an be viewed as a suitable model for �tting the unimodal

data. The BrXGHN lifetime model outperforms several of the well-known

lifetime distributions with respet to two real data appliations as illustrated

in Setion 6. The new log-loation regression model based on the BrXGHN

distribution provides better �ts than the log-odd log-logisti generalized half-

normal and log-generalized half-normal regression models for HIV data set.

Many extension of the GHN model an be ited as follows: the beta gen-

eralized half-Normal distribution with appliations to myelogenous leukemia

data by Pesim et al. [3℄, Kumaraswamy generalized half-normal distribu-

tion for ensored data by Cordeiro et al. [4℄, a log-linear regression model

based on the beta generalized half-Normal distribution by Pesim et al. [5℄,

the beta generalized half normal geometri distribution by Ramires et al.

[6℄. Merovi et al. [7℄ de�ned and applied the exponentiated transmuted

generalized half-normal for a data set of the life of fatigue frature of Kevlar

373/epoxy that are subjet to onstant pressure at the 90% stress level until

all had failed.

The rest of the paper is organized as follows. Setion 2 deals with some

useful haraterization results of the proposed model. In Setion 3, we de-

rived some of its mathematial properties. In Setion 4, the maximum likeli-

hood method is used to estimate the model parameters by means of a Monte

Carlo simulation study. A new log-loation regression model as well as resid-

ual analysis are presented in Setion 5. Setion 6 is devoted to appliations to

real data sets to prove empirially the importane of new the model. Finally,

some onlusions and future work are given in Setion 7.

2 Charaterizations

This setion deals with ertain haraterizations of BrXGHN distribution.

These haraterizations are in terms of: (i) the trunated moment involving

two funtions; (ii) a simple relationship between two trunated moments;

(iii) the hazard funtion and (iv) ertain funtion of the random variable.

One of the advantages of haraterization (ii) is that the df is not required
to have a losed form. We present our haraterizations (i)− (iv) in four

subsetions.
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2.1 Charaterizations based on trunated moment

involving two funtions

Our �rst haraterization is based on the following Proposition.

Proposition 1. Let X : Ω → R be a ontinuous random variable with df

F . Let ψ (x) and ϕ (x) be two di�erentiable funtions on R suh that∫∞
−∞

ϕ′(t)
[ϕ(t)−ψ(t)]dt = ∞. Then

E [ψ (X) | X ≥ x] = ϕ (x) , x ∈ R,

implies

F (x) = 1− exp

{
−
∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt

}
, x ∈ R.

Proof. If E [ψ (X) | X ≥ x] = ϕ (x) , x ∈ R holds, then

∫ ∞

x

ψ (u) f (u) du = (1− F (x))ϕ (x) .

Di�erentiating both sides of the above equation and rearranging the terms,

we arrive at

f (x)

1− F (x)
=

ϕ′ (x)

ϕ (x)− ψ (x)
, x ∈ R.

Integrating the last equation with respet to t from −∞ to x , we have

− ln [1− F (x)] =

∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt,

from whih we obtain

F (x) = 1− exp

{
−
∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt

}
.

Remark 1. For δ = 1 , ψ (x) = 2ϕ (x) , ϕ (x) = exp

{
−
({

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)}

, x > 0 and the fat that limx→0+ ϕ (x) = 1, we have

F (x) = 1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x ≥ 0,

whih is df (3) for δ = 1.
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2.2 Charaterizations based on a simple relationship

between two trunated moments

In this subsetion we present haraterizations of BrXGHN distribution in

terms of the ratio of two trunated moments. This haraterization result

employs a theorem due to Glanzel [8℄, see Theorem 1 of Appendix A. Note

that the result holds also when the interval H is not losed. Moreover, as

mentioned above, it ould also be applied when the df F does not have a

losed form. As shown in Glanzel [9℄, this haraterization is stable in the

sense of weak onvergene.

Proposition 2. Let X : Ω → (0,∞) be a ontinuous random variable and

let

q1 (x) =


1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






1−δ

and

q2 (x) = exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



for x > 0. The random variable X has pdf (4) if and only if the funtion η
de�ned in Theorem 1 has the form

η (x) =
1

2
exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x > 0.

Proof. Let X be a random variable with pdf (4), then

(1− F (x))E [q1 (X) | X ≥ x] = exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x > 0,

and
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(1− F (x))E [q2 (X) | X ≥ x] =

1

2
exp


−2




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 x > 0,

and �nally

η (x) q1 (x)− q2 (x) =

− q1 (x)

2
exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 < 0, for x > 0.

Conversely, if η is given as above, then

s′ (x) = η′(x)q1(x)
η(x)q1(x)−q2(x) = 2λθ−λ

√
2
π
xλ−1

× {2Φ[(x/θ)λ]−1}
{2−2Φ[(x/θ)λ]}3 exp

[
−1

2
(x/θ)2λ

]
x > 0.

Now, in view of Theorem 1, X has density (4).

Corollary 1. Let X : Ω → (0,∞) be a ontinuous random variable and let

q1 (x) be as in Proposition 2 The pdf of X is (4) if and only if there exist

funtions q2 and η de�ned in Theorem 1 satisfying the di�erential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2λθ−λ
√

2

π
xλ−1

{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3 exp

[
−1

2
(x/θ)2λ

]
x > 0.

The general solution of the di�erential equation in Corollary 2.2 is
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η (x) = exp







2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



×




−
∫
2λθ−λ

√
2
π
xλ−1 {2Φ[(x/θ)λ]−1}

{2−2Φ[(x/θ)λ]}3 exp
[
−1

2
(x/θ)2λ

]
×

exp

(
−
{

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)
(q1 (x))

−1 q2 (x) +D


 ,

where D is a onstant. Note that a set of funtions satisfying the above

di�erential equation is given in Proposition 2 with D = 0. However, it

should be also noted that there are other triplets (q1, q2, η) satisfying the

onditions of Theorem 1.

2.3 Charaterization based on hazard funtion

It is known that the hazard funtion, hF , of a twie di�erentiable distribution
funtion, F , satis�es the �rst order di�erential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

For many univariate ontinuous distributions, this is the only harateriza-

tion available in terms of the hazard funtion. The following haraterization

establishes a non-trivial haraterization of BrXGHN distribution for δ = 1.

Proposition 3. Let X : Ω → (0,∞) be a ontinuous random variable. The

pdf of X is (4), for δ = 1, if and only if its hazard funtion hF (x) satis�es
the di�erential equation

h′F (x) + λθ−λxλ−1hF (x) = 2λθ−λ
√

2
π
exp

[
−1

2
(x/θ)2λ

]

× d
dx

{
xλ−1{2Φ[(x/θ)λ]−1}
{2−2Φ[(x/θ)λ]}3

}
, x > 0.

Proof. If X has pdf (4), then learly the above di�erential equation holds.

Now, if this di�erential equation holds, then



91 Altun, Yousof, Hamedani

d

dx

{
hF (x) exp

[
1

2
(x/θ)2λ

]}
=

2λθ−λ
√

2

π

d

dx





xλ−1
{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3




, x > 0,

from whih, we obtain

hF (x) =
2λθ−λ

√
2
π
xλ−1 exp

[
−1

2
(x/θ)2λ

]{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3 , x > 0,

whih is the hazard funtion of BrXGHN distribution for δ = 1.

2.4 Charaterizations Based on Conditional

Expetation

The following proposition has already appeared in [10℄, so we will just state

it here whih an be used to haraterize the BrXGHN distribution for δ = 1.

Proposition 4. Let X : Ω → (a, b) be a ontinuous random variable

with cdf F . Let ψ (x) be a di�erentiable funtion on (a, b) with

limx→a+ ψ (x) = 1. Then for γ 6= 1,

E [ψ (X) | X ≥ x] = γψ (x) , x ∈ (a, b) ,

if and only if

ψ (x) = (1− F (x))
1

γ
−1 , x ∈ (a, b) .

Remark 2. For ψ (x) = exp

(
−
{

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)
, δ = 1 , γ = 1

2
and

(a, b) = (0,∞), Proposition 4 provides a haraterization of BrXGHN dis-

tribution. Of ourse there are other suitable funtions than the one we men-

tioned above, whih is hosen for simpliity.
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3 Mathematial and statistial properties

In this setion we will provide some mathematial and statistial properties

of the BrXGHN distribution.

3.1 Linear representation

In this sub-setion, we provide a very useful linear representation of the

BrXGHN model. If |z| < 1 and b > 0 is a real non-integer, the following

power series holds

(1− z)b−1 =
∞∑

i=0

(−1)i Γ (b)

i! Γ (b− i)
zi. (5)

Applying (5) to the term Ai of (4), Equation (5) redues to

f(x) = 2δλθ−λ
√

2

π
xλ−1

exp
[
−1

2
(x/θ)2λ

]{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3

×
∞∑

i=0

(−1)i Γ (δ)

i! Γ (δ − i)
exp


− (i+ 1)




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



︸ ︷︷ ︸
Bi

.

(6)

Applying the power series to the term Bi, Equation (6) beomes

f(x) = 2θ

√
2

π

(
λ

x

)
(x/θ)λ exp

[
−1

2
(x/θ)2λ

]

×
∞∑

i,j=0

(−1)i+j (i+ 1)j Γ (δ)

i! j!Γ (δ − i)

{
2Φ
[
(x/θ)λ

]
− 1
}2j+1

{
2− 2Φ

[
(x/θ)λ

]}2j+3

︸ ︷︷ ︸
Ci

.
(7)

Consider the series expansion

(1− z)−b =

∞∑

k=0

Γ (b+ k)

k!Γ (b)
zk, |z| < 1, b > 0. (8)
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Applying the expansion in (8) to (7) for the term Ci, Equation (7) beomes

f(x) = 2δ
∞∑

i,j,k=0

(−1)i+j (i+ 1)j Γ (δ) Γ (2j + k + 3) [2j + k + 2]

i! j!k!Γ (δ − i) Γ (2j + 3) [2j + k + 2]

×
√

2

π
(λ/x) (x/θ)λ exp

[
−1

2
(x/θ)2λ

]

︸ ︷︷ ︸
g(x;λ,θ)

{
2Φ
[
(x/θ)λ

]
− 1
}2j+k+1

︸ ︷︷ ︸
G(x;λ,θ)

.

This an be written as

f(x) =

∞∑

j,k=0

Ωj,k π2j+k+2(x;λ, θ), (9)

where

Ωj,k = 2δ
(−1)j Γ (δ) Γ (2j + k + 3)

j!k!Γ (2j + 3) (2j + k + 2)

∞∑

i=0

(−1)i (i+ 1)j

i! Γ (δ − i)

and π2j+k+2(x;λ, θ) = (2j + k + 2) g (x;λ, θ)G (x;λ, θ)2j+k+1
is the pdf of

the exponentiated-GHN (Exp-GHN) distribution with the power parameter

2j + k + 2. Equation (9) reveals that the density of X an be expressed as

a linear mixture of exp-G densities. So, several mathematial properties of

the new family an be obtained from those of the Exp-GHN distribution.

Similarly, the df of the BrXGHN model an be expressed as a mixture of

Exp-GHN dfs given by

F (x) =

∞∑

j,k=0

Ωj,k Π2j+k+2 (x;λ, θ) ,

where Π2j+k+2(x;λ, θ) = G (x;λ, θ)2j+k+1
is the df of the Exp-GHN distri-

bution with the power parameter 2j + k + 2.

3.2 Moments and generating funtion

By setting u =
(
x
θ

)λ
and onsidering the error funtion as the df of the GHN

distribution, the n

th
moment of X an be obtained from equation (9) as

µ′
n = E (Xn) = θn

√
2

π

∞∑

j,k=0

Ωj,kI (n/λ, k) ,



Flexible extension of the generalized half-normal lifetime model 94

where

I (n/λ, k) =

∞∫

0

u
n
λ exp

(
−1

2
u2
)[

erf

(
u√
2

)]k
du.

Inserting the power series for the error funtion

erf (x) =
2√
π

∞∑

m=0

(−1)m (m!)−1 (2m+ 1)−1 x2m+1

in the last equation and omputing the integral, we have (for any real k+n/λ)
we get

E (Xn) = θn
√
2/π

∞∑

j,k=0

Ωj,kI (n/λ, k) ,

where

I (n/λ, k) =2−
1

2
+k+ n

2λ π− 1

2
k

∞∑

m1,...,mk=0

(−1)m1+...+mk Γ
(
m1 + ... +mk +

1
2
[1 + k + n/λ]

)

m1!
(
m1 +

1
2

)
m2!

(
m2 +

1
2

)
...mk!

(
mk +

1
2

) .

Moreover, for the very speial ase when k+n/λ is even, the integral I (n/λ, k)
an be expressed in terms of the Lauriella funtion of type A (Exton [11℄;

Aarts [12℄) de�ned by

F
(n)
A (a; b1, ..., bn; c1, ..., cn; x1, ..., xn) =

∞∑

m1=0

...
∞∑

mn=0

xm1

1 ...xmn
n

m1!...mn!
×

(a)m1
+ ...+ (a)mn

+ (b)m1
+ ... + (b)mn

(c)m1
+ ... + (c)mn

,

where (a)k = a (a+ 1) ... (a + k − 1) is the asending fatorial (with the on-

vention that (a)0 = 1 ). Numerial tehnis for the diret omputation of the

Lauriella funtion of type A are available, see Exton [11℄ and Mathemat-

ia (Trott [13℄). Hene, E (Xn) an be expressed in terms of the Lauriella

funtions of type A

E (Xn) =

θn
√

2

π

∞∑

j,k=0

aj,kF
(k)
A

(
1

2
[2j + k + 2 + n/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
,
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where

aj,k = 2−
1

2
+k+ n

2λπ− 1

2
kΩj,k Γ

(
1

2
[2j + k + 2 + n/λ]

)
.

The entral moments (µn) and umulants (κn) of X are determined using

E (Xn) as

µn =
n∑

k=0

(
n

k

)
(−1)k µ′k

1 µ′
n−k

and

κn = µ′
n −

n−1∑

k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respetively, where κ1 = µ′
1. The skewness β1 = κ3/κ

3/2
2 and kurtosis β2 =

κ4/κ
2
2 are obtained from the third and fourth standardized umulants.The

moment generating funtion (mgf) of of X, say MX (t) = E
(
etX
)
, is given

by MX (t) =
∞∑
n=0

tn (n!)−1E (Xn) . The harateristi funtion (f) of X , φ (t)

= E
(
eit X

)
, and the umulant generating funtion (gf) ofX ,K (t) = log φ (t)

an be obtained from the well known relationships, where i =
√
−1.

3.3 Probability weighted moments

The probability weighted moment (PWM)s are expetations of ertain fun-

tions of a random variable and they an be de�ned for any random variable

whose ordinary moments exist. The PWM method an generally be used

for estimating parameters of a distribution whose inverse form annot be

expressed expliitly. The (s, r)th PWM of X following the BrXGHN model,

say ρs,r, is formally de�ned by

ρs,r = E {Xs F (X)r} =

∫ ∞

−∞
xs F (x)r f (x) dx.

Using equations (3) and (4) we an write

f (x) F (x)r =
∞∑

j,k=0

aj,kπ2j+k+2 (x) ,

where

aj,k =
2δ (−1)j Γ (2j + k + 3)

j!k!Γ (2j + 3) (2j + k + 2)

∞∑

i=0

(−1)i (i+ 1)j
(
δ (r + 1)− 1

i

)
.
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Then, the (s, r)th PWM of X an be expressed as

ρs,r = θs
√

2

π

∞∑

j,k=0

bj,kF
(k)
A

(
1

2
[2j + k + 2 + s/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
.

where

bj,k = 2−
1

2
+k+ n

2λπ− 1

2
kaj,k Γ

(
1

2
[2j + k + 2 + s/λ]

)
.

3.4 Stress-strength model

Let X1 and X2 be two independent random variables with BrX-GHN(δ1, ξ)
and BrX-GHN(δ2, ξ) distributions, respetively. Then, the reliability is de-

�ned by

R =

∫ ∞

0

f1 (x; δ1, ξ)F2 (x; δ2, ξ) dx.

We an write

R =
∞∑

j,k,w,m=0

sj,k,w,m

∫ ∞

0

π2j+2w+k+m+4 (x) dx,

where

sj,k,w,m = 4δ1δ2

∞∑

i,h=0

(−1)i+h (i+ 1)j (h + 1)w
(
δ1−1
i

)(
δ2−1
h

)

(2w +m+ 2) (2j + k + 2w +m+ 4)

×
∞∑

j,k,w,m=0

(−1)j+w Γ (2j + k + 3) Γ (2w +m+ 3)

j!k!w!m!Γ (δ2 − h) Γ (2j + 3)Γ (2w + 3)
.

Thus, the reliability, R, an be expressed as

R =
∞∑

j,k,w,m=0

sj,k,w,m.
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3.5 Order statistis

Order statistis make their appearane in many areas of statistial theory

and pratie. Let X1, . . . , Xn be a random sample from the BrXGHN distri-

butions and let X1:n, . . . , Xn:n be the orresponding order statistis. The pdf

of ith order statisti, Xi:n, an be written as

fi:n (x) = [B (i, n− i+ 1)]−1
n−i∑

j=0

(−1)j
(
n− i

j

)
f (x) F j+i−1 (x) , (10)

where B(·, ·) is the beta funtion. Using (3), (4) and (10) we have

f (x) F (x)j+i−1 =

∞∑

w,k=0

tw,kπ2w+k+2 (x) ,

where

tw,k =
2δ (−1)w Γ (2w + k + 3)

w!k!Γ (2w + 3) (2w + k + 2)

∞∑

m=0

(−1)m (m+ 1)w
(
δ (j + i)− 1

m

)
.

The pdf of Xi:n an be expressed as

fi:n (x) =

∞∑

w,k=0

n−i∑

j=0

(−1)j [B (i, n− i+ 1)]−1

(
n− i

j

)
tw,kπ2w+k+2 (x) .

Then, the density funtion of the BrX-GHN order statistis is a mixture of

exp-G densities. Based on the last equation, we note that the properties of

Xi:n follow from those properties of Y2w+k+2. For example, the moments of

Xi:n an be expressed as

E (Xq
i:n) =

∞∑

w,k=0

n−i∑

j=0

(−1)j
(
n− i

j

)
[B (i, n− i+ 1)]−1 tw,kE

(
Y q
2w+k+2

)
.

E (Xq
i:n) =

θq
√

2

π

∞∑

w,k=0

cj,kF
(k)
A

(
1

2
[2w + k + 2 + q/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
,

where

cj,k = 2−
1

2
+k+ n

2λ π− 1

2
k

×
n−i∑

j=0

(−1)j
(
n− i

j

)
[B (i, n− i+ 1)]−1 tw,kΓ

(
1

2
[2w + k + 2 + q/λ]

)
.
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4 Estimation

4.1 Maximum likelihood estimation

Several approahes for parameter estimation were proposed in the literature

but the maximum likelihood method is the most ommonly employed. So,

we onsider the estimation of the unknown parameters of this family from

omplete samples only by maximum likelihood. Let x1, . . . , xn be a ran-

dom sample from the BrX-GHN model with parameters δ, λ and θ. Let

Θ =(δ, λ, θ)⊺ be the p× 3 parameter vetor. The log-likelihood funtion is

ℓ = ℓ(Θ) = n log 2 + n log δ + n log

√
2

π
+ n log λ+ nλ log θ +

n∑

i=1

log xλ−1
i

−1

2

n∑

i=1

(xi/θ)
2λ +

n∑

i=1

log (τi − 1)− 3

n∑

i=1

log (2− τi)

−
n∑

i=1

s2i + (δ − 1)

n∑

i=1

log
[
1− exp

(
−s2i

)]
,

where si =
τi−1
2−τi and τi = 2Φ

[
(xi/θ)

λ
]
. The omponents of the sore vetor,

U (Θ) = ∂ℓ
∂Θ

=
(
∂ℓ
∂δ
, ∂ℓ
∂λ
, ∂ℓ
∂θ

)⊺
, are

Uδ =
n

δ
+

n∑

i=1

log
[
1− exp

(
−s2i

)]
,

where

Uλ =
n

λ
++n log θ +

n∑

i=1

log xi −
n∑

i=1

(xi/θ)
2λ log (xi/θ)

+
n∑

i=1

ζ
(λ)
τi

τi − 1
+ 3

n∑

i=1

ζ
(λ)
τi

2− τi
− 2

n∑

i=1

si
ζ
(λ)
τi

(2− τi)
2

+ (δ − 1)
n∑

i=1

2siζ
(λ)
τi (2− τi)

−2 exp (−s2i )
1− exp (−s2i )
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and

Uθ =
nλ

θ
− λ

n∑

i=1

θ−2λ−1 +

n∑

i=1

ζ
(θ)
q

τi − 1
+ 3

n∑

i=1

ζ
(θ)
q

2− τi

−2
n∑

i=1

si
ζ
(θ)
τi

(2− τi)
2 + (δ − 1)

n∑

i=1

2siζ
(θ)
τi (2− τi)

−2 exp (−s2i )
1− exp (−s2i )

,

where

ζ (λ)τi
=

2√
2π

exp

[
−1

2
(xi/θ)

2λ

]
(xi/θ)

λ log (xi/θ)

and

ζ (θ)τi
=

2√
2π

exp

[
−1

2
(xi/θ)

2λ

]
(xi/θ)

λ (λ/θ) .

Setting the nonlinear system of equations Uθ = 0 and Uξ = 0 and solving

them simultaneously yields the MLE Θ̂ = (θ̂, ξ̂⊺)⊺. To solve these equations,

it is usually more onvenient to use nonlinear optimization methods suh as

the quasi-Newton algorithm to numerially maximize ℓ.

4.2 Simulation study

In this setion, we ondut a simulation study to evaluate the performane

of MLEs of BrX-GHN model. We generate 10,000 samples of size, n =50,

250 and 500 from BrXGHN model using the inverse transform method. The

evaluation of estimates was based on the averages of estimates (AEs) and

mean squared errors (MSEs). The empirial study was onduted with soft-

ware R.

The empirial results are given in Table 1. The values in Table 1 indi-

ate that the estimates are quite stable and, more importantly, are lose to

the true values for these sample sizes. The simulation study shows that the

maximum likelihood method is appropriate for estimating the BrXGHN pa-

rameters. In fat, the MSEs tend to be loser to zero when n inreases. This

fat supports that the asymptoti normal distribution provides an adequate

approximation to the �nite sample distribution of the MLEs.
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Tab. 1: Estimated AEs and MLEs for several parameter values of BrXGHN

distribution.

Parameters

AE MSE

n δ λ θ δ λ θ
(2,2,0.5) 50 3.01134 2.27575 0.49430 10.84800 2.33700 0.00017

250 2.07400 2.05300 0.49900 0.37500 0.11200 0.00002

500 2.02300 2.03400 0.49970 0.15400 0.05600 0.00001

(0.5,2,2) 50 0.55419 2.89561 1.97113 0.18602 5.36315 0.00526

250 0.50072 2.12757 1.99380 0.01453 0.23766 0.00089

500 0.50021 2.04821 1.99676 0.00268 0.04086 0.00019

(2,4,5) 50 3.01081 4.90053 4.97673 16.71033 32.58943 0.00439

250 2.10414 4.06892 4.99638 0.36515 0.44431 0.00040

500 2.03973 4.06787 4.99713 0.19537 0.24999 0.00022

5 Log-BrXGHN regression model

Consider the BrXGHN distribution with three parameters given in (4). Hene-

forth, X denotes a random variable following the BrXGHN distribution (4)

and let Y = log(X). The density funtion of Y (for y ∈ ℜ) obtained by

replaing λ =
√
2

2σ
and θ = exp (µ) an be expressed as

f (y) =
2δ

σ
√

2π
exp

{

−
1

2
exp[( y−µ

σ )
√

2]+( y−µ
σ )

√

2

2

}[

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

3

× exp

{
−
[ [

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

]2}(
1− exp

{
−
[ [

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

]2})δ−1

,

(11)

where µ ∈ ℜ is the loation parameter, σ > 0 is the sale parameter and

δ > 0 is the shape parameter. We refer to equation (11) as the Log-BrXGHN

(LBrXGHN) pdf, say Y ∼ LBrXGHN(δ, σ, µ). The plots in Figure 3 show

shapes of density funtion (11) for seleted parameter values. They reveal

that this distribution is a good andidate to model left skewed and symmetri

lifetime data sets. The survival funtion orresponding to (11) is given by

S (y) = 1−


1− exp





−




[
2Φ
[
exp

[(
y−µ
σ

) √
2
2

]]
− 1
]

(
2− 2Φ

[
exp

[(
y−µ
σ

) √
2
2

]])



2







δ

, (12)
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and the hrf is simply h(y) = f(y)/S(y). The standardized random variable

Z = (Y − µ)/σ has density funtion

f (z) =
2δ√
2π

exp
{

1

2
exp[z

√
2]+(z)

√
2

2

}[

2Φ
[

exp
[

z
√

2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])3

× exp

{
−
[ [

2Φ
[

exp
[

z
√
2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])

]2}(
1− exp

{
−
[ [

2Φ
[

exp
[

z
√

2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])

]2})δ−1 .

(13)

5.1 Estimation

5.1.1 Maximum Likelihood Estimation

Based on the LBrXGHN density, we propose a linear loation-sale regression

model linking the response variable yi and the explanatory variable vetor

v
⊺

i = (vi1, . . . , vip) given by

yi = v
⊺

iβ + σzi, i = 1, . . . , n, (14)

where the random error zi has density funtion (13), β = (β1, . . . , βp)
⊺
, and

σ > 0 and δ > 0 are unknown parameters. The parameter µi = v
⊺

iβ is the

loation of yi. The loation parameter vetor µ = (µ1, . . . , µn)
⊺
is represented

by a linear model µ = Vβ, where V = (v1, . . . ,vn)
⊺
is a known model

matrix.

Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations,

where eah random response is de�ned by yi = min{log(xi), log(ci)} where

xi and ci are lifetime and ensoring times, respetively. We assume non-

informative ensoring suh that the observed lifetimes and ensoring times

are independent. Let F and C be the sets of individuals for whih yi is
the log-lifetime or log-ensoring, respetively. The log-likelihood funtion for

the vetor of parameters τ = (θ, β, σ,β⊺)⊺ from model (14) has the form

l(τ ) =
∑
i∈F

li(τ ) +
∑
i∈C

l
(c)
i (τ ), where li(τ ) = log[f(yi)], l

(c)
i (τ ) = log[S(yi)],

f(yi) is the density (11) and S(yi) is the survival funtion (12) of Yi. The

total log-likelihood funtion for τ is given by
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ℓ ( τ ) =r log

(
2δ

σ
√
2π

)
− 1

2

∑

i∈F
exp

(
zi
√
2
)
+

√
2

2

∑

i∈F
zi +

∑

i∈F
log [ui − 1]

− 3
∑

i∈F
log [2− ui]

−
∑

i∈F

[
ui − 1

2− ui

]2
+ (δ − 1)

∑

i∈F
log

(
1− exp

{
−
[
ui − 1

2− ui

]2})

+
∑

i∈C
log


1−

(
1− exp

{
−
[
ui − 1

2− ui

]2})δ



(15)

where ui = 2Φ
[
exp

(
zi
√
2
/
2
)]
, zi = (yi − µi)/σ and r is the number of

unensored observations (failures). The MLE τ̂ of the vetor of unknown

parameters an be evaluated by maximizing the log-likelihood funtion (15).

The optim funtion of R software is used to estimate τ̂ . Under the standard

regularity onditions, the asymptoti distribution of (τ̂ − τ ) is multivariate
normal Np+2(0, K(τ )−1), where K(τ ) is the expeted information matrix.

The asymptoti ovariane matrix K(τ )−1
of τ̂ an be approximated by the

inverse of the (p + 2) × (p + 2) observed information matrix −L̈(τ ), whose
elements are evaluated numerially. The approximate multivariate normal

distribution Np+2(0,−L̈(τ )−1) for τ̂ an be used, in the lassial way, to

onstrut approximate on�dene intervals for the parameters in τ .

5.2 Sensitivity analysis

A �rst tool to perform sensitivity analysis, as stated before, is by means

of global in�uene starting from ase deletion. Case deletion is a popular

method to investigate the in�uene of taking out the ith ase from the data

on the parameters estimates. This method ompares the τ̂ with τ̂−i where
τ̂−i is the estimated parameters when the ith ase is dropped from the data.

If there is a big di�erenes betweeb τ̂−i and τ̂ , the dropped observation ould

be onsidered as in�uential observation.

Here, generalized ook distane is used to detet the possible in�uential

observations. Generalized Cook distane (GD) is given by

GDi (τ ) = (τ̂−i − τ̂ )T
[
−L̈ (τ̂ )

]
(τ̂−i − τ̂ ) , (16)
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where −L̈ (τ̂ ) is the observed information matrix.

5.3 Residual analysis

Residual analysis has ritial role in heking the adequay of the �tted

model. In order to analyse departures from error assumption, two types of

residuals are onsidered: martingale and modi�ed deviane residuals.

5.3.1 Martingale residual

The martingale residuals is de�ned in ounting proess and takes values be-

tween +1 and−∞ (see, Fleming and Harrington[14℄ for details). The mar-

tingale residuals for LOLLBXII model is,

rMi
=





1 + log

{
1−

(
1− exp

{
−
[
ui−1
2−ui

]2})δ
}

ifi ∈ F,

log

{
1−

(
1− exp

{
−
[
ui−1
2−ui

]2})δ
}

ifi ∈ C,

(17)

where ui = 2Φ
[
exp

(
zi
√
2
/
2
)]

and zi = (yi − µi)/σ.

5.3.2 Modi�ed deviane residual

The main drawbak of martingale residual is that when the �tted model is

orret, it is not symmetrially distributed about zero. To overome this

problem, modi�ed deviane residual was proposed by Therneau et al. [15℄.

The modi�ed deviane residual is given by

rDi
=

{
sign (rMi

) { −2 [rMi
+ log (1− rMi

)]}1/2, ifi ∈ F

sign (rMi
) { −2rMi

}1/2, ifi ∈ C,
(18)

where r̂Mi
is the martingale residual.

6 Appliations

In this setion, we provide two appliations to real data sets to illustrate the

�exibility of the BrxGHN distribution and BrxGHN regression model. The

statistial software R is used for all numerial omputations. The following
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goodness-of-�t measures are used to ompare �tted models: Cramer von

Mises (W*), Anderson Darling (A*), estimated −ℓ and Akaike Information

Criteria (AIC). In general, the smaller the values of these statistis, the better

the �t to the data.

We ompare the BrxGHN distribution with another extension of GHN

distribution introdued by Cordeiro et al. [10℄, named odd log-logisti gen-

eralized half-normal (OLLGHN) distribution. The df of OLLGHN distribu-

tion is given by

FOLLGHN (x;α, λ, θ) =

{
2Φ
[(

x
θ

)λ]− 1
}α

{
2Φ
[(

x
θ

)λ]− 1
}α

+
{
2− 2Φ

[(
x
θ

)λ]}α , (19)

where α > 0 is additional shape parameter. Note that when α = 1, OLLGHN
distribution redues to GHN distribution.

6.1 Univariate data modeling

The �rst data set refers to a lifetime taken from Gross and Clark [16℄. The

data are: 1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3,1.7,2.3,1.6,

Table 2 shows the estimated parameters and their standard errors, −ℓ and
AIC values. Based on the �gures in Table 2, BrxGHN distribution provides

better �ts than OLL-GHN distribution for used data set. Figure 4(a) displays

the histogram with �tted pdfs and Figure 4(b) displays the �tted hrf and P-

P plot of BrXGHN distribution. These �gures reveal that BrXGHN model

provides superior �ts to used data set.

Tab. 2: MLEs and their SEs of the �tted models and goodness-of-�t statistis

for seond data set

Models α δ λ θ −ℓ AIC A⋆ W ⋆

BrXGHN 16188.74 0.0771 0.214 15.545 37.091 0.256 0.047

(33.442) (0.022) (0.214)

OLL-GHN 34.380 0.099 92.226 16.574 39.148 0.400 0.071

(11.502) (0.027) (101.786)

GHN 1.955 2.302 22.452 48.905 1.391 0.242

(0.487) (0.137)
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6.2 HIV data set

The performane of LBrXGHN regression model is ompared with log-odd

log-logisti generalized half-normal (LOLLGHN) regression model, introdued

by Pesim et al. [17℄, and log-generalized half-normal (LGHN) regression

model. The survival funtions of LOLLGHN and LGHN regression models

are given by, respetively,

SLOLLGHN (y) =

(

2−Φ
[

exp
[

( y−µ
σ )

√
2

2

]])θ

[

2Φ
[

exp
[

( y−µ
σ )

√
2

2

]]

−1
]θ

+
(

2−Φ
[

exp
[

( y−µ
σ )

√
2

2

]])θ ,

SLGHN (y) = 2− 2Φ
[
exp

[(
y−µ
σ

) √
2
2

]]
.

(20)

The hypothetial dataset ontains 100 observations on HIV+ subjets be-

longing to an Health Maintenane Organization(HMO). The HMO wants to

evaluate the survival time of these subjets. In this hypothetial data set,

subjets were enrolled from January 1, 1989 until Deember 31, 1991. Study

follow up then ended on Deember 31, 1995. This data set are reported in

Hosmer and Lemeshow [18℄ and also an be found in R pakage Bolstad2. We

adopt the LBrXGHN regression model to analyze this dataset. The variables

involved in the study are: yi - observed survival time (in months); censi -
ensoring indiator (0= alive at study end or lost to follow-up,1=death due

to AIDS or AIDS related fators), xi1(1 = yes, 0 = no) represents the history
of drug use and xi2 represents the ages of patients.

We onsider the following regression model

yi = β0 + β1xi1 + β2xi2 + σzi,

where yi has the LBrXGHN density, for i = 1, . . . , 100.

6.2.1 Maximum Likelihood Estimation

The MLE method is used to estimate unknown parameters of LBrxGHN,

LOLLGHN and LGHN regression models. Table 3 shows the MLEs of the

model parameters �tted regression models, estimated log-likelihood values

and AIC values. These results indiate that the LBrxGHN regression model

has the lowest values of these statistis, and so LBrxGHN model provides

better �tting than LOLLGHN and LGHN models for used data set. For the

�tted regression models, note that β0, β1 and β2 are marginally signi�ant

at the 1% level.
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Tab. 3: MLEs of the parameters, their standard errors and p-values, the es-
timated −ℓ and AIC statisti.

Models Parameters δ θ σ β0 β1 β2 −ℓ AIC

LGHN Estimates 0.757 6.347 -0.091 -1.126 130.590 269.180

Std. Errors 0.067 0.487 0.013 0.177

p values <0.001 <0.001 <0.001

LOLLGHN Estimates 2.448 1.691 6.686 -0.091 -0.965 128.228 266.455

Std. Errors 1.72504 1.1841 0.7582 0.01427 0.2097

p values <0.001 <0.001 <0.001

LBrXGHN Estimates 5.064 5.066 7.085 -0.089 -0.962 127.585 265.171

Std. Errors 3.988 1.981 0.612 0.015 0.211

p values <0.001 <0.001 <0.001

6.2.2 Sensitivity Analysis

Here, possible in�uential observations are analysed with measure desribed in

Setion 5.2. Figure 5 displays the results of generalized Cook distane,GDi (τ ).
Based on Figure 5, ases 41 and 48 an be onsidered as possible in�uential

observations.

6.2.3 Residual Analysis

Figure 6 displays the index plot of the modi�ed deviane residuals and its

Q-Q plot against to N(0, 1) quantiles. Based on Figure 6, we onlude that

none of observed values appears as possible outliers. Therefore, the �tted

model is appropriate for these data set.

7 Conlusion

In this study, we introdued a new �exible extension of the Generalized Half-

Normal lifetime model as well as a new log-loation regression model based

on the proposed model. Some useful haraterization results are presented

and some mathematial properties are derived. The maximum likelihood

method is used to estimate the model parameters by means of a graphial

Monte Carlo simulation study. We show that the new log-loation regression

lifetime model an be very useful in analysing real data and provide more

realisti �ts than other regression models. Index plot of the modi�ed de-

viane residual and Q-Q plot for modi�ed deviane residual are presented to

illustrate that our new model is more appropriate to HIV data set than other
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ompetitive models like log-odd log-logisti generalized half-normal regres-

sion model and log-generalized half-normal regression model. The sensitivity

analysis is used via the index plot of generalized ook distane to disover

the possible in�uential observations.
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability spae and let H = [a, b]
be an interval for some d < b (a = −∞, b = ∞ might as well be allowed) .
Let X : Ω → H be a ontinuous random variable with the distribution

funtion F and let q1 and q2 be two real funtions de�ned on H suh that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is de�ned with some real funtion η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H)
and F is twie ontinuously di�erentiable and stritly monotone funtion on

the set H. Finally, assume that the equation ηq1 = q2 has no real solution in

the interior of H. Then F is uniquely determined by the funtions q1, q2 and
η , partiularly

F (x) =

∫ x

a

C

∣∣∣∣
η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the funtion s is a solution of the di�erential equation s′ = η′ q1
ηq1−q2

and C is the normalization onstant, suh that

∫
H
dF = 1.

Appendix B

R ode for parameter estimation of BrXGHN distribution.

library(AdequayModel)

df=funtion(par,x)

{ gam=par[1℄

lambda=par[2℄

theta=par[3℄
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y=x

G=2*pnorm((y/theta)^lambda)-1

g=sqrt(2/pi)*(lambda/y)*(y/theta)^(lambda)

*exp((-1/2)*(y/theta)^(2*lambda))

f=(1-exp(-(G/(1-G))^2))^gam

return(f)}

pdf=funtion(par,x)

{ gam=par[1℄

lambda=par[2℄

theta=par[3℄

y=x

G=2*pnorm((y/theta)^lambda)-1

g=sqrt(2/pi)*(lambda/y)*(y/theta)^(lambda)

*exp((-1/2)*(y/theta)^(2*lambda))

f=((2*gam*g*G)/(1-G)^3)*exp(-(G/(1-G))^2)

*(1-exp(-(G/(1-G))^2))^(gam-1)

return(f)}

fit=goodness.fit(pdf=pdf, df=df,

starts = (gam1,lambda1,theta1), data = data,

method="N", domain=(0,Inf))
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Fig. 1: The pdf plots of BrXGHN distribution for several parameter values.
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Fig. 2: The hrf plots of BrXGHN distribution for several parameter values.
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Fig. 3: Plots of the LBrXGHN density funtion for some parameter values.
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Fig. 4: (a) Fitted densities of �tted models and (b) �tted hrf and P-P plot

of the BrXGHN model for used data set.

Fig. 5: Index plot of generalized ook distane.
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Fig. 6: (a) Index plot of the modi�ed deviane residual and (b) Q-Q plot for

modi�ed deviane residual.


