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Abstrat

The soft ategory theory o�ers a way to study soft theories developed so far more

generally. The main purpose of this paper is to introdue the basi algebrai

operations in soft ategories, and for that we introdue some algebrai operations,

like intersetion and union, in ategories. Also, the notion of omposition of soft

funtors is introdued to form ategory of all soft ategories.

Keywords: Category theory, soft set, soft ategory, algebrai operations in soft

ategory, algebrai operations on ategory, omposition of soft funtors.

1 Introdution

Molodtsov [1℄ introdued the onept of soft sets to overome the di�ulties

that arise while dealing with ompliated problems involving unertainties

in eonomis, engineering, environmental siene, medial siene and soial

siene where neither methods of lassial mathematis nor mathematial

theories suh as probability theory, fuzzy set theory, rough set theory, vague

set theory and the interval mathematis an be suessfully used. In soft

set theory, the problem of setting the membership funtion does not arise,

whih makes the theory easily appliable to many di�erent �elds, see [2�6℄.

At present, works on soft theories are progressing rapidly. The algebrai

1
Department of Mathematis, Jadavpur University, Kolkata, India (sksardarju-

math�gmail.om).

2
Department of Mathematis, Jadavpur University, Kolkata, India (sgup-

taju�gmail.om).

3
Department of Mathematis, Yazd University, Yazd, Iran (davvaz�yazd.a.ir).

59



Fundamentals of soft ategory theory 60

struture of soft sets has been studied by some authors, for example see [7�

14℄. Maji et al. [15℄ introdued several operations on soft sets. Akta³ and

C�a§man [16℄ de�ned soft groups and obtained the main properties of these

groups. They also ompared soft sets with fuzzy sets and rough sets. Besides,

Jun [17℄ de�ned soft ideals on BCK/BCI-algebras. Feng et al. [18℄ de�ned

soft semirings, soft ideals on soft semirings and idealisti soft semirings, also

see [19℄. Yamak et al. [20℄ introdued tjhe notion of soft hyperstrutures.

Aar et al. [21℄ de�ned soft rings. Qiu-Mei Sun et al. [22℄ de�ned the

onept of soft modules and studied their basi properties. Sardar and Gupta

[23℄ introdued the notions of soft ategory and soft funtor and studied

properties of them in details. The present paper is a sequel to this.

The main purpose of this paper is to introdue basi algebrai operations

on soft ategories, for whih we �rstly de�ne those operations on ategories.

We observe that most of the operations on soft sets de�ned in [15℄ and [24℄

are partiular ases of the operations on soft ategory de�ned by us. Also,

the notion of omposition of soft funtors is introdued to form ategory of

all soft ategories.

2 Preliminaries

We assume that reader is familiar to the notations of ategory theory [25�31℄.

In this setion, we reall some basi de�nitions of soft set theory and soft

ategory theory.

De�nition 1. [1℄ Let U be an initial universe set, E be a set of parameters,

P (U) be the power set of U , and A ⊆ E. A pair(F,A) is alled a soft set

over U , where F is a mapping given by F : A → P (U).

In other words, a soft set over U is a parameterized family of subsets of

the universe U . To illustrate this idea, let us onsider the following example.

Let us onsider a soft set (F,E) whih desribes the attrativeness of

houses that Mr.X is onsidering for purhase. Suppose that there are

six houses in the universe U = {h1, h2, h3, h4, h5, h6} under onsidera-

tion, and that E = {e1, e2, e3, e4, e5} is a set of deision parameters. Let

e1 = expensive, e2 = beautiful, e3 = wooden, e4 = heap, and e5 = in

green surroundings. In this ase, to de�ne a soft set means to point out

expensive houses, beautiful houses, and so on.
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Now, we reall the following de�nitions from [15, 24℄.

• Let (F,A) be soft set over U . Then, (F,A) is alled a soft null set if

F (x) = ∅ for all x ∈ A.

• Let (F,A) and (G,B) be soft sets over a ommon universe U . Then,

(G,B) is alled a soft subset of (F,A), denoted by (F,A)⊂̃(G,B), if it
satis�es the followings:

(1) B ⊆ A;

(2) For all x ∈ B, F (x) and G(x) are idential approximations.

• Let (F,A) and (G,B) be two soft sets over U . Then, they are said to

be equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset

of (F,A).

• Let (F,A) and (G,B) be soft sets over a ommon universe U . Then,

�(F,A) AND (G,B)�, denoted by (F,A)∧̃(G,B), is de�ned by

(F,A)∧̃(G,B) = (H,A× B),

where H(x, y) = F (x) ∩G(y) for all (x, y) ∈ A× B.

• Let (F,A) and (G,B) be soft sets over a ommon universe U . Then,

�(F,A) OR (G,B)�, denoted by (F,A)∨̃(G,B), is de�ned by

(F,A)∨̃(G,B) = (H,A× B),

where H(x, y) = F (x) ∪G(y) for all (x, y) ∈ A× B.

• Let (F,A) and (G,B) be soft sets over a ommon universe U . Then,

the union of (F,A) and (G,B), denoted by (F,A)∪̃(G,B), is de�ned
by (F,A)∪̃(G,B) = (H,C), where C = A ∪B and for all e ∈ C,

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∪G(e) if e ∈ A ∩ B.

• Let (F,A) and (G,B) be soft sets over a ommon universe U suh that

A ∩ B 6= ∅. Then, the restrited union of (F,A) and (G,B), denoted
by (F,A) ∪R (G,B), is de�ned by (F,A) ∪R (G,B) = (H,C), where
C = A ∩ B and for all e ∈ C, H(e) = F (e) ∪G(e).
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• Let (F,A) and (G,B) be soft sets over a ommon universe U suh that

A ∩ B 6= ∅. Then, the intersetion of (F,A) and (G,B), denoted by

(F,A)∩̃(G,B), is de�ned by (F,A)∩̃(G,B) = (H,C), where C = A∩B

and for all e ∈ C, H(e) = F (e)orG(e) (as both are same set).

In [24℄, it had been pointed out that this de�nition of intersetion is not

well-de�ned, whih was explained with the following example.

[24℄ Consider two soft sets (F,A) and (G,B), where the universe U is a

set of houses; U = {h1, h2, h3, h4, h5, h6}, and A = {wooden, beautiful},
and B = {beautiful}. Let F (wooden) = {h1, h3}, F (beautiful) =
{h2, h4}, G(beautiful) = {h4}. Now, onsider (F,A)∩̃(G,B) = (H,C).
Sine “beautiful′′ ∈ A ∩ B, we have H(beautiful) = F (beautiful) =
{h2, h4} 6= {h4} = G(beautiful) = H(beautiful), and this is a ontradi-

tion.

Therefore, the intersetion is now de�ned in the following way, whih is

also known as �restrited� intersetion [24℄.

• Let (F,A) and (G,B) be soft sets over a ommon universe U suh that

A ∩ B 6= ∅. Then, the restrited intersetion of (F,A) and (G,B),
denoted by (F,A) ∩R (G,B), is de�ned by (F,A) ∩R (G,B) = (H,C),
where C = A ∩B and for all e ∈ C, H(e) = F (e) ∩G(e).

• Let (F,A) and (G,B) be soft sets over a ommon universe U . Then, the

extended intersetion of (F,A) and (G,B), denoted by (F,A)∩E (G,B),
is de�ned by (F,A) ∩E (G,B) = (H,C), where C = A ∪ B and for all

e ∈ C,

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∩G(e) if e ∈ A ∩ B.

Now we reall some de�nitions of soft ategory .

De�nition 2. [23℄ Let C be a ategory, P (C) be the set of all subategories

of C and A be a set of parameters. Let F : A → P (C) be a mapping. Then,

(F,A) is said to be a soft ategory over C if F (x) is a subategory of C, i.e.,

it is nothing but a parameterized family of subategories of a ategory.
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[23℄ Let SET be the ategory of all sets where the arrows are the set

mappings and A = N = Set of all natural numbers. Also, let F (n) be the
subategory of the ategory SET onsisting of all sets having ardinality

n, for all n ∈ N . Hene, (F,A) is a soft ategory over the ategory SET.

[23℄ Let GRP be the ategory of all groups, where the arrows are the group

homomorphisms. Also, letA = {cyclic, finite, commutative, free}. Then,
(F,A) is a soft ategory over GRP, where F (x) is the subategory of all

groups with the property x. Hene, it is nothing but to point out yli

groups or �nite groups et.

De�nition 3. [23℄ Let (F,A) and (H,B) be two soft ategories over C.

Then, we say that, (H,B) is a soft subategory of (F,A) if the followings are
satis�ed:

(1) B ⊆ A,

(2) H(x) is a subategory of F (x), for all x ∈ B.

[23℄ Let (F,A) be the soft ategory of example 2 and (H,B) be another
soft ategory over GRP, where B = {cyclic} and H(cyclic) be the subat-
egory of all �nite yli groups. Then, learly (H,B) is a soft subategory
of (F,A).

De�nition 4. [23℄ Two soft ategories (F,A) and (H,B) over same ategory

C is said to be equal if (H,B) is a soft subategory of (F,A) and (F,A) is a
soft subategory of (H,B).

De�nition 5. [23℄ Let (F,A) be a soft ategory over C and Cop
be the dual

ategory of C. Then, (F,A)op = (F op, A) is said to be the dual soft ategory

of (F,A) if F op(x) orresponds to the dual subategory of F (x), for all x ∈ A.

Clearly (F,A)op is a soft ategory over Cop
.

De�nition 6. Let (F,A) be a soft ategory over C and P be a ertain prop-

erty of ategories. Then, we say that (F,A) is a soft ategory with property

P , if for all x ∈ A, F (x) as a ategory has the property P .

In the above de�nition P may be any property of a ategory. In [23℄, we

de�ned full soft ategory, balaned soft ategory, normal soft ategory, soft

ategory with limits and many more like these. Here in the above de�nition

what we try to mean is if we take P as �full� or say �balaned�, then the above

de�nition yields the de�nition of full soft ategory or balaned soft ategory

as they are de�ned in [23℄
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De�nition 7. [23℄ Let (F,A) over C and (H,B) over D be two soft ate-

gories. Also, suppose that g : A → B is a set mapping and K : C → D is a

funtor [30℄. Then, (K, g) is said to be a soft funtor from (F,A) to (H,B)
if

(1) K is full [30℄, i.e., image of C under K is all of D,

(2) g is a mapping from A onto B, and

(3) K(F (x)) = H(g(x)) for all x ∈ A.

3 Algebrai operations in ategories

This setion ontains the introdution of intersetion and union of ategories

and some of their properties.

De�nition 8. Let C and D be two ategories. Then, the intersetion of two

ategories C and D will be denoted by C ∩D, and de�ned to be as follows:

(1) Ob(C ∩D) = Ob(C) ∩ Ob(D),

(2) HomC∩D[A,B] = HomC [A,B]∩HomD[A,B] for all A,B ∈ Ob(C∩D).

Aording to this de�nition, it an be easily veri�ed that C ∩D is again a

ategory. Also, we see that C∩D and D∩C are the same ategory. Moreover.

we an indue this de�nition for intersetion of a family of ategories.

De�nition 9. Let C and D be two ategories. Then, the union of two ate-

gories C and D will be denoted by C ∪D, and de�ned to be as follows:

(1) Ob(C ∪D) = Ob(C) ∪ Ob(D),

(2) HomC∪D[A,B] = HomC [A,B]∪HomD[A,B] for all A,B ∈ Ob(C∪D).

But this union C ∪D is not neessarily a ategory. We illustrate this in

the following example.

Let us onsider two ategories E and D, where

Ob(E) = {A,B}, Hom[A,A] = {IA}, Hom[B,B] = {IB},
Hom[A,B] = {f}, Hom[B,A] = ∅
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and

Ob(D) = {B,C}, Hom[C,C] = {IC}, Hom[B,B] = {IB},
Hom[B,C] = {g}, Hom[C,B] = ∅.

Then, by the previous de�nition, Ob(E∪D) = Ob(E)∪Ob(D) = {A,B,C}
and

Hom[A,A] = {IA}, Hom[B,B] = {IB}, Hom[C,C] = {IC},
Hom[A,B] = {f}, Hom[B,A] = ∅, Hom[B,C] = {g},
Hom[C,B] = ∅, Hom[A,C] = ∅, Hom[C,A] = ∅.

Now as f ∈ Hom[A,B] and g ∈ Hom[B,C], but f ◦ g ∈ Hom[A,C] = ∅
is a ontradition.

Though we �nd that, aording to the previous de�nition, union of two

ategories is not neessarily a ategory, but we also observe that there is a

smallest ategory ontaining the union E ∪D. Here that ategory, say E, is

Ob(M) = Ob(E)∪Ob(D) = {A,B,C} and Hom[A,A] = {IA}, Hom[B,B] =
{IB}, Hom[C,C] = {IC}, Hom[A,B] = {f}, Hom[B,A] = ∅, Hom[B,C] =
{g}, Hom[C,B] = ∅, Hom[A,C] = f ◦ g,Hom[C,A] = ∅. Thus, we get the

following de�nition.

De�nition 10. Let C and D be two ategories. Then, the ategory generated

by C ∪D is denoted by C∪̃D and is de�ned to be the smallest ategory on-

taining both C and D as subategories, i.e., the intersetion of all ategories

ontaining both C and D as subategories. We see that, the ategory C∪̃D
ontains the arrows of the following forms:

(1) arrows of the ategory C,

(2) arrows of the ategory D,

(3) arrows of the form f ◦ g where f is an arrow of C and g is an arrow

of D,

(4) arrows of the form g ◦ f where f is an arrow of C and g is an arrow

of D.

The following is easily derivable from the above de�nitions.
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Theorem 1. Ob(C∪̃D) = Ob(C ∪ D). Moreover, if Ob(C ∩ D) = ∅, then
C∪̃D = C ∪D.

Theorem 2. If C, D and E are three ategories, then

(1) C ∩ (D ∩ E) = (C ∩D) ∩ E.

(2) C∪̃(D∪̃E) = (C∪̃D)∪̃E.

Proof. (1) We have

Ob(C ∩ (D ∩ E)) = Ob(C) ∩ Ob(D ∩ E)
= Ob(C) ∩ (Ob(D) ∩ Ob(E))
= (Ob(C) ∩ Ob(D)) ∩ Ob(E))
= Ob(C ∩D) ∩ Ob(E)
= Ob((C ∩D) ∩ E).

In the similar way, we an show that, for any A,B ∈ Ob(C ∩ (D ∩ E)),
Hom[A,B] in both the ategories are equal. Hene, the proof is ompleted.

(2) Aording to the de�nition, both the ategories

C∪̃(D∪̃E) and (C∪̃D)∪̃E

refer to the same ategory, whih is the smallest ategory ontaining C, D

and E. Hene, we get the result.

Theorem 3. If C and D are two ategories, then

(1) (C ∩D)op = Cop ∩Dop
.

(2) (C∪̃D)op = Cop∪̃Dop
.

Proof. The equality of objets is too trivial to show. So, we show here the

equality of arrows only.

(1) We have

Hom(C∩D)op[A,B] = Hom(C∩D)[B,A]
= HomC [B,A] ∩HomD[B,A]
= HomCop[A,B] ∩HomDop[A,B]
= HomCop∩Dop[A,B],

for eah objet A and B. Therefore, the proof is ompleted.

(2) Suppose that A,B ∈ Ob((C∪̃D)op) and f ∈ Hom(C∪̃D)op [A,B]. Then,
f ∈ Hom(C∪̃D)[B,A]. So, by de�nition, f is of following forms:
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(a) arrow of the ategory C,

(b) arrow of the ategory D,

() arrow of the form h ◦ g where h is an arrow of C and g is an arrow of

D,

(d) arrow of the form g ◦ h where h is an arrow of C and g is an arrow of

D.

In the ases (a) and (b), learly f ∈ HomCop∪̃Dop[A,B]. For the ase (),
as h and g belongs to Cop

and Dop
, respetively, just altering their diretions,

so diretion of f is also altered and it beomes g ◦ h in Cop∪̃Dop
. The ase

(d) is same as ().

Conversely, suppose that A,B ∈ Ob(Cop∪̃Dop) and f ∈ HomCop∪̃Dop[A,B].
Then, is of following forms:

(a) arrow of the ategory Cop
,

(b) arrow of the ategory Dop
,

() arrow of the form h ◦ g, where h is an arrow of Cop
and g is an arrow

of Dop
,

(d) arrow of the form g ◦ h where h is an arrow of Cop
and g is an arrow of

Dop
.

In the ases (a) and (b), learly f ∈ Hom(C∪̃D)op[A,B]. For ase (), g ◦ h is

in the ategory (C∪̃D) and so f = h ◦ g is in (C∪̃D)op. The ase (d) is same

as ().

Therefore, the two ategories are equal.

Theorem 4. If C, D and E are three ategories, then C × (D ∩ E) =
(C ×D) ∩ (C × E).

Proof. We have

Ob(C × (D ∩ E)) = Ob(C)×Ob(D ∩ E)
= Ob(C)× (Ob(D) ∩Ob(E))
= (Ob(C)×Ob(D) ∩ (Ob(C)× Ob(E))
= Ob((C ×D) ∩ (C ×E)).

The equality of arrows an be shown similarly.
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Theorem 5. If C, D and E are three ategories, then C × (D∪̃E) = (C ×
D)∪̃(C ×E).

Proof. The equality of objets an be shown using Theorem 1 and following

the same tehnique as we adopted in the previous theorem. Now, let us

onsider an arrow (f, g) of C × (D∪̃E). Then, f is an arrow of C and g is

an arrow of D∪̃E. So, g is of following forms:

(a) arrow of the ategory D,

(b) arrow of the ategory E,

() arrow of the form h ◦ k where h is an arrow of D and k is an arrow of

E,

(d) arrow of the form k ◦ h where h is an arrow of D and k is an arrow of

E.

For ases (a) and (b), (f, g) beomes an arrow of (C × D)∪̃(C × E). For

ase (), we observe that, (f, g) = (f, h) ◦ (i, k), where i is an identity arrow

of C so that the omposition is de�ned. Hene, (f, g) beomes an arrow of

(C ×D)∪̃(C × E). The ase (d) is same as ().

Conversely, onsider an arrow k of (C ×D)∪̃(C × E). Then, k is of the

following forms:

(a) arrow of the ategory C ×D,

(b) arrow of the ategory C × E,

() arrow of the form (h1 × h2) ◦ (g1 × g2) where (h1 × h2) is an arrow of

C ×D and (g1 × g2) is an arrow of C × E,

(d) arrow of the form (g1 × g2) ◦ (h1 × h2) where (h1 × h2) is an arrow of

C ×D and (g1 × g2) is an arrow of C × E.

In the ases (a) and (b), learly k beomes an arrow of C × (D∪̃E). For
the ase (), k = (h1 ◦ g1, h2 ◦ g2). As h2 and g2 are in D and E respetively,

so h2 ◦ g2 beomes an arrow of D∪̃E and hene k beomes an arrow of

C × (D∪̃E). The ase (d) is same as (). Therefore, we get the required

equality.
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Theorem 6. If C, D and E are three ategories, then C∪̃(D ∩ E) is a full

subategory of (C∪̃D) ∩ (C∪̃E).

Proof. We �rst observe that

Ob(C∪̃(D ∩ E)) = Ob(C ∪ (D ∩ E))
= Ob((C ∩D) ∪ (C ∩ E))
= Ob((C ∩D)∪̃(C ∩ E)).

Now, let us onsider an arrow of h in C∪̃(D ∩ E). Then, by de�nition,

the following ases are to be onsidered:

Case 1. If h is an arrow of C, then it is an arrow of both C∪̃D and C∪̃E.
So h is an arrow of (C∪̃D) ∩ (C∪̃E).

Case 2. If h is an arrow of D ∩ E, then also it is an arrow of both C∪̃D
and C∪̃E. So h is an arrow of (C∪̃D) ∩ (C∪̃E).

Case 3. If h is neither an arrow of C nor an arrow of D ∩ E, then there

are arrows f in C and g in D ∩ E suh that h = f ◦ g or h = g ◦ f . In both

ases this omposition beomes arrows of both C∪̃D and C∪̃E. Hene, h is

an arrow of (C∪̃D) ∩ (C∪̃E).
Therefore, the proof is ompleted.

The following example shows that the equality does not hold always in

the above theorem.

Let us onsider Z and N as the set of integers and the set of non-negative

integers, respetively. We de�ne f : Z → N as f(x) = x2
and g : Z → N

as g(x) = |x|. Let A = {−1, 0, 1} be a set and h be the inlusion mapping

from A to Z. Then, learly the omposition mappings f ◦ h and g ◦ h are

equal. Now, we onstrut three ategories C, D and E as follows:

(1) Ob(C) = {A,Z}, and Hom[A,A] = {iA}, Hom[Z,Z] = {iZ},
Hom[A,Z] = {h}, Hom[Z, A] = ∅;

(2) Ob(D) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {f} , Hom[N,Z] = ∅;

(3) Ob(E) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {g} , Hom[N,Z] = ∅.

In the above, we denote the identity mapping on a set X as iX . Now,

we see that the omposition arrow f ◦ h = g ◦ h beomes an arrow of
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(C∪̃D)∩ (C∪̃E) but this arrow does not belongs to the ategory C∪̃(D∩
E). Hene, we showed that the equality in the above theorem does not

hold always.

Theorem 7. If C, D and E are three ategories, then (C ∩D)∪̃(C ∩ E) is
a full subategory of C ∩ (D∪̃E).

Proof. We �rst observe that

Ob(C ∩ (D∪̃E)) = Ob(C ∩ (D ∪ E))
= Ob((C ∪D) ∩ (C ∪ E))
= Ob((C∪̃D) ∩ ∪̃(C∪̃E)).

Now, let us onsider an arrow of h in (C ∩ D)∪̃(C ∩ E). Then, by the

de�nition, the following ases are to be onsidered:

Case 1. If h is an arrow of (C ∩ D), then it is an arrow of both C and

D∪̃E. So h is an arrow of C ∩ (D∪̃E).
Case 2. If h is an arrow of (C ∩ E), then it is an arrow of both C and

D∪̃E. So h is an arrow of C ∩ (D∪̃E).
Case 3. If h is neither an arrow of C ∩ D nor an arrow of C ∩ E, then

there are arrows f in C ∩D and g in C ∩E suh that h = f ◦ g or h = g ◦ f .
In both ases the omposition beomes arrows of both C and D∪̃E. Hene
h is an arrow of C ∩ (D∪̃E).

Therefore, the proof is ompleted.

The following example shows that the equality does not hold always in

the above theorem.

First we onsider A, Z, N, f , h and f ◦ h as in the previous example.

Now, we onstrut three ategories C, D and E as follows:

(1) Ob(C) = {A,N}, and Hom[A,A] = {iA}, Hom[N,N] = {iN},
Hom[A,N] = {f ◦ h}, Hom[N, A] = ∅;

(2) Ob(D) = {A,Z}, and Hom[A,A] = {iA}, Hom[Z,Z] = {iZ},
Hom[A,Z] = {h}, Hom[Z, A] = ∅;

(3) Ob(E) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {f}, Hom[N,Z] = ∅.

In the above, we denote the identity mapping on a set X as iX . Now, we

see that the arrow f ◦ h beomes an arrow of C ∩ (D∪̃E) but this arrow
does not belongs to the ategory (C ∩D)∪̃(C ∩ E). Hene, we onlude
that the equality in the above theorem does not hold always.
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4 Algebrai operations in soft ategories

In this setion, we introdue the notion of AND, OR, intersetion, union and

produt of two soft ategories. Also, we present some results involving them.

De�nition 11. Let (F,A) over C and (G,B) over D be two soft ate-

gories. Then, �(F,A) AND (G,B)�, denoted by (F,A)∧̃(G,B), is de�ned

by (F,A)∧̃(G,B) = (H,A×B) where H(x, y) = F (x)∩G(y) for all (x, y) ∈
A× B.

We see that, (F,A)∧̃(G,B) is again a soft ategory over C∪̃D.

De�nition 12. Let (F,A) over C and (G,B) over D be two soft ate-

gories. Then, �(F,A) OR (G,B)�, denoted by (F,A)∨̃(G,B), is de�ned by

(F,A)∨̃(G,B) = (H,A × B) where H(x, y) = F (x)∪̃G(y) for all (x, y) ∈
A× B.

We see that, (F,A)∨̃(G,B) is also a soft ategory over C∪̃D.

De�nition 13. Let (F,A) over C and (G,B) over D be two soft ate-

gories suh that A ∩ B 6= ∅. Then,the intersetion of these two soft ate-

gories,denoted by (F,A)∩ (G,B), is de�ned by (F,A)∩ (G,B) = (H,A∩B)
where H(e) = F (e) ∩G(e) for all e ∈ A ∩B.

De�nition 14. Let (F,A) over C and (G,B) over D be two soft ate-

gories. Then, the extended intersetion of these two soft ategories,denoted

by (F,A) ∩E (G,B), is de�ned by (F,A) ∩E (G,B) = (H,A ∪ B), where

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∩G(e) if e ∈ A ∩ B.

De�nition 15. Let (F,A) over C and (G,B) over D be two soft ategories.

Then, the union of these two soft ategories, denoted by (F,A)∪̃(G,B), is
de�ned by (F,A)∪̃(G,B) = (H,A ∪B), where

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e)∪̃G(e) if e ∈ A ∩ B.
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De�nition 16. Let (F,A) over C and (G,B) over D be two soft ategories

suh that A ∩ B 6= ∅. Then, the restrited union of these two soft ate-

gories,denoted by (F,A)∪̃R(G,B), is de�ned by (F,A)∪̃R(G,B) = (H,A∩B)
where H(e) = F (e)∪̃G(e) for all e ∈ A ∩ B.

We observe that intersetion, extended intersetion, union, restrited

union, de�ned above, are soft ategories over C∪̃D.

De�nition 17. Let (F,A) over C and (G,B) over D be two soft ategories.

Then, the produt of these two soft ategories, denoted by (F,A)× (G,B), is
de�ned by (F,A) × (G,B) = (H,A × B) where H(x, y) = F (x) × G(y) for
all (x, y) ∈ A× B.

Eventually this produt of soft ategories beomes a soft ategory over

C ×D.

Now, we observe some properties of these operations.

Throughout this part of this setion, we onsider (F1, A1), (F2, A2), (F3, A3)
are soft ategories over C, D and E.

Theorem 8. We have

(F1, A1) ∩ ((F2, A2) ∩ (F3, A3)) = ((F1, A1) ∩ (F2, A2)) ∩ (F3, A3).

Proof. Indeed, we have

(F1, A1) ∩ ((F2, A2) ∩ (F3, A3))
= (F1, A1) ∩ (F4, A2 ∩ A3),

where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 ∩ (A2 ∩ A3)),
where F5(e) = F1(e) ∩ (F2(e) ∩ F3(e)), for e ∈ A1 ∩ (A2 ∩A3)
Applying Theorem 2 we get,

= (F5, (A1 ∩ A2) ∩ A3),
= (F6, A1 ∩ A2) ∩ (F3, A3),

where F6(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩ A2

= ((F1, A1) ∩ (F2, A2)) ∩ (F3, A3).

Theorem 9. We have

(F1, A1) ∩E ((F2, A2) ∩E (F3, A3)) = ((F1, A1) ∩E (F2, A2)) ∩E (F3, A3).
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Proof. The proof is similar to the proof of Theorem 8.

Theorem 10. We have

(F1, A1)∪̃R((F2, A2)∪̃R(F3, A3)) = ((F1, A1)∪̃R(F2, A2))∪̃R(F3, A3).

Proof. Indeed, we have

(F1, A1)∪̃R((F2, A2)∪̃R(F3, A3))
= (F1, A1)∪̃R(F4, A2 ∩A3),

where F4(e) = F2(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F5, A1 ∩ (A2 ∩A3)),
where F5(e) = F1(e)∪̃(F2(e)∪̃F3(e)), for e ∈ A1 ∩ (A2 ∩A3)
Applying Theorem 2 we get,

= (F5, (A1 ∩A2) ∩A3),
= (F6, A1 ∩A2)∪̃R(F3, A3),

where F6(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

= ((F1, A1)∪̃R(F2, A2))∪̃R(F3, A3).

Theorem 11. We have

(F1, A1)∪̃((F2, A2)∪̃(F3, A3)) = ((F1, A1)∪̃(F2, A2))∪̃(F3, A3).

Proof. The proof is similar to the proof of Theorem 10.

Theorem 12. We have

(F1, A1)× ((F2, A2)∩ (F3, A3)) = ((F1, A1)× (F2, A2))∩ ((F1, A1)× (F3, A3)).

Proof. Indeed, we have

(F1, A1)× ((F2, A2) ∩ (F3, A3))
= (F1, A1)× (F4, A2 ∩A3),

where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 × (A2 ∩ A3)),
where F5((e, h)) = F1(e)× (F2(h) ∩ F3(h)), for (e, h) ∈ A1 × (A2 ∩ A3)
Applying Theorem 4 we get,

= (F5, (A1 × A2) ∩ (A1 ×A3)),
= (F6, A1 × A2) ∩ (F7, A1 ×A3),

where F6((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 ×A2

and F7((e, h)) = F1(e)× F3(h), for (e, h) ∈ A1 × A3

= ((F1, A1)× (F2, A2)) ∩ ((F1, A1)× (F3, A3)).
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Theorem 13. We have

(F1, A1)×((F2, A2)∩E(F3, A3)) = ((F1, A1)×(F2, A2))∩E((F1, A1)×(F3, A3)).

Proof. The proof is similar to the proof of Theorem 12.

Theorem 14. We have

(F1, A1)×((F2, A2)∪̃R(F3, A3)) = ((F1, A1)×(F2, A2))∪̃R((F1, A1)×(F3, A3)).

Proof. Indeed, we have

(F1, A1)× ((F2, A2)∪̃R(F3, A3))
= (F1, A1)× (F4, A2 ∩ A3),

where F4(e) = F2(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F5, A1 × (A2 ∩ A3)),
where F5((e, h)) = F1(e)× (F2(h)∪̃F3(h)), for (e, h) ∈ A1 × (A2 ∩ A3)
Applying Theorem 5 we get,

= (F5, (A1 ×A2) ∩ (A1 × A3)),
= (F6, A1 ×A2)∪̃R(F7, A1 × A3),

where F6((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 × A2

and F7((e, h)) = F1(e)× F3(h), for (e, h) ∈ A1 ×A3

= ((F1, A1)× (F2, A2))∪̃R((F1, A1)× (F3, A3)).

Theorem 15. We have

(F1, A1)× ((F2, A2)∪̃(F3, A3)) = ((F1, A1)× (F2, A2))∪̃((F1, A1)× (F3, A3)).

Proof. The proof is similar to the proof of Theorem 14.

Theorem 16. We have

((F1, A1) ∩ (F2, A2))
op = (F1, A1)

op ∩ (F2, A2)
op.

Proof. Indeed, we have

((F1, A1) ∩ (F2, A2))
op

= (F3, A1 ∩ A2)
op, where F3(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩A2

= (F op
3 , A1 ∩A2),
Applying Theorem 3 we get,

= (F op
3 , A1 ∩A2),

= (F op
1 , A1) ∩ (F op

2 , A2)
= (F1, A1)

op ∩ (F2, A2)
op.
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Theorem 17. We have

((F1, A1) ∩E (F2, A2))
op = (F1, A1)

op ∩E (F2, A2)
op.

Proof. The proof is similar to the proof of Theorem 16.

Theorem 18. We have

((F1, A1)∪̃R(F2, A2))
op = (F1, A1)

op∪̃R(F2, A2)
op.

Proof. Indeed, we have

((F1, A1)∪̃R(F2, A2))
op

= (F3, A1 ∩A2)
op, where F3(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

= (F op
3 , A1 ∩A2),
Applying Theorem 3 we get,

= (F op
3 , A1 ∩A2),

= (F op
1 , A1)∪̃R(F

op
2 , A2)

= (F1, A1)
op∪̃R(F2, A2)

op.

Theorem 19. We have

((F1, A1)∪̃(F2, A2))
op = (F1, A1)

op∪̃(F2, A2)
op.

Proof. The proof is similar to the proof of Theorem 18.

Theorem 20. We have

((F1, A1)× (F2, A2))
op = (F1, A1)

op × (F2, A2)
op.

Proof. Indeed, we have

((F1, A1)× (F2, A2))
op

= (F3, A1 ×A2)
op, where F3((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 ×A2

= (F op
3 , A1 × A2),

= (F op
1 , A1)× (F op

2 , A2)
= (F1, A1)

op × (F2, A2)
op.
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Theorem 21. (F1, A1)∪̃R((F2, A2) ∩ (F3, A3)) is a full soft subategory of

((F1, A1) ∪̃R (F2, A2)) ∩ ((F1, A1)∪̃R(F3, A3)).

Proof. We have

(F1, A1)∪̃R((F2, A2) ∩ (F3, A3))
= (F1, A1)∪̃R(F4, A2 ∩ A3), where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 ∩ A2 ∩A3),

where F5(e) = F1(e)∪̃(F2(e) ∩ F3(e)), for e ∈ A1 ∩ A2 ∩A3.

Also, we have

((F1, A1)∪̃R(F2, A2)) ∩ ((F1, A1)∪̃R(F3, A3))
= (F6, A1 ∩A2) ∩ (F7, A1 ∩A3),

where F6(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

and F7(e) = F1(e)∪̃F3(e), for e ∈ A1 ∩ A3

= (F8, A1 ∩A2 ∩ A3),

where F8(e) = (F1(e)∪̃F2(e)) ∩ (F1(e)∪̃F3(e)), for e ∈ A1 ∩ A2 ∩ A3.

From Theorem 6, we onlude that F5(e) is a full subategory of F8(e)
for all e ∈ A1 ∩A2 ∩ A3. Hene, the result follows.

Theorem 22. We have

(1) (F1, A1)∪̃((F2, A2) ∩ (F3, A3)) is a full soft subategory of

((F1, A1) ∪̃ (F2, A2)) ∩ ((F1, A1)∪̃(F3, A3)).

(2) (F1, A1)∪̃((F2, A2) ∩E (F3, A3)) is a full soft subategory of

((F1, A1)∪̃(F2, A2)) ∩E ((F1, A1) ∪̃ (F3, A3)).

(3) (F1, A1)∪̃R((F2, A2) ∩E (F3, A3)) is a full soft subategory of

((F1, A1)∪̃R(F2, A2)) ∩E ((F1, A1)∪̃R(F3, A3)).

Proof. We skip the proof as it is similar to the proof of Theorem 21.

Theorem 23. ((F1, A1) ∩ (F2, A2))∪̃R((F1, A1) ∩ (F3, A3)) is a full soft sub-

ategory of (F1, A1) ∩ ((F2, A2)∪̃R(F3, A3)).

Proof. We have

((F1, A1) ∩ (F2, A2))∪̃R((F1, A1) ∩ (F3, A3))
= (F4, A1 ∩A2)∪̃R(F5, A1 ∩A3),

where F4(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩ A2

and F5(e) = F1(e) ∩ F3(e), for e ∈ A1 ∩A3

= (F6, A1 ∩A2 ∩ A3),
where F6(e) = (F1(e) ∩ F2(e))∪̃(F1(e) ∩ F3(e)), for e ∈ A1 ∩ A2 ∩ A3.
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Also, we have

(F1, A1) ∩ ((F2, A2)∪̃R(F3, A3))
= (F1, A1) ∩ (F7, A2 ∩ A3), where F4(e) = F7(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F8, A1 ∩A2 ∩ A3),

where F8(e) = F1(e) ∩ (F2(e)∪̃F3(e)), for e ∈ A1 ∩A2 ∩A3.

From Theorem 7, we onlude that F6(e) is a full subategory of F8(e)
for all e ∈ A1 ∩ A2 ∩A3. Hene, the result follows.

Theorem 24. We have

(1) ((F1, A1) ∩ (F2, A2))∪̃((F1, A1) ∩ (F3, A3)) is a full soft subategory of

(F1, A1) ∩ ((F2, A2)∪̃(F3, A3)).

(2) ((F1, A1) ∩E (F2, A2))∪̃((F1, A1) ∩E (F3, A3)) is a full soft subategory

of (F1, A1) ∩E ((F2, A2)∪̃(F3, A3)).

(3) ((F1, A1)∩E (F2, A2))∪̃R((F1, A1)∩E (F3, A3)) is a full soft subategory

of (F1, A1) ∩E ((F2, A2)∪̃R(F3, A3)).

Proof. We skip the proof sine it is similar to the proof of Theorem 23.

Theorem 25. We have

((F1, A1) AND (F2, A2))
op = (F1, A1)

op AND (F2, A2)
op.

Proof. Indeed, we have

((F1, A1) AND (F2, A2))
op

= (F3, A1 × A2)
op, where F3((e, h)) = F1(e) ∩ F2(h), for (e, h) ∈ A1 × A2

= (F op
3 , A1 × A2),

= (F op
1 , A1) AND (F op

2 , A2)
= (F1, A1)

op AND (F2, A2)
op.

Theorem 26. We have

((F1, A1) OR (F2, A2))
op = (F1, A1)

op OR (F2, A2)
op.
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Proof. We have

((F1, A1) OR (F2, A2))
op

= (F3, A1 ×A2)
op, where F3((e, h)) = F1(e) ∪ F2(h), for (e, h) ∈ A1 × A2

= (F op
3 , A1 ×A2),

= (F op
1 , A1) OR (F op

2 , A2)
= (F1, A1)

op OR (F2, A2)
op.

Note that the operations union, restrited union, intersetion, extended

intersetion, AND, OR in soft ategory are just the generalizations of union,

restrited union, restrited intersetion, extended intersetion, AND, OR in

soft set respetively. So the theorems above on these operations are also

generalization of the orresponding theorems of soft set.

5 Composition of soft funtors

In this setion, we introdue the notion of omposition of soft funtors and

form the ategory of all soft ategories.

Let (F1, A1), (F2, A2) and (F3, A3) are soft ategories over the ategories
C1, C2 and C3 respetively. Let (K1, g1) and (K2, g2) be soft funtors from

(F1, A1) to (F2, A2) and (F2, A2) to (F3, A3), respetively. Then, (K, g) is said
to be the omposition of these soft funtors and de�ned to be (K2◦K1, g2◦g1).

Now, we show that (K, g) is a soft funtor from (F1, A1) to (F3, A3). First
of all we observe that, being omposition of two full funtors, K is a full soft

funtor from C1 to C3. Seondly, it is lear from the ontext that g is a

surjetion from A1 to A3. And last but not the least, we see that,

K(F1(x)) = (K2 ◦K1)(F1(x))
= K2(K1(F1(x)))
= K2(F2(g1(x))), as (K1, g1) is a soft functor,
= F3(g2(g1(x))), as (K2, g2) is a soft functor,
= F3((g2 ◦ g1)(x))
= F3(g(x)).

Hene, the omposition of two soft funtors is again a soft funtor.

Furthermore, we observe that, for eah soft ategory (F,A) over C there

exists an `identity' soft funtor, namely (IC , iA), where IC is the identity
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funtor on the ategory C and iA is the identity funtion on the set A, in the

sense that given any soft ategory (G,B) over D and a soft funtor (K, g)
from (F,A) to (G,B) or from (G,B) to (F,A), (IC , iA) ◦ (K, g) = (K, g) or
(K, g) ◦ (IC , iA) = (K, g), respetively.

Now, we are going to prove that, assoiativity holds for omposition of

soft funtors. Let (F1, A1), (F2, A2), (F3, A3) and (F4, A4) are soft ategories
over the ategories C1, C2, C3 and C4, respetively. Let (K1, g1), (K2, g2)
and (K3, g3) be soft funtors from (F1, A1) to (F2, A2), (F2, A2) to (F3, A3)
and (F3, A3) to (F4, A4), respetively. Then,

((K3, g3) ◦ (K2, g2)) ◦ (K1, g1) = (K3 ◦K2, g3 ◦ g2) ◦ (K1, g1)
= ((K3 ◦K2) ◦K1, (g3 ◦ g2) ◦ g1)
= (K3 ◦ (K2 ◦K1), g3 ◦ (g2 ◦ g1))
= (K3, g3) ◦ (K2 ◦K1, g2 ◦ g1)
= (K3, g3) ◦ ((K2, g2) ◦ (K1, g1)).

All the results, we proved above, implies that the lass of all soft ategories

along with the soft funtors form a ategory whih we denote by SCAT . It

is also worthy to note that, for a given ategory C, all soft ategories over C

is a full subategory of SCAT whih we denote by C − SCAT .

6 Conlusion

Both the ategory theory and soft set theory play vital roles in several areas

like engineering, medial sienes, supply hain management et. Category

theory is ideal for reasoning about struture, abstrating away from details,

and automation. Many branhes like type theory, programming language

semantis, topos theory et have strong ategorial theoretial bakground.

On the other hand, soft set theory, as a tool of soft omputing, individually or

in integrated manner, is turning out to be a strong andidate for performing

tasks in the area of data mining, deision support systems, supply hain

management, mediine, data ompression et. So, in the light of this paper,

one an �nd some useful appliation using this new algebrai struture of

soft ategory. Also, one an try to de�ne more operations in soft ategory

and �nd relationship between them.
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