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Abstrat

The authors of this artile deal with a �rst order non-linear Volterra integro-

di�erential equation (NVIDE). To this end, the onditions are obtained whih are

su�ient for stability (S), boundedness (B), and for every solution x of (NVIDE)

is integrable. For properties of solutions of (NVIDE) onsidered three new theo-

rems on (S), (B) and integrability properties of solutions are proved. The methods

of the proofs involve onstruting of a suitable Lyapunov funtional (LF) whih

gives meaningful results for the problems to be investigated. The onditions to be

given involve nonlinear improvement and extensions of those onditions found in

the literature. An example is provided to illustrate the e�etiveness of the pro-

posed results. The results obtained are new and omplements that found in the

literature.

Keywords: �rst order; (S); (B); integrability; (LF).

1 Introdution

The linear and non-linear (VIDEs) models in their di�erent aspets attrated

many authors that investigated them from many sides (see, for example,
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[17℄, Furumohi and Matsuoka [18℄, Grae and Akin [19℄, Graef, and Tunç
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Hino and Murakami [29℄, Islam et al. [30℄, Jin and Luo [31℄, Lakshmikantham

and Rama Mohan Rao ([32℄, [33℄), Mahfoud ([34℄, [35℄, [36℄), Martinez [37℄,

Miller [38℄, Murakami [39℄, Napoles Valdes [40℄, Peshel and Mende [41℄,

Ra�oul ([42℄, [43℄, [44℄), Rama Mohana Rao and Raghavendra [45℄, Rama

Mohana Rao and Srinivas [46℄, Sta�ans [47℄, Talpalaru [48℄, Tunç ([49℄, [50℄,

[51℄, [52℄, [53℄), Tunç and Ayhan [54℄, Tunç and Mohammed ([55℄, [56℄),

Tunç and Tunç [57℄, Vanualailai [58℄,Vanualailai and Nakagiri [59℄, Wang
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When we look at the works just mentioned, in generally, the (S), (B),

instability, L1[0,∞), L2[0,∞), et., properties of the solutions for (LVIDE)
or (NLVIDE) are investigated by employing �xed point theory, perturbation

methods, integral inequalities, the Lyapunov's funtion(al)s, the Lyapunov-

Razumikhin's funtion(al)s, the variations of parameters formulas, et..

However, when we look at the related literature, it an be seen that nearly

all of these results were proved by employing of the Lyapunov's funtion(al)s.

That is, to the best of our knowledge, only in the proofs of a few results

the �xed point theory, perturbation methods, the variations of parameters

formulas, et., are used to verify the problems therein. This ase an be

heked and seen by studying the ontext of the mentioned works and those

found in the referenes of these artiles and books. Indeed, this information

shows the e�etiveness of the (LFs) in the researhes and appliations raised

is sienes and engineering. Here, we would not like to state the details of

the appliations of these methods.

Xu [65℄ studied the uniform asymptoti (S) of the trivial solution of the

salar (LVIDE):

x′ = a(t)x+

∫ t

−∞

D(t, s)x(s)ds. (1)

Xu [65℄ has used (LFs) to give su�ient onditions for the (S) of solutions

of (LVIDE) (1). However, to the best of our information, it seems that the
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theory of (LVIDE) (1) has not been developed further. One of the aim and

novelty of this artile is to develop this fat further.

In this artile, we treat (NVIDE) of the type of

x′ = −A(t)G1(x) +

∫ t

−∞

D(t, s)G2(s, x(s))ds+ P1(t, x), (2)

where x ∈ ℜ, A(t) : ℜ → (0,∞), G1 : ℜ → ℜ, G1(0) = 0 and G2, P1 :
ℜ × ℜ → ℜ with G2(s, 0) = 0 and D : ℜ × ℜ → ℜ with s ≤ t < ∞ are

ontinuous funtions.

In the sequel we shall let that there is a funtion G0 : ℜ → ℜ whih is

ontinuously di�erentiable and de�ned by

G0(x) =

{

G1(x)
x

, x 6= 0
G′

1(0), x = 0.

Hene, (NVIDE) (2) yields that

x′ = −A(t)G0(x)x+

∫ t

−∞

D(t, s)G2(s, x(s))ds+ P1(t, x),

where x represents x(t) and through the paper when we need it is assumed

the same representation.

It is lear that (NVIDE) (2) involves (LVIDE) (1). In fat, when we take

A(t) = −a(t), G1(x) = x, G2(s, x(s)) = x(s) and P1(t, x) = 0, then (NVIDE)
(2) redues to (LVIDE) (1) disussed by Xu [65℄. This information yields one

of the other novelty of this paper.

We treat the (S) of trivial solution and integrabilty of solutions of (NVIDE)

(2) when P1(t, x) = 0 and the (B) of solutions of (NVIDE) (2) when P1(t, x) 6=
0 by de�ning a suitable (LF), whih gives meaningful new results. The use of

auxiliary (LF) allows us to dedue inequalities suh that all solutions must

satisfy them. Hene, from whih we dedue the (S), (B) of solutions and the

solution x(t) is integrable. The manner in whih a non-positive (LF) an be

used for (B) and integrabilty is one of the main and new further novelty of

the paper.

We begin with the following notations, (S) and (B) de�nitions.

For any t0 ≥ 0 and φ ∈ (α, t0), −∞ < α ≤ t0, where φ is initial funtion,

let x(t) = x(t, t0, φ) denote the solution of (NVIDE) (2) on (−∞,∞) suh
that x(t) = φ(t) on (α, t0].
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Here, the set of all ontinuous and real-valued funtions on (α, t0] and
[t0,∞) are shown by C(α, t0] and C[t0,∞), respetively.

For φ ∈ C(α, t0], let us assume that |φ|t0 = sup{φ(t)| : −∞ < α ≤ t0}.
De�nition 1. The trivial solution of (NVIDE) (2) is said stable if for

eah ε > 0 and eah t0 ≥ 0 there exists a δ = δ(ε, t0) suh that φ ∈ C(α, t0]
with |φ(t)|t0 < δ implies that |x(t, t0, φ)| < ε for all t ≥ t0.

De�nition 2. The solutions of (NVIDE) (2) are said bounded if for eah

K > 0 there exists T > 0 suh that

t0 ≥ 0, φ ∈ C(α, t0], |φ(t)|t0 < T and t ≥ t0 imply |x(t)| ≤ K.

2 Main results

Let P1(t, x) = 0.

A. Assumptions

(A1) There exists a positive onstant g0 suh that

|G2(t, x)| ≤ g0|x|

for t, x ∈ ℜ, where the funtion G2(.) with G2(s, 0) = 0 is ontinuous for the
arguments displayed expliitly.

(A2)

A(t)G0(x)−

∫ t

−∞

g0|D(t, s)|ds ≥ 0

for t, x ∈ ℜ, where the funtions A(.) and D(.) are ontinuous and the

funtionG0(.) withG1(0) = 0 is ontinuously di�erentiable for the arguments

displayed expliitly.

(A3)

∫ t

−∞

∫ ∞

0

g0|D(u, s)|duds ≤ L

for some onstant L, L > 0 and t ∈ ℜ.
We �rst give a boundedness and stability result for the solutions of

(NVIDE) (2).

Theorem 1. If hypotheses (A1)-(A3) are satis�ed, then all solutions of

(NVIDE) (2) are bounded and the trivial solution of (NVIDE) (2) is (S).
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Remark 1. It is well-known from the stability theory of the ordinary or

funtional di�erential and integro-di�erential equations that if we �nd a Lya-

punov funtional, whih is positive de�nite and its time derivative along the

solutions of the onsidered ordinary or funtional di�erential and integro-

di�erential equation(s) is negative semide�nite or negative de�nite, then we

an guarantee the stability and uniformly asymptotially stability of the zero

solution of that equation(s), respetively. In addition, by applying the Gron-

wall's inequality to the results of the time derivative of possible Lyapunov

funtional(s), we an onlude the boundedness and integrability of the so-

lutions for the onsidered equation(s). In this paper, when we do alulation

through the proofs of our main results, we will have these ideas in our mind.

Proof. We onstrut an auxiliary (LF) v = v(t) = v(t, x(t)) by

v = |x|+

∫ t

−∞

∫ ∞

0

g0|D(u, s)||x(s)|duds.

Hene, we get

v(t, 0) = 0

and

v(t) = v(t, x) ≥ |x|. (3)

Thus, the auxiliary (LF) is learly positive de�nite. Di�erentiating the aux-

iliary funtional along the solutions of (NVIDE) (2), we get

v′ = −
x

|x|
[A(t)G1(x(t))−

∫ t

−∞

D(t, s)G2(s, x(s))ds]

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

−∞

g0|D(t, s)||x(s)|ds

≤ −A(t)G0(x)|x| +

∫ t

−∞

|D(t, s)||G2(s, x(s)|ds

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

∞

g0|D(t, s)||x(s)|ds

≤ −A(t)G0(x)|x| +

∫ t

−∞

g0|D(t, s)||x(s)|ds

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

∞

g0|D(t, s)||x(s)|ds

= −A(t)G0(x)|x| +

∫ ∞

t

g0|D(u, s)|du|x(t)|.
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Using assumptions (A1) and (A2), that is,

|G2(t, x)| ≤ g0|x|

and

A(t)G0(x)−

∫ t

−∞

g0|D(u, t)|du ≥ 0,

we have

v′(t) ≤ −[A(t)G0(x)−

∫ t

−∞

g0|D(t, s)ds]|x| ≤ 0. (4)

Integrating inequality (4) from t0 to t, we get

v(t) ≤ v(t0) for all t ≥ t0. (5)

Then, in view of (3) and (5), it follows that

|x(t)| ≤ v(t) ≤ v(t0) (6)

for all t ≥ t0. From (6), we an get that all solutions of (NVIDE) (2) are

bounded.

Now, from the above estimate, assumption (A3) and the fat that

v(t0) = |φ(t0)|+

∫ t0

−∞

∫ ∞

0

g0|D(u, s)||φ(s)|duds≤ |φ|t0L0,

where

L0 = 1 +

∫ t0

−∞

∫ ∞

0

g0|D(u, s)|duds,

we get

|x(t)| ≤ |φ|t0L0

for all t ∈ ℜ. It immediately follows that the trivial solution of (NVIDE)

(2) is stable, that is, for any ε > 0, let δ = ε
L0

, and so for φ ∈ (α, t0],
−∞ < α ≤ t0, with |φ|t0 ≤ δ, we have

|x(t)| ≤ δL0 = ε.
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Hene, we an onlude that the trivial solution of (NVIDE) (2) is stable.

Hene, we an reah the desired result of Theorem 1.

In our oming theorem, Theorem 2, we show that all solutions of (NVIDE)

(2) are integrable.

B. Assumptions

(H1) There exists a positive onstant δ0 suh that

A(t)G0(x)−

∫ t

−∞

g0|D(t, s)||x(s)|ds ≥ δ0

for t ≥ t1 and x ∈ ℜ, where the funtions A(.) and D(.) are ontinuous

and the funtion G0(.) with G1(0) = 0 is ontinuously di�erentiable for the

arguments displayed expliitly.

Theorem 2. In addition to assumptions (A1) and (A3), if assume assump-

tion (H1) holds, then every solution of (NVIDE) (2) is integrable.

Proof. From Theorem 1, any solution of (NVIDE) (2) is bounded and

satis�es (4) and (6). If assumption (H1) holds, then from (4) we get

v′(t) ≤ −δ0|x| for t ≥ t1.

Integrating the last estimate from t1 to t, we �nd

v(t)− v(t1) ≤ −δ0

∫ t

t1

|x(s)|ds

so that

δ0

∫ t

t1

|x(s)|ds ≤ v(t1)− v(t) ≤ v(t1),

i.e.,

δ0

∫ t

t1

|x(s)|ds ≤ v(t1).

Hene, we see that the solution x(t) of (NVIDE) (2) is integrable. The former

inequality implies the desired idea of Theorem 2.

Finally, we give a boundedness theorem for solutions of (NVIDE) (2).

Let P1(t, x) 6= 0.
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C. Assumptions

(C1) There exists a positive onstant M suh that

|P1(t, x)| ≤ (M + |x|)|Q(t)| and |Q(t)| is an integrable funtion for t ≥ t1,

i.e,

∫∞

t1
|Q(s)|ds < ∞.

Theorem 3. In addition to assumptions (A1) and (A2) if we assume that

assumption (C1) holds, then all solutions of (NVIDE) (2) are bounded.

Proof. From Theorem 1, any solution of (NVIDE) (2) satis�es the estimate

(4). To omplete the proof of this theorem, we bene�t from the funtional

v = v(t) = v(t, x(t)) just used in the proof of Theorem 1.

Obviously, we have

v(t) ≥ |x|.

Next, in the light of the assumptions (A1), (A2) and (C1), the time derivative

of the auxiliary funtional v = v(t) = v(t, x(t)) an be re-revised as

v′ ≤ |P1(t, x)|

≤ (M + |x|)|Q(t)|

≤ M |Q(t)|+ v(t)|Q(t)|.

Integrating the last estimate from t1 to t, we have

v(t) ≤ v(t0) +M

∫ t

t1

|Q(s)|ds+

∫ t

t1

v(s)|Q(s)|ds.

Hene, applying the Gronwall's inequality, we an obtain

|x(t)| ≤ v(t) ≤ K exp[

∫ ∞

t1

|Q(s)|ds],

where

K = v(t0) +M

∫ ∞

t1

|Q(s)|ds.

Consequently, one an arrive at the desirable result that every solution of

(NVIDE) (2) is bounded.

Example 1. We onsider the following salar (NVIDE) of �rst order

x′ = −x3 +

∫ t

−∞

D(t, s)f(x(s))ds (7)
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with

∫ ∞

0

|D(t, s)|ds < 1,

∫ ∞

t

|D(t, s)| ∈ L1[0,∞),

|f(x)| ≤ α|x|3, 0 ≤ α ≤ 1,

(see, also, Burton [6℄).

De�ne the auxiliary funtional by

v = |x|+

∫ t

−∞

∫ ∞

t

|D(u, s)||x(s)|3duds.

Hene, the time derivative of this funtional along the solutions of (NVIDE)

(7) gives

v′ = −
x

|x|
[x3 −

∫ t

−∞

D(t, s)f(x(s))ds]

+

∫ ∞

t

|D(u, t)|du|x(t)|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −|x|3 +

∫ t

−∞

|D(t, s)||f(x(s))|ds

+

∫ ∞

t

|D(u, t)|du|x|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −|x|3 + α

∫ t

−∞

|D(t, s)||x(s)|3ds

+

∫ ∞

t

|D(u, t)|du|x|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −[1 −

∫ ∞

t

|D(u, t)|du]|x|3

≤ −β|x|3

for some β > 0.
In view of the disussion made, we an onlude that the zero solution

of (NVIDE) (7) is stable. In addition, we an say that the zero solution of

(NVIDE) (7) is also uniformly asymptotially stable.
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3 Conlusion

We onsider a funtional (NVIDE) of �rst order. The (S), (B) and integrabil-

ity features of solutions of the funtional (NVIDE) onsidered are investigated

by onstruting a suitable (LF). We aim to ful�ll the (S) problems obtained

for (LVIDEs) to (NVIDES) for (S), in addition, (B) and integrabilty of the

solutions. The results obtained have a ontribution to the literature, and

they improve and generalize the results of Xu [65℄, and that an be found in

the related literature.
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