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Abstract

Formal Concept Analysis and Rough Set Theory provide two mathematical frame-
works in information management which have been developed almost independently
in the past. Currently, their integration is revealing very interesting in different
research fields, such as knowledge discovery, data mining, information retrieval,
elearning, and ontology engineering. In this paper, we show how Rough Set Theory
can be employed in combination with a generalization of Formal Concept Analysis
for modeling uncertainty information (Fuzzy Formal Concept Analysis) to perform
Semantic Web search. In particular this paper presents an updated evaluation of a
previous proposal of the author which has been addressed because of the increas-
ing interest in this topic and, at the same time, the absence in the literature of
significant proposals combining these two frameworks.

Keywords: Semantic Web, Fuzzy Formal Concept Analysis, Rough Set Theory.

1 Introduction

Formal Concept Analysis (FCA) [1]| provides a mathematical framework which
can support several activities in different research fields as, for instance, soft-
ware engineering, requirements analysis, component retrieval, etc... [2]. It
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is also a well-founded methodological approach for the construction of on-
tologies for the Semantic Web development [3]|. In fact, FCA can serve as a
guideline for ontology building because it allows the identification of concepts
by factoring out their commonalities while preserving concept specialization
relationships |4]. Fuzzy Formal Concept Analysis (FFCA) is a generaliza-
tion of FCA for modeling uncertainty information |[5|. FFCA can support
ontology construction when some information is more relevant than other
data, or Semantic Web search when the user is not sure about what he/she
is looking for. However, often, in real life applications user needs cannot be
described on the basis of formal concepts only |6], and “approximate concepts
will become increasingly more important as Semantic Web becomes a reality”
[7].

Rough Set Theory (RST) [8] is an extension of set theory for data analysis
in the presence of inexact, uncertain or vague information. RST and FCA
have been extensively investigated in the literature within several research
areas and with different purposes |9]. In particular, their combination pro-
vides an interesting framework for Semantic Web search and development,
although in this research area most of the proposals address FCA and RST
separately [10].

This paper shows how FFCA and RST can be combined in order to
perform Semantic Web search. In particular, the work addresses an updated
evaluation of |11], which represents “one of the most thorough applications
of the combination of FCA with fuzzy attributes and rough set theory” [9].
Indeed, on the basis of the current literature, there are still no significant
proposals combining these two frameworks, although the increasing interest
in their integration. In the mentioned proposal, in the case the required data
are not modeled by any formal concept, the user can search and discover
information in the Web that is closer to his/her preferences by following a
two-fold approach. Thanks to the notions of lower/upper approximations,
the user can select super/subsets of the data (objects) he/she is looking
for. Furthermore, the notion of a fuzzy context in FFCA allows the user to
choose, within the selected sets, specific objects that, on the basis of “grades
of membership”, allow him /her to quantify “how much” they are described by
the required attributes and, therefore, “how much” these objects correspond
to the user needs.

The paper is organized as follows. In Sections 2 and 3 Formal Concept
Analysis and Fuzzy Formal Concept Analysis are recalled, respectively. In
Section 4, the relationship between FCA and RST is given and, in Subsection
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4.1, Web search based on RST and FFCA is shown. Successively in Section 5
the Related Work is presented with a discussion about the proposed method,
and Section 6 concludes.

2 FCA

In FCA a formal concept is defined within a formal conteut.

Definition 1. [Formal Context| A formal context (context for short) is a
triple (O,A,R), where O and A are two sets of elements called objects and
attributes, respectively, and R is a binary relation between O and A.

In a context, if oRa, o € O and a € A, then we say that “the object o has
the attribute a” or “the attribute a applies to the object 0o”. The definition
of a formal concept follows.

Definition 2. [Formal Concept| Given a context (O,A,R), let E, I be two
sets such that E C O and I C A. Then, consider the dual sets E' and I,
i.e., the sets defined by the attributes applying to all the objects belonging to
E and the objects having all the attributes belonging to I, respectively, i.e.:

E' ={a€ A|oRa Yo € E}

I'={0o€ O |oRaVacl}.
A formal concept (concept for short) of the context (O,A,R) is a pair (E,I)
such that:

ECO, ICA
and the following conditions hold:

E'=1 1=E.
The sets E and I represent the concept extensional and intensional compo-
nents respectively, and are referred to as the extent and the intent of the
concept, respectively.

Therefore, a concept is a pair of sets where the former consists of precisely
those objects which have all attributes from the latter and, conversely, the
latter consists of precisely those attributes that apply to all objects from
the former. For instance, consider a context named Sardinia Hotels, suppose
that the set O is defined by the following six objects representing six different
hotels:

O = {H1, H2, H3, H4, H5, H6}
and that the set A is defined by six possible attributes of these objects:

A = {Tennis, Theater, SwPool, Meal, Sea, Cinema}
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where SwPool stands for swimming pool. Furthermore, suppose the hotels
are related to the above attributes according to the binary relation R defined
by the following table:

Tab. 1: The Sardinia Hotels context in FCA

Te | Th | Sw | Me | Se | Ci

H1 X X X

H2 | x X X X

H3 X X X

H4 | x X X

H5 X X

H6 | x X X

where Te, Th, Sw, Me, Se, and Ci stand for Tennis, Theater, SwPool,
Meal, Sea, and Cinema, respectively. According to Table 1, we say that,
for instance, the hotel H4 has, or is described by, three attributes, namely
Tennis, SwPool, and Sea, and vice versa, these three attributes apply to
the object H4. A concept of the Sardinia Hotels context is, for instance:
((H4, H6), (Tennis, SwPool, Sea))

since both H4 and H6 have the attributes T'ennis, SwPool, and Sea, and
vice versa, all these attributes apply to both the objects H4,H6.

Given two concepts of a context, (E1,I1), (Ea,15), it is possible to es-
tablish an inheritance relation (<) between them according to the following
condition:

(B, 1) < (Ey 1)) <= E,CE) (<= [L,Ch)

In particular, (Fi,l;) is called subconcept of (Es,I3) and (FEs,l5) is called
superconcept of (Ey,11). Given a context (O,A,R), consider the set of all the
concepts of this context, indicated as £(O,A,R). Then:

(£(0, A, R), <)
is a complete lattice called Concept Lattice, i.e., for each subset of concepts,
the greatest common subconcept and the least common superconcept exist
[1]. The Concept Lattice that can be constructed from the context of Ta-
ble 1 is shown in Figure 1. Note that nodes are labeled with the concepts
of the context, and arcs are established among the nodes whose associated
concepts are in < relation. The Concept Lattice has two special nodes, the
maximum and minimum nodes, grouping all the objects and the attributes
of the context, respectively.
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( (H1,H2,H3,H4,H5,H6), ())

( (H2,H4,H6), (Tennis,SwPool) ) ( (H1,H2,H3,HS), (Meal) )

( (H1,H3,H4,H5,H6), (Sea) )

( (H2), (Tennis,SwPool,Meal,Cinema) ) ( (H1,H3,H5), (Sea,Meal) )

/

( (H1,H3), (Theater,Meal,Sea) )

R

( O, (Tennis,Theater,SwPool,Meal,Sea,Cinema) )

( (H4,H6), (Tennis,SwPool,Sea) )

Fig. 1: Concept Lattice of the Sardinia Hotels context

In Figure 1, the least common superconcept of, for instance, the concepts
( (H4,H6), (Tennis,SwPool,Sea) ) and ( (H1,H3),(Theater,Meal,Sea) ) is
the concept ( (H1,H3, H4,H5,H6), (Sea) ), having as set of attributes the
intersection of the sets of attributes of the concepts. Whereas the greatest
common subconcept of the concepts ( (H2,H4,H6), (T'ennis,SwPool) ) and
( (H1,H2,H3,H5),(Meal) ) is the concept ( (H2),(Tennis, SwPool,Meal,
Cinema) ), having as set of objects the intersection of the sets of objects of
the concepts.

Unfortunately, modeling a domain of interest with traditional FCA (i.e.,
with non-fuzzy sets) can be inaccurate when the attributes do not describe
the objects in a uniform way or, in other words, a given attribute applies
to different objects in different ways. For instance, in our example, consider
the attribute Sea. One should be able to distinguish the hotels located just
on the sea, from that having a walking distance seaside (reachable in, for
instance, ten or twenty minutes). Analogously, regarding the attribute Meal,
we would like to be aware about the hotels providing both lunch and dinner,
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rather than half-board. Without the introduction of fuzzy information, we
have no way to specify how appropriate is a feature, or an attribute, to a
given object, therefore describing all the objects in a uniform way.

3 FFCA

FFCA incorporates fuzzy logic into FCA in order to represent vague informa-
tion. Similarly to FCA, in FFCA a concept is defined within a fuzzy formal
context. Below, we start by recalling the notion of a fuzzy set [12].

Definition 3. [Fuzzy Set] Given a domain X, a fuzzy set A in X is char-
acterized by a membership function pa(x) which associates each point in X
with a real number in the interval [0,1]:

A= {(z, pa(x)) [z € X}

The value pa(x) represents the “grade of membership” of x in A.

Note that for an ordinary set, the membership function can take only the
values 1 and 0, depending on = does or does not belong to A, respectively.
Just to provide an example, assume X is a set of people, a fuzzy set Young
is defined by associating with each person in X a real number in [0,1] es-
tablishing the degree of youth of the person, such that the nearer this value
to unity, the higher the grade of membership of a person in the set Young.
The notion of a fuzzy relation can be obtained by generalizing the notion of
a fuzzy set as follows. A fuzzy relation R in X x Y is a fuzzy set in the
product space X x Y.

Given a traditional set of items S (crisp set), we denote as ¢(S) a fuzzy
set generated from S, i.e., ¢(S) is a fuzzy set where each item in S has a
membership value in [0,1]. Analogously, given two crisp sets S, T', ¢(S x T')
is a fuzzy relation in S x T

For instance, consider the set of objects O and the set of attributes A of
the Sardinia Hotels context in the previous section. A fuzzy relation ¢(O x A)
can be defined as follows:

{((H1,Te),0),((H2,Te),0.6), ((H3,Te),0),...,
((H1,Th),0.7),((H2,Th),0),((H3,Th),0.8),. ..,
((H1,C%),0),((H2,C%),0.9), ((H3,C%),0),...}

where each pair in (O x A) is associated with a membership value in |0,1]
(where T'e, Th and C'i stand for Tennis, Theater and C'inema, respectively).
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Below, the notions of a Fuzzy Formal Context and a Fuzzy Formal Concept
are given.

Definition 4. [Fuzzy Formal Context| A fuzzy formal context (fuzzy con-
text for short) is a triple:

K=(0,A,R=¢(0 x A))
where O is a set of objects, A is a set of attributes, and R is a fuzzy relation
in O x A. Fach pair (0,a) € R has a membership value p(o,a) in [0,1].

Given a pair (0,a) € R with membership value (0, a), we say that “the
object o has the attribute a” or “the attribute a applies to the object 0” with
the grade of membership p(o, a).

Definition 5. [Fuzzy Formal Concept| Given a fuzzy context:

K =(0,A,R=¢(0 x A))
a confidence threshold T, and two sets E, I, such that E C O and I C A,
consider the dual sets E' and I', defined respectively as follows:

E' ={a€ A|ulo,a) >T Yo € E}

I'={oe€O|ulo,a) >T Ya € I}.
A fuzzy formal concept (fuzzy concept for short) of the fuzzy context K with
confidence threshold T is a pair (p(E),I), E C O, I C A, and E' = I,
I' = E. Each object o € E has a membership value u, defined as:

Ho = min (0, a)
where p(o,a) is the membership value between the object o and the attribute
a. If I =0, p, = 1 for every o. The sets E and I represent the concept
extensional and intensional components respectively, and are referred to as
the extent and the intent of the fuzzy concept, respectively.

The definition of Fuzzy Formal Concept above has been given in line
with [4]. As shown by the authors in the mentioned paper, with respect to
other approaches proposed in the literature, this definition allows to generate
simpler Fuzzy Concept Lattices (in terms of the number of formal concepts)
and is also more suited for evaluating concept similarity in the context of the
Semantic Web.

Note that the above definition can also be formulated in terms of a Pat-
tern Concept of a Pattern Structure [13|. Pattern Structures consist of objects
with descriptions (patterns) that allow a semi-lattice operation on them, re-
ferred to as similarity operation. In essence, for an arbitrary set of objects,
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the similarity operation gives a description representing the similarity of the
objects from the set. The connection between FFCA and Pattern Structures,
and the related concepts, is an interesting topic that has been quite investi-
gated in the literature, see for instance [14].

Consider the Sardinia Hotels fuzzy context specified by the fuzzy relation
given in Table 2. Note that crosses in Table 1 have been replaced by grades of
membership, from 0 to 1, each allowing us to quantify “how much” an object
has, or is described by, an attribute and vice versa an attribute applies to an
object.

Tab. 2: The Sardinia Hotels context in FFCA

Te | Th | Sw | Me | Se | Ci

Hi1 0.7 1.0 | 1.0

H2 | 0.6 1.0 | 0.5 0.9

H3 0.8 0.5 | 0.7

H4 | 0.8 1.0 1.0

H5 1.0 | 0.3

H6 | 0.8 1.0 0.8

For instance, consider the hotel H2 in Table 2. It has the attribute SwPool
with grade of membership 1.0, which means that such attribute fully applies
to the hotel H2 (and vice versa the hotel H2 can be properly described
by the attribute SwPool). Instead, the object H2 has the attribute Meal
with a membership value 0.5, which means that such an attribute partially
applies to this hotel (for instance it could provide meals just for dinner).
Analogously, in the case of H3, the value 0.7 in correspondence with the
attribute Sea means that this feature better describes the hotels H1, H4
or H6 than H3, but it is more appropriate to H3 than H5 (having H5 a
lower grade of membership with Sea, i.e., 0.3). In order to address only
objects related to attributes with relevant grades of membership, a threshold
is fixed such that the pairs with membership values less than the threshold
are ignored. For instance, consider our running example and assume that a
threshold is fixed equal to 0.5. The grade of membership 0.3 between H5
and Sea is ignored and treated analogously to the grades of membership that
in Table 2 are not specified (they are equal to zero). A fuzzy concept of the
Sardinia Hotels fuzzy context is, for instance, the pair:
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(((H1,0.7),(H3,0.5)), (T heater, Meal, Sea)).

In fact the objects H1,H3 share the attributes Theater, Meal and Sea and,
vice versa, these three attributes apply to the objects H1 and H3 with mem-
bership values which are not less than the threshold. According to the def-
inition of fuzzy formal concept above, in the case the attributes apply to
an object with different grades of membership, the minimum among them
is selected. For instance, the object H3 has the attributes Theater, Meal
and Sea with different grades of membership, that are 0.8, 0.5 and 0.7, re-
spectively. In the concept above, the minimum value between them has been
selected because it represents the highest common grade of membership that
allows H3 to be described by the all the three attributes T heater, Meal and
Sea.

Fuzzy Concept Lattices can be defined similarly to Concept Lattices, on
the basis of fuzzy set theory. Below, the fuzzy set intersection and fuzzy set
unton are briefly recalled.

Definition 6. [Fuzzy Set Intersection] The intersection of two fuzzy sets
A and B, denoted as AN B, with respective membership functions pa(x), and
up(x), is a fuzzy set whose membership function is defined as:

panp (@) = min(pa(z), ps(r)).

Definition 7. [Fuzzy Set Union| The union of two fuzzy sets A and B,
denoted as AU B, with respective membership functions pa(x), and pg(z),
15 a fuzzy set whose membership function is defined as:

paus () = max(pa(z), pp()).

The Fuzzy Concept Lattice that can be constructed from the context
of Table 2 is shown in Figure 2. Analogously to Concept Lattices, nodes
are labeled with the fuzzy concepts of the context, and arcs are established
among the nodes that are in inheritance relation. The Fuzzy Concept Lattice
has two special nodes, the maximum and minimum nodes, grouping all the
objects and the attributes of the context, respectively. In particular, the
membership values associated with the objects of the maximum node are all
equal to one. Also in Fuzzy Concept Lattices, for any subset of concepts, the
greatest common subconcept and the least common superconcept are always
defined. For instance, consider the concepts:



Fuzzy and Set Theory for Semantic Web 74

(((H1,1.0),(H2,1.0),(H3,1.0),(H4,1.0),(H5,1.0),(H6,1.0)), () )

(((H2,0.6),(H4,0.8),(H6,0.8)), (TennisSwPool) ) (((H1.1.0),(H2,0.5),(H3,0.5),(H5.1.0)).(Meal) )

(((H1,1.0),(H3,0.7),(H4,1.0),(H6,0.8)), (Sea) )

(((H2,0.5)), (Tennis,SwPool,Meal,Cinema) )

(((H4,0.8),(H6,0.8)), (Tennis,SwPool Sea) )

\ (((H1,0.7),(H3,0.5)), (Theater, M eal,Sea) )

( (), (Tennis,Theater, SwPool,M eal,Sea,Cinema) )

Fig. 2: Fuzzy Concept Lattice of the Sardinia Hotels

(((H2,0.6),(H4,0.8), (H6,0.8)), (T'ennis, SwPool))

(((H1,1.0),(H3,0.7),(H4,1.0), (H6,0.8)), (Sea)).
The greatest common subconcept is:

(((H4,0.8),(H6,0.8)), (T'ennis, SwPool, Sea))
where, in the fuzzy set intersection, the minimum among different grades of
membership associated with the same object has been selected (for instance,
in the case of H4, 0.8).

Note that, given a context, the construction of the Concept Lattice has
been extensively investigated in the literature, and also the definition of
(semi-)automatic tools for the construction of fuzzy ontologies from huge
amount of existing fuzzy databases [4]. The problem of reducing the large
number of concepts that can be extracted from data can be addressed by
using factorizations by similarity of Concept Lattices [5], factorization of
Boolean matrices, extensively analyzed in [15], or conceptual clustering meth-
ods, as for instance the Iceberg Concept Lattices [16]. Furthermore, the as-
signment of fuzzy values is a critical step that is usually performed by domain
experts. This problem can be addressed in line with the ontological approach
proposed in [17], where a similarity measure for FCA concepts has been de-
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fined. In particular, in the mentioned approach, the similarity degrees among
terms of a domain ontology are defined by a panel of experts in the given
domain by means of a Consensus System.

In this paper, we assume that the Fuzzy Concept Lattice is given and
the problems related to the construction and the reduction of the size of the
Concept Lattice go beyond the scope of this work.

4 RST and FCA

RST is an extension of classical set theory with two additional operators,
namely approximation operators, originally introduced in [8]. Among the
various formulations that can be found in the literature, below the one given
in [18] is briefly recalled.

Let U be a finite and non-empty universe of objects and F be an equiv-
alence relation on U. E induces a partition of the universe U, indicated as
U/E, and the pair apr=(U,F) is referred to as an approzimation space. An
equivalence class in U/ E is referred to as an elementary set. Any finite union
of elementary sets is called a definable set. Given an arbitrary set X C U, it
may not correspond to a definable set because X may include and exclude
objects that belong to different definable sets. However, X can be approx-
imated from below and above by a pair of definable sets referred to as the
lower and upper approzimations of X. Intuitively, the lower approximation
is the greatest definable set contained in X and the upper approximation is
the least definable set containing X.

The notion of approximation can be naturally introduced into FCA. It
has been extensively investigated in the literature, see for instance [6] and
[19]. According to [18|, a Concept Lattice can be seen as the family of all
definable concepts. Formal concepts that do not belong to a given Concept
Lattice are called non-definable concepts. In particular, a formal concept
consists of a definable set of objects and a definable set of attributes. Given
a Concept Lattice, a set of objects (attributes) that is not the extension
(intension) of any formal concept can be approximated by definable sets of
objects (attributes) according to RST.

In line with [19], given a Concept Lattice £, let Fx(L) and In(L) be
the families of all the extents and all the intents of L, respectively. Given a
set of objects @), that is not the extent of any concept in L, intuitively the
upper approximation apr(Q),) is the smallest set in Ex(L) that contains Q,,



Fuzzy and Set Theory for Semantic Web 76

whereas the lower approximation apr(Q,) is the largest set in Ez(L) that is
contained in Q,. Formally we have:

ap(Q,) = N{X | X € Ea(L),Q, € X}

apr(Q) = {X | X € Ea(£). X C Q..

VX' e Ex(L)( X CX' = X' ZQ,}.

Analogously, given the family of all the intents of £, In(L), consider a
set of attributes (),. We can define the upper and lower approximations of
Qa, apT(Qa) and apr(Q,) respectively, as follows:

aP(Qa) = X | X € In(£), Qu € X}

apr(Qa) = {X | X € In(£), X C Q.

VX'eIn(L)( X CX' = X'"ZQ.}

It is important to observe that, since Exz(L) (In(L)) is closed under in-
tersection, the smallest set containing @, (Q,) is unique whereas this does
not hold for the largest set contained in @, (Q,). Therefore, lower approxi-
mations may not be unique.

In this section we have recalled how a set of objects or a set of attributes
can be approximated from above or from below by the extents or the intents,
respectively, of concepts in FCA according to RST. In the next section, we
will focus on FFCA and, in particular, we will address the problem of Web
search supported by RST in FFCA.

4.1 Web Search based on RST and FFCA

In the following we assume we have a Fuzzy Concept Lattice and that Web
queries are expressed by sets of attributes in the given formal context. Given
a query, suppose there are no formal concepts having as intent the required
set of attributes. Then, the goal is to find the formal concepts of the Fuzzy
Concept Lattice whose intents “better approximate” the set of attributes
specified by the query and, therefore, whose extents are closer to the ex-
pected answer. Furthermore, within the various approximations determined,
the user can additionally select the preferred one on the basis of grades of
membership of specific objects with specific attributes.

For instance, suppose we have the Fuzzy Concept Lattice related to the
Sardinia Hotels of Figure 2 and suppose the user is looking for a hotel on the
sea where he/she can eat. This query can be represented by the following
set of attributes:

Q. = (Sea, Meal).
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In the Fuzzy Concept Lattice of Figure 2 there are no concepts defined by
the set of attributes (),. However we can look for the formal concepts whose
intents better approximate it, i.e. the upper and lower approximations of ().
According to the definitions given above, the smallest intent in the Concept
Lattice of Figure 2 containing @, is (Theater,Meal,Sea), i.e., the concept
whose intent is an upper approximation of @), is:
(((H1,0.7),(H3,0.5)), (Theater, Meal, Sea))
The grades of membership associated with the hotels H1 and H3, 0.7 and 0.5
respectively, specify “how much” these hotels are properly described by both
Sea and Meal, but also by the attribute T heater which was not required by
the user. For this reason, lower approximations of the query can be addressed.
In this case, two lower approximations are identified in the Concept Lattice
of Figure 2. They correspond to the following concepts whose intents are the
largest sets contained in @, i.e., the singletons (Meal) and (Sea):
(((H1,1.0),(H3,0.7),(H4,1.0), (H6,0.8)), (Sea))
(((H1,1.0),(H2,0.5),(H3,0.5), (H5,1.0)), (Meal)).
The user can therefore select as answer, on the basis of his/her needs, one
of the concept extents associated with the above upper and lower approx-
imations. In addition, within one of the above extents, he/she can choose
the preferred objects also on the basis of his/her priorities according to the
defined grades of membership. For instance, if Sea is the attribute with the
highest priority, he/she can select the hotels H1 or H4, having both grades
of membership with Sea equal to 1.0. Analogously, if Meal is on the top of
his/her preferences, the user can choose the hotels H1 or H5. In this case,
by analyzing the lower approximations, it is reasonable to assume that the
hotel H1 represents the closest answer to the user needs. Of course, this does
not hold in general, and the user has to choose among several objects that
do not perfectly match with the specified query. For instance consider the
following query:
Q. = (Tennis,SwPool,Meal).
Analogously to the previous example, in Figure 2 there are no concepts whose
intents correspond to the given set of attributes. Then, the upper approxi-
mation is addressed, corresponding to the intent of the following concept:
(((H2,0.5)), (T'ennis, SwPool, Meal, Cinema))
and two lower approximations are analyzed, whose formal concepts are:
(((H2,0.6),(H4,0.8),(H6,0.8)), (T'ennis, SwPool))
(((H1,1.0),(H2,0.5),(H3,0.5), (H5,1.0)), (Meal)).
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The user again can choose the answer on the basis of his/her needs by analyz-
ing first the sets of attributes that better approximate the query. In particular
he/she can select the hotel H2 having all the three required attributes and an
additional one, Cinema, with grade of membership at least 0.5. Otherwise
the user can choose objects partially described by the required attributes,
with higher grades of membership. As opposed to the previous example,
in this case there are no specific objects that fully satisfy the user needs.
However, he/she can identify the favorite hotels by analyzing their grades of
membership with preferred attributes (e.g. if Tennis and SwPool are both
preferred, the hotels H4 and H6 could provide a satisfactory answer).

5 Related Work and Discussion

The combination of FCA and RST is attracting attention within both crisp
and fuzzy environments. In crisp environments, for instance, in [20], a unique
framework for connecting these theories by making use of hypergraphs has
been proposed, in [21], an extended view of FCA and RST has been stud-
ied based on a rich structure called cube of oppositions, and, in [22|, a new
knowledge acquisition model has been defined by introducing concept lattices
in RST. With regard to the combination of FCA and RST in fuzzy environ-
ments, extended surveys can be found in [23|, and [9]. Within the rich liter-
ature provided in those papers, it is worth recalling |24] and [25], although
with different objectives with respect to this work. In fact, in the former, the
goal is to handle very large databases efficiently. In particular, the Infobright
Community Edition (ICE) is used, which is an open source data warehousing
system. It allows the transformation of very large FCA contexts (containing
up to 10° rows) into rough tables, i.e., tables with the same attributes as the
original large contexts, but with combinations of objects as rows, and meta-
information (data packs) about them as values. In the latter, the objective
is the selection of relevant subsets of attributes from FCA contexts by using
RST. In particular, the approach is based on a generalization of the notion
of equivalence relation in RST (namely the indiscernibility relation), which
in the mentioned paper is essentially based on a quasi-order.

Furthermore, with regard to the combination of FCA and RST, it is also
worth mentioning 26|, where these frameworks have been used for a compar-
ative study of concept lattices in fuzzy contexts, |27|, where the construction
of fuzzy concept lattices based on generalized fuzzy rough approximation op-



79 Formica

erators has been analyzed, and 28|, where two new pairs of rough fuzzy set
approximations within fuzzy formal contexts have been defined.

With regard to the combination of FCA and RST in the Semantic Web
research area, which is the focus of this paper, a detailed related work has
been given in [11]. In particular, a classification of a set of selected proposals
has been provided, showing that in this research area these two frameworks
have been employed separately. Here we just recall [29], and [16], where FCA,
independently of RST, has been used in the former as a knowledge acquisi-
tion framework within an e-learning community in an American University,
and in the latter as a framework to support ontology building, mapping and
alignment. Vice versa, regarding Semantic Web search supported by RST,
independently of FCA, we recall [7]|, where a formal framework for defining
and automatically generating approximate concepts and ontologies from tra-
ditional crisp ontologies has been presented. Note that in [17], [30], [31], the
problem of defining a similarity measure for FCA concepts has been analyzed
(in particular in |31], for FFCA concepts), without relying on RST.

In [11], an evaluation of the proposed method has been provided which,
on the basis of the current literature, still holds. In particular, in the men-
tioned paper, the difficulties encountered in making a comparison of this
proposal with the existing literature have been discussed, within an experi-
ment performed in the tourism domain. The main problem in the experiment
was the impossibility of comparing this work with the underlying knowledge
representation and query models of the other proposals because, in none of
them, Semantic Web search is supported by both RST and FFCA (or FCA).
The combination of FFCA and RST is fundamental for evaluating the con-
tribution of this paper and the adoption of only one of these two frameworks
makes any comparison biased in favour of this proposal. Just to provide an
example, consider [29], where FCA is employed as a knowledge acquisition
framework in the absence of RST and fuzzy values. In the mentioned work,
the user query is matched against the intents of the Concept Lattice without
using approximation operators and without having the possibility of select-
ing the objects that better satisfy the user needs according to fuzzy values.
In contrast, the strength of this proposal is the possibility of performing Se-
mantic Web search leaving maximum flexibility to the user in selecting the
preferred answers along two directions, i.e., by employing the approximation
operators of RST from one hand, and fuzzy values of FFCA from the other
hand.
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6 Conclusion

In this paper RST has been employed in combination with FFCA to perform
Semantic Web search and discovery of information in the Web. In the case the
required data are not modeled by any formal concept, the user can search and
discover the information that are closer to his/her preferences by following
a two-fold approach. He/she can select (i) super/subsets of the answer that
are associated with lower /upper approximations of the query and, within the
proposed answers, (ii) the data that are “better” described by the required
attributes, on the basis of fuzzy values. To our knowledge, in the literature
there are no proposals which can be really compared with this approach,
although the increasing interest in the integration of FFCA and RST.
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