Total dominator chromatic number of some operations on a graph

Nima Ghanbari ${ }^{1}$, Saeid Alikhani ${ }^{23}$

CompAMa Vol.6, No.2, pp.9-20, 2018 - Accepted April 23, 2018

Abstract

Let G be a simple graph. A total dominator coloring of G is a proper coloring of the vertices of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number $\chi_{d}^{t}(G)$ of G is the minimum number of colors among all total dominator coloring of G. In this paper, we examine the effects on $\chi_{d}^{t}(G)$ when G is modified by operations on vertex and edge of G.

Keywords: Total dominator chromatic number, contraction, graph.

1 Introduction

In this paper, we consider simple finite graphs, without directed, multiple, or weighted edges, and without self-loops. Let $G=(V, E)$ be such a graph and $k \in \mathbb{N}$. A mapping $f: V(G) \longrightarrow\{1,2, \ldots, k\}$ is called a k-proper coloring of G if $f(u) \neq f(v)$ whenever the vertices u and v are adjacent in G. A color class of this coloring is a set consisting of all those vertices assigned the same color. If f is a proper coloring of G with the coloring classes $V_{1}, V_{2}, \ldots, V_{k}$ such that every vertex in V_{i} has color i, then sometimes write simply $f=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$.

[^0]The chromatic number $\chi(G)$ of G is the minimum number of colors needed in a proper coloring of a graph. The chromatic number is perhaps the most studied of all graph theoretic parameters. A dominator coloring of G is a proper coloring of G such that every vertex of G dominates all vertices of at least one color class (possibly its own class), i.e., every vertex of G is adjacent to all vertices of at least one color class. The dominator chromatic number $\chi_{d}(G)$ of G is the minimum number of color classes in a dominator coloring of G. Kazemi $[1,2]$ studied a total dominator coloring, abbreviated TD-coloring. Let G be a graph with no isolated vertex, a total dominator coloring is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some (other) color class. The total dominator chromatic number, abbreviated TD-chromatic number, $\chi_{d}^{t}(G)$ of G is the minimum number of color classes in a TD-coloring of G. The TD-chromatic number of a graph is related to its total domination number. Recall that a total dominating set of G is a set $S \subseteq V(G)$ such that every vertex in $V(G)$ is adjacent to at least one vertex in S and the total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G. A total dominating set of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. The literature on the subject on total domination in graphs has been surveyed and detailed in the book [3]. It has been proved that the computation of the TD-chromatic number is NP-complete ([1]). The TD-chromatic number of some graphs, such as paths, cycles, wheels and the complement of paths and cycles has been computed in [1]. Henning in [4] established the lower and upper bounds on the TD-chromatic number of a graph in terms of its total domination number. Henning has shown that, for every graph G with no isolated vertex satisfies $\gamma_{t}(G) \leq \chi_{d}^{t}(G) \leq \gamma_{t}(G)+\chi(G)$. The properties of TD-colorings in trees has been studied in [1,4]. Trees T with $\gamma_{t}(T)=\chi_{d}^{t}(T)$ has been characterized in [4]. In [5] the TD-chromatic number of graphs with specific construction has been studied.

The join $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. For two graphs $G=(V, E)$ and $H=(W, F)$, the corona $G \circ H$ is the graph arising from the disjoint union of G with $|V|$ copies of H, by adding edges between the i th vertex of G and all vertices of i th copy of H. In the study of TD-chromatic number of graphs, this naturally raises the question: What happens to the TD-chromatic number, when we consider some operations on the vertices and the edges of a graph? In this paper we would like to answer this question.

In the next section, we examine the effects on $\chi_{d}^{t}(G)$ when G is modified by deleting a vertex or deleting an edge. In Section 3, we study the effects on $\chi_{d}^{t}(G)$, when G is modified by contracting a vertex and contracting an edge. Also we consider another graph obtained by operation on a vertex v denoted by $G \odot v$ which is a graph obtained from G by the removal of all edges between any pair of neighbors of v in Section 3 and study $\chi_{d}^{t}(G \odot v)$.

2 Vertex and edge removal

The graph $G-v$ is a graph that is made by deleting the vertex v and all edges connected to v from the graph G and the graph $G-e$ is a graph that obtained from G by simply removing the edge e. Our main results in this section are in obtaining a bound for TD-chromatic number of $G-v$ and $G-e$. To do this, we need to consider some preliminaries.

Theorem 1. ([1])
(i) Let P_{n} be a path of order $n \geq 2$. Then

$$
\chi_{d}^{t}\left(P_{n}\right)=\left\{\begin{array}{lr}
2\left\lceil\frac{n}{3}\right\rceil-1 & \text { if } n \equiv 1(\bmod 3) \\
2\left\lceil\frac{n}{3}\right\rceil & \text { otherwise }
\end{array}\right.
$$

(ii) Let C_{n} be a cycle of order $n \geq 3$. Then

$$
\chi_{d}^{t}\left(C_{n}\right)=\left\{\begin{array}{lr}
2 & \text { if } n=4 \\
4\left\lfloor\frac{n}{6}\right\rfloor+r & \text { if } n \neq 4, n \equiv r(\bmod 6), r=0,1,2,4, \\
4\left\lfloor\frac{n}{6}\right\rfloor+r-1 & \text { if } n \equiv r(\bmod 6), r=3,5 .
\end{array}\right.
$$

The following theorem gives an upper bound and a lower bound for $\chi_{d}^{t}(G-$ e).

Theorem 2. Let G be a connected graph, and $e=v w \in E(G)$ is not a bridge of G. Then we have:

$$
\chi_{d}^{t}(G)-1 \leq \chi_{d}^{t}(G-e) \leq \chi_{d}^{t}(G)+2
$$

Proof. First we prove the left inequality. We shall present a TD-coloring for $G-e$. If we add the edge e to $G-e$, then we have two cases. If two vertices v and w have the same color in the TD-coloring of $G-e$, then in this case we add a new color, like i, to one of them. Since every vertex use the old class for TD-coloring then this is a TD-coloring for G. So we have $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G-e)+1$. If two vertices v and w do not have the same color in the TD-coloring of $G-e$, then the TD-coloring of $G-e$ can be a TD-coloring for G. So $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G-e)$ and therefore we have $\chi_{d}^{t}(G)-1 \leq \chi_{d}^{t}(G-e)$.

Now we prove $\chi_{d}^{t}(G-e) \leq \chi_{d}^{t}(G)+2$. Suppose that the vertex v has color i and w has color j. We have the following cases:

Case 1) The vertex v does not use the color class j and w does not use the color class i in the TD-coloring of G. So the TD-coloring of G gives a TD-coloring of $G-e$ and in this case $\chi_{d}^{t}(G-e)=\chi_{d}^{t}(G)$.

Case 2) The vertex v uses the color class j but w does not use the color class i in the TD-coloring of G. Since v used the color class j for the TDcoloring then we have two cases:
(i) If v has some adjacent vertices which have color j, then we give the new color l to all of these vertices and this coloring is a TD-coloring for $G-e$.
(ii) If any other vertex does not have color j, since $G-e$ is a connected graph, then exists vertex s which is adjacent to v. Now we give to s the new color l and this coloring is a TD-coloring for $G-e$.

So for this case, we have $\chi_{d}^{t}(G-e)=\chi_{d}^{t}(G)+1$.
Case 3) The vertex v uses the color class j and w uses the color class i in the TD-coloring of G. We have three cases:
(i) There are some vertices which are adjacent to v and have color j. Then we color all of them with color l. And there are some vertices which are adjacent to w and have color i. We color all of them with color k. So this is a TD-coloring for $G-e$.
(ii) Any other vertex does not have color j. Then we do the same as Case 2 (ii) and there are some vertices which are adjacent to w and have color i. Then we do the same as Case 3 (i).
(iii) Any other vertex does not have colors i and j. Then we do the same as Case 2 (ii) and use two new colors l and k.

So we have $\chi_{d}^{t}(G-e) \leq \chi_{d}^{t}(G)+2$.
Now we consider the graph $G-v$, and present a lower bound and an upper bound for the TD-chromatic number of $G-v$.

Theorem 3. Let G be a connected graph, and $v \in V(G)$ is not a cut vertex of G. Then we have:

$$
\chi_{d}^{t}(G)-2 \leq \chi_{d}^{t}(G-v) \leq \chi_{d}^{t}(G)+\operatorname{deg}(v)-1
$$

Proof. First we prove $\chi_{d}^{t}(G)-2 \leq \chi_{d}^{t}(G-v)$. We shall present a TD-coloring for $G-v$. If we add vertex v and all the corresponding edges to $G-v$, then it suffices to give the new color i to vertex v and the new color j only to one of the adjacent vertices of v like w and do not change all the other colors. Since every vertices except v and w use the old classes for TD-coloring and v uses the color class j and w uses the color class i so we have a TD-coloring of G. Therefore we have $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G-v)+2$ and we have the result.

Now we prove $\chi_{d}^{t}(G-v) \leq \chi_{d}^{t}(G)+d e g(v)-1$. First we give a TD-coloring to G. Suppose that the vertex v has the color i. So we have the following cases:

Case 1) There is another vertex with color i. In this case every vertex uses the old class for TD-coloring and then this is a TD-coloring for $G-v$. So $\chi_{d}^{t}(G-v) \leq \chi_{d}^{t}(G)$.

Case 2) There is no other vertex with color i. In this case we give the new colors $i, a_{1}, a_{2}, \ldots, a_{\text {deg(v)-1 }}$ to all the adjacent vertices of v. Obviously, this is a TD-coloring for $G-v$. Therefore $\chi_{d}^{t}(G-v) \leq \chi_{d}^{t}(G)+\operatorname{deg}(v)-1$.

Remark 1. The lower bound in Theorem 3 is sharp. Consider the cycle C_{10}, as G. For every $v \in V\left(C_{10}\right)$ we have $C_{10}-v=P_{9}$ which is a path graph of order 9 . Then by the Theorem 1 we have $\chi_{d}^{t}\left(C_{10}\right)=8$ and $\chi_{d}^{t}\left(P_{9}\right)=6$.

To obtain more results, we consider the corona of P_{n} and C_{n} with K_{1}. The following theorem gives the TD-chromatic number of these kind of graphs:
Theorem 4. (i) For every $n \geq 2, \chi_{d}^{t}\left(P_{n} \circ K_{1}\right)=n+1$.
(ii) For every $n \geq 3, \chi_{d}^{t}\left(C_{n} \circ K_{1}\right)=n+1$.

Proof. (i) We color the $P_{n} \circ K_{1}$ with numbers $1,2, \ldots, n+1$, as shown in the Figure 1. Observe that, we need $n+1$ color for TD-coloring. We shall show that we are not able to have TD-coloring with less colors.

Fig. 1: Total dominator coloring of $P_{n} \circ K_{1}$ and $C_{n} \circ K_{1}$, respectively.

Fig. 2: $P_{3} \circ K_{1}$

Obviously we have $\chi_{d}^{t}\left(P_{2} \circ K_{1}\right)=3$. Now we consider $P_{3} \circ K_{1}$. As we see in Figure 2, we can not give number 1 to vertex v, because there is no number to color vertex w. Also we can't consider number 2 for vertex v since the vertex which has color 1 and is adjacent to vertex with number 2 , is not adjacent with v. Since the coloring is proper, we cannot use color 3 too for this vertex. So we give number 4 to vertex v. Between used colors, we can use only number 1 for vertex w. Therefore $\chi_{d}^{t}\left(P_{3} \circ K_{1}\right)=4$. Similarly, we color $P_{i} \circ K_{1}$ from $P_{i-1} \circ K_{1}$ when $i \geq 3$. Any other kinds of coloring of this graph needs more colors. So we have the result.
(ii) It is similar to the part (i).

We end this section with the following theorem:
Theorem 5. There is a connected graph G, and a vertex $v \in V(G)$ which is not a cut vertex of G such that $\left|\chi_{d}^{t}(G)-\chi_{d}^{t}(G-v)\right|$ can be arbitrarily large.

Proof. Consider the graph G in Figure 3. We color the vertices $a_{1}, a_{2}, \ldots, a_{n}$ with $\chi_{d}^{t}\left(P_{n}\right)$ colors. Then we give the new color $\chi_{d}^{t}\left(P_{n}\right)+1$ to all the adjacent

Fig. 3: Graph G in the proof of Theorem 5
vertices of v and $\chi_{d}^{t}\left(P_{n}\right)+2$ to v. Obviously this is a TD-coloring for G. So we have:

$$
\chi_{d}^{t}(G)=2+\chi_{d}^{t}\left(P_{n}\right)=\left\{\begin{array}{lr}
2\left\lceil\frac{n}{3}\right\rceil+1 & \text { if } n \equiv 1(\bmod 3), \\
2\left\lceil\frac{n}{3}\right\rceil+2 & \text { otherwise } .
\end{array}\right.
$$

Now by removing the vertex v, we have $G-v=P_{n} \circ K_{1}$ and by Theorem 4 we have $\chi_{d}^{t}(G-v)=n+1$. So we conclude that $\left|\chi_{d}^{t}(G)-\chi_{d}^{t}(G-v)\right|$ can be arbitrarily large.

3 Vertex and edge contraction

Let v be a vertex in graph G. The contraction of v in G denoted by G / v is the graph obtained by deleting v and putting a clique on the (open) neighbourhood of v. Note that this operation does not create parallel edges; if two neighbours of v are already adjacent, then they remain simply adjacent (see [6]). In a graph G, contraction of an edge e with endpoints u, v is the replacement of u and v with a single vertex such that edges incident to the new vertex are the edges other than e that were incident with u or v. The resulting graph G / e has one less edge than $G([7])$. We denote this graph by G / e. In this section we examine the effects on $\chi_{d}^{t}(G)$ when G is modified by an edge contraction and vertex contraction. First we consider edge contraction:

Theorem 6. Let G be a connected graph and $e \in E(G)$. Then we have:

$$
\chi_{d}^{t}(G)-2 \leq \chi_{d}^{t}(G / e) \leq \chi_{d}^{t}(G)+1
$$

Proof. First, we find a TD-coloring for G. Suppose that the end points of e are u and v. The vertex u has the color i and the vertex v has the color j. We give all the used colors in the previous coloring to the vertices $E(G)-\{u, v\}$. Now we give the new color k to $u=v$. Every vertices on the edges of $E(G)-\{u, v\}$ can uses the previous color class (or even k) in this coloring. The vertex $u=v$ uses the color class which used for u or v unless u used the color class j and v used the color class i. In this case, if there is another vertex with color i, then $u=v$ uses color class i and if there is another vertex with color j, then $u=v$ uses color class j. If any other vertex does not have the color i and j, then it suffices to give color i to one of the adjacent vertices of u (or v) in G. Then this is a TD-coloring for G / e. So we have $\chi_{d}^{t}(G / e) \leq \chi_{d}^{t}(G)+1$.

To find the lower bound, we shall give a TD-coloring to G / e. We add the removed vertex and all the corresponding edges to G / e and keep the old coloring for the new graph. Now we consider the endpoints of e and remove the used color. Now add new colors i and j to these vertices. All the vertices of edges in $E(G)-\{u, v\}$ can use the previous color class and u can use color class j and v can use color class i. So this is a TD-coloring and we have $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G / e)+2$. Therefore $\chi_{d}^{t}(G)-2 \leq \chi_{d}^{t}(G / e)$.
Remark 2. The bounds in Theorem 6 are sharp. For the upper bound consider the cycle C_{4} as G and for the lower bound consider cycle C_{5}.

Corollary 1. Suppose that G is a connected graph and $e \in E(G)$ is not a bridge of G. We have:

$$
\frac{\chi_{d}^{t}(G-e)+\chi_{d}^{t}(G / e)-3}{2} \leq \chi_{d}^{t}(G) \leq \frac{\chi_{d}^{t}(G-e)+\chi_{d}^{t}(G / e)+3}{2}
$$

Proof. It follows from Theorems 2 and 6.
Now we consider the vertex contraction of graph G and examine the effect on $\chi_{d}^{t}(G)$ when G is modified by this operation:

Theorem 7. Let G be a connected graph and $v \in V(G)$. Then we have:

$$
\chi_{d}^{t}(G)-2 \leq \chi_{d}^{t}(G / v) \leq \chi_{d}^{t}(G)+\operatorname{deg}(v)-1
$$

Proof. First we present a TD-coloring for G. We remove the vertex v and create G / v. We consider one of the adjacent vertices of v like u and do not change its color and give the new colors $i, i+1, \ldots, i+\operatorname{deg}(v)-1$ to other adjacent vertices of v. Now each vertex which was not adjacent to
v can use the previous color class (or if the color class changed, the new color class we give to adjacent vertices of v). Therefore we have $\chi_{d}^{t}(G / v) \leq$ $\chi_{d}^{t}(G)+\operatorname{deg}(v)-1$.

To find the lower bound, at first we shall give a TD-coloring to G / v. We add the vertex v, add all the removed edges and remove all the added edges. It suffices to give the vertex v the new color i and only to one of its adjacent vertices like w the new color class j. All the vertices which are not adjacent to v can use the previous color classes. All the adjacent vertices of v can use the color class i and v can use the color class j. So we have $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G / v)+2$. Therefore we have the result.

Remark 3. The bounds in Theorem 7 are sharp. For the upper bound consider the complete bipartite graph $K_{2,4}$ as G. We have $\chi_{d}^{t}\left(K_{2,4}\right)=2$. By choosing a vertex which is adjacent to four vertices as v, we have $K_{2,4} / v=K_{5}$ which is the complete graph of order 5 and $\chi_{d}^{t}\left(K_{5}\right)=5$. For the lower bound, we consider cycle graph C_{5}. For every $v \in V\left(C_{5}\right)$ we have $C_{5} / v=C_{4}$. Now by Theorem 1 we have the result.
Corollary 2. Let G be a connected graph. For every $v \in V(G)$ which is not cut vertex of G, we have:

$$
\frac{\chi_{d}^{t}(G-v)+\chi_{d}^{t}(G / v)}{2}-\operatorname{deg}(v)+1 \leq \chi_{d}^{t}(G) \leq \frac{\chi_{d}^{t}(G-v)+\chi_{d}^{t}(G / v)}{2}+2
$$

Proof. It follows from Theorems 3 and 7.
Here we consider another operation on vertex of a graph G and examine the effects on $\chi_{d}^{t}(G)$ when we do this operation. We denote by $G \odot v$ the graph obtained from G by the removal of all edges between any pair of neighbors of v, note v is not removed from the graph [8]. The following theorem gives upper bound and lower bound for $\chi_{d}^{t}(G \odot v)$.
Theorem 8. Let G be a connected graph and $v \in V(G)$. Then we have:

$$
\chi_{d}^{t}(G)-\operatorname{deg}(v)+1 \leq \chi_{d}^{t}(G \odot v) \leq \chi_{d}^{t}(G)+1
$$

Proof. First we prove $\chi_{d}^{t}(G \odot v) \leq \chi_{d}^{t}(G)+1$. We give a TD-coloring for the graph G. Suppose that the vertex v has the color i. We have the following cases:

Case 1) The color i uses only for the vertex v. In this case, adjacent vertices of the vertex v, can use the color class i and all the other vertices can use the old color class. So we have $\chi_{d}^{t}(G \odot v) \leq \chi_{d}^{t}(G)$.

Fig. 4: TD-coloring of the graph G and $G \odot v$.

Case 2) The color i uses for another vertex except v. In this case, we give the new color j to all of these vertices (except v). This is a TD-coloring for $G \odot v$, because if a vertex is adjacent to v, it can use the color class i and all the other vertices can use old color class and if the old color class changes to j can use j as new color class. So we have $\chi_{d}^{t}(G \odot v) \leq \chi_{d}^{t}(G)+1$.

Now we prove $\chi_{d}^{t}(G)-\operatorname{deg}(v)+1 \leq \chi_{d}^{t}(G \odot v)$. Consider the graph $G \odot v$ and shall find a TD-coloring for it. We make G from $G \odot v$ and just change the color of all the adjacent vertices of v except one of them like w to the new colors $a_{1}, a_{2}, \ldots, a_{\operatorname{deg}(v)}-1$ and do not change the color of v, w and other vertices. This is a TD-coloring for G, because v can use the the color class a_{1}. Adjacent vertices of v, can use the old color class of the TD-coloring of $G \odot v$, and other vertices can use old color class and if the old color classes changes to a_{1} or a_{2} or \ldots or $a_{\operatorname{deg}(v)-1}$ can use a_{1} or a_{2} or \ldots or $a_{\operatorname{deg}(v)-1}$ as new color classes. So we have $\chi_{d}^{t}(G) \leq \chi_{d}^{t}(G \odot v)+\operatorname{deg}(v)-1$. Therefore we have the result.

Remark 4. The bounds in Theorem 8 are sharp. For the upper bound consider the graph G in Figure 4. It is easy to see that these colorings are TD-coloring. For the lower bound consider to the complete graph K_{n} as G $(n \geq 3)$. $\chi_{d}^{t}\left(K_{n}\right)=n$. Now for every $v \in V\left(K_{n}\right), K_{n} \odot v$ is the star graph S_{n} and we have $\chi_{d}^{t}\left(S_{n}\right)=2$. By this example we have the following result:

Corollary 3. There is a connected graph G and $v \in V(G)$ such that $\frac{\chi_{d}^{t}(G)}{\chi_{d}^{t}(G \odot v)}$ can be arbitrarily large.

4 Conclusion

We examined the effects on the total dominator chromatic number $\chi_{d}^{t}(G)$ of G, when G is modified by deleting a vertex or deleting an edge. Theorem 2 shows that the removing an edge (which is not a bridge) decreases $\chi_{d}^{t}(G)$ by one and increases it by two. The effects on $\chi_{d}^{t}(G)$ when G is modified by deleting a vertex given in Theorem 3.
Theorem 6 shows that the contracting an edge decreases $\chi_{d}^{t}(G)$ by two and increases it by one. Also in Theorem 8 the total dominator chromatic number of another graph obtained from G by the removal of all edges between any pair of neighbors of a vertex v has investigated.

Acknowledgements

The authors would like to express their gratitude to the referee for their careful reading and helpful comments.

References

[1] A.P. Kazemi. Total dominator chromatic number of a graph. Transactions on Combinatorics, 4(2):57-68, 2015. doi: 10.22108/toc.2015.6171.
[2] A.P. Kazemi. Total dominator coloring in product graphs. Utilitas Mathematica, ISSN 0315-3681, 94:329-345, 2014. https://www.researchgate.net/publication/268068740_Total_Dominator _Coloring_in_Product_Graphs.
[3] M.A. Henning and A. Yeo. Total domination in graphs. Springer Monographs in Mathematics. Springer-Verlag New York, 2013. ISBN 978-1-4614-6524-9 (print), 978-1-4614-6525-6 (Online).
[4] M.A. Henning. Total dominator colorings and total domination in graphs. Graphs and Combinatorics, 31(4):953-974, 2015. doi: 10.1007/s00373-014-1425-1.
[5] S. Alikhani and N. Ghanbari. Total dominator chromatic number of specific graphs. Comm. Math. Appl., In press, 2018.
[6] M. Walsh. The hub number of a graph. Int. J. Math. Comput. Sci., 1:117-124, 2006. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.6212\&rep $=$ rep1\&type=pdf.
[7] J.A. Bondy and U.S.R. Murty. Graph theory with applications. The Macmillan Press Ltd. and Elsevier Science Publishing Co., Inc., 1976. ISBN O-444-19451-7.
[8] S. Alikhani and E. Deutsch. More on domination polynomial and domination root. Ars Combin., 134:215-232, 2017. https://dblp.org/db/journals/arscom/arscom134.html.

[^0]: ${ }^{1}$ Department of Mathematics, Yazd University, 89195-741, Yazd, Iran (n.ghanbari.math@gmail.com).
 ${ }^{2}$ Department of Mathematics, Yazd University, 89195-741, Yazd, Iran (alikhani206@gmail.com).
 ${ }^{3}$ Corresponding author.

