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Abstrat

Let G be a simple graph. A total dominator oloring of G is a proper oloring

of the verties of G in whih eah vertex of the graph is adjaent to every vertex

of some olor lass. The total dominator hromati number χt
d(G) of G is the

minimum number of olors among all total dominator oloring of G. In this paper,

we examine the e�ets on χt
d(G) when G is modi�ed by operations on vertex and

edge of G.

Keywords: Total dominator hromati number, ontration, graph.

1 Introdution

In this paper, we onsider simple �nite graphs, without direted, multiple, or

weighted edges, and without self-loops. Let G = (V,E) be suh a graph and

k ∈ N. A mapping f : V (G) −→ {1, 2, ..., k} is alled a k-proper oloring ofG
if f(u) 6= f(v) whenever the verties u and v are adjaent in G. A olor lass

of this oloring is a set onsisting of all those verties assigned the same olor.

If f is a proper oloring of G with the oloring lasses V1, V2, ..., Vk suh that

every vertex in Vi has olor i, then sometimes write simply f = (V1, V2, ..., Vk).
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The hromati number χ(G) of G is the minimum number of olors needed

in a proper oloring of a graph. The hromati number is perhaps the most

studied of all graph theoreti parameters. A dominator oloring of G is a

proper oloring of G suh that every vertex of G dominates all verties of

at least one olor lass (possibly its own lass), i.e., every vertex of G is

adjaent to all verties of at least one olor lass. The dominator hromati

number χd(G) of G is the minimum number of olor lasses in a dominator

oloring of G. Kazemi [1, 2℄ studied a total dominator oloring, abbreviated

TD-oloring. Let G be a graph with no isolated vertex, a total dominator

oloring is a proper oloring of G in whih eah vertex of the graph is adjaent

to every vertex of some (other) olor lass. The total dominator hromati

number, abbreviated TD-hromati number, χt
d(G) of G is the minimum

number of olor lasses in a TD-oloring of G. The TD-hromati number

of a graph is related to its total domination number. Reall that a total

dominating set of G is a set S ⊆ V (G) suh that every vertex in V (G) is
adjaent to at least one vertex in S and the total domination number of G,
denoted by γt(G), is the minimum ardinality of a total dominating set of G.
A total dominating set of G of ardinality γt(G) is alled a γt(G)-set. The

literature on the subjet on total domination in graphs has been surveyed

and detailed in the book [3℄. It has been proved that the omputation of

the TD-hromati number is NP-omplete ([1℄). The TD-hromati number

of some graphs, suh as paths, yles, wheels and the omplement of paths

and yles has been omputed in [1℄. Henning in [4℄ established the lower

and upper bounds on the TD-hromati number of a graph in terms of its

total domination number. Henning has shown that, for every graph G with

no isolated vertex satis�es γt(G) ≤ χt
d(G) ≤ γt(G)+χ(G). The properties of

TD-olorings in trees has been studied in [1,4℄. Trees T with γt(T ) = χt
d(T )

has been haraterized in [4℄. In [5℄ the TD-hromati number of graphs with

spei� onstrution has been studied.

The join G1 + G2 of two graphs G1 and G2 with disjoint vertex sets V1

and V2 and edge sets E1 and E2 is the graph union G1∪G2 together with all

the edges joining V1 and V2. For two graphs G = (V,E) and H = (W,F ), the
orona G◦H is the graph arising from the disjoint union of G with |V | opies
of H , by adding edges between the ith vertex of G and all verties of ith opy

of H . In the study of TD-hromati number of graphs, this naturally raises

the question: What happens to the TD-hromati number, when we onsider

some operations on the verties and the edges of a graph? In this paper we

would like to answer this question.
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In the next setion, we examine the e�ets on χt
d(G) when G is modi�ed

by deleting a vertex or deleting an edge. In Setion 3, we study the e�ets

on χt
d(G), when G is modi�ed by ontrating a vertex and ontrating an

edge. Also we onsider another graph obtained by operation on a vertex v
denoted by G ⊙ v whih is a graph obtained from G by the removal of all

edges between any pair of neighbors of v in Setion 3 and study χt
d(G⊙ v).

2 Vertex and edge removal

The graph G − v is a graph that is made by deleting the vertex v and all

edges onneted to v from the graph G and the graph G− e is a graph that

obtained from G by simply removing the edge e. Our main results in this

setion are in obtaining a bound for TD-hromati number of G − v and

G− e. To do this, we need to onsider some preliminaries.

Theorem 1. ([1℄)

(i) Let Pn be a path of order n ≥ 2. Then

χt
d(Pn) =











2⌈
n

3
⌉ − 1 if n ≡ 1 (mod 3),

2⌈
n

3
⌉ otherwise.

(ii) Let Cn be a yle of order n ≥ 3. Then

χt
d(Cn) =



























2 if n = 4

4⌊
n

6
⌋+ r if n 6= 4, n ≡ r (mod 6), r = 0, 1, 2, 4,

4⌊
n

6
⌋+ r − 1 if n ≡ r (mod 6), r = 3, 5.

The following theorem gives an upper bound and a lower bound for χt
d(G−

e).

Theorem 2. Let G be a onneted graph, and e = vw ∈ E(G) is not a bridge

of G. Then we have:

χt
d(G)− 1 ≤ χt

d(G− e) ≤ χt
d(G) + 2.
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Proof. First we prove the left inequality. We shall present a TD-oloring

for G − e. If we add the edge e to G − e, then we have two ases. If two

verties v and w have the same olor in the TD-oloring of G − e, then in

this ase we add a new olor, like i, to one of them. Sine every vertex use

the old lass for TD-oloring then this is a TD-oloring for G. So we have

χt
d(G) ≤ χt

d(G− e)+1. If two verties v and w do not have the same olor in

the TD-oloring of G−e, then the TD-oloring of G−e an be a TD-oloring

for G. So χt
d(G) ≤ χt

d(G− e) and therefore we have χt
d(G)− 1 ≤ χt

d(G− e).

Now we prove χt
d(G − e) ≤ χt

d(G) + 2. Suppose that the vertex v has

olor i and w has olor j. We have the following ases:

Case 1) The vertex v does not use the olor lass j and w does not use

the olor lass i in the TD-oloring of G. So the TD-oloring of G gives a

TD-oloring of G− e and in this ase χt
d(G− e) = χt

d(G).
Case 2) The vertex v uses the olor lass j but w does not use the olor

lass i in the TD-oloring of G. Sine v used the olor lass j for the TD-

oloring then we have two ases:

(i) If v has some adjaent verties whih have olor j, then we give the

new olor l to all of these verties and this oloring is a TD-oloring

for G− e.

(ii) If any other vertex does not have olor j, sine G − e is a onneted

graph, then exists vertex s whih is adjaent to v. Now we give to s
the new olor l and this oloring is a TD-oloring for G− e.

So for this ase, we have χt
d(G− e) = χt

d(G) + 1.
Case 3) The vertex v uses the olor lass j and w uses the olor lass i in

the TD-oloring of G. We have three ases:

(i) There are some verties whih are adjaent to v and have olor j. Then
we olor all of them with olor l. And there are some verties whih

are adjaent to w and have olor i. We olor all of them with olor k.
So this is a TD-oloring for G− e.

(ii) Any other vertex does not have olor j. Then we do the same as Case

2 (ii) and there are some verties whih are adjaent to w and have

olor i. Then we do the same as Case 3 (i).

(iii) Any other vertex does not have olors i and j. Then we do the same

as Case 2 (ii) and use two new olors l and k.
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So we have χt
d(G− e) ≤ χt

d(G) + 2.

Now we onsider the graph G − v, and present a lower bound and an

upper bound for the TD-hromati number of G− v.

Theorem 3. Let G be a onneted graph, and v ∈ V (G) is not a ut vertex

of G. Then we have:

χt
d(G)− 2 ≤ χt

d(G− v) ≤ χt
d(G) + deg(v)− 1.

Proof. First we prove χt
d(G)−2 ≤ χt

d(G−v). We shall present a TD-oloring

for G− v. If we add vertex v and all the orresponding edges to G− v, then
it su�es to give the new olor i to vertex v and the new olor j only to one

of the adjaent verties of v like w and do not hange all the other olors.

Sine every verties exept v and w use the old lasses for TD-oloring and

v uses the olor lass j and w uses the olor lass i so we have a TD-oloring
of G. Therefore we have χt

d(G) ≤ χt
d(G− v) + 2 and we have the result.

Now we prove χt
d(G−v) ≤ χt

d(G)+deg(v)−1. First we give a TD-oloring
to G. Suppose that the vertex v has the olor i. So we have the following

ases:

Case 1) There is another vertex with olor i. In this ase every vertex

uses the old lass for TD-oloring and then this is a TD-oloring for G− v.
So χt

d(G− v) ≤ χt
d(G).

Case 2) There is no other vertex with olor i. In this ase we give the new

olors i, a1, a2, . . . , adeg(v)−1 to all the adjaent verties of v. Obviously, this
is a TD-oloring for G− v. Therefore χt

d(G− v) ≤ χt
d(G) + deg(v)− 1.

Remark 1. The lower bound in Theorem 3 is sharp. Consider the yle C10,

as G. For every v ∈ V (C10) we have C10 − v = P9 whih is a path graph of

order 9. Then by the Theorem 1 we have χt
d(C10) = 8 and χt

d(P9) = 6.

To obtain more results, we onsider the orona of Pn and Cn withK1. The

following theorem gives the TD-hromati number of these kind of graphs:

Theorem 4. (i) For every n ≥ 2, χt
d(Pn ◦K1) = n+ 1.

(ii) For every n ≥ 3, χt
d(Cn ◦K1) = n+ 1.

Proof. (i) We olor the Pn ◦K1 with numbers 1, 2, ..., n + 1, as shown in

the Figure 1. Observe that, we need n + 1 olor for TD-oloring. We

shall show that we are not able to have TD-oloring with less olors.
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Fig. 1: Total dominator oloring of Pn ◦K1 and Cn ◦K1, respetively.
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w

Fig. 2: P3 ◦K1

Obviously we have χt
d(P2 ◦K1) = 3. Now we onsider P3 ◦K1. As we

see in Figure 2, we an not give number 1 to vertex v, beause there

is no number to olor vertex w. Also we an't onsider number 2 for

vertex v sine the vertex whih has olor 1 and is adjaent to vertex

with number 2, is not adjaent with v. Sine the oloring is proper, we
annot use olor 3 too for this vertex. So we give number 4 to vertex v.
Between used olors, we an use only number 1 for vertex w. Therefore
χt
d(P3 ◦K1) = 4. Similarly, we olor Pi ◦K1 from Pi−1 ◦K1 when i ≥ 3.

Any other kinds of oloring of this graph needs more olors. So we have

the result.

(ii) It is similar to the part (i).

We end this setion with the following theorem:

Theorem 5. There is a onneted graph G, and a vertex v ∈ V (G) whih is

not a ut vertex of G suh that |χt
d(G)− χt

d(G− v)| an be arbitrarily large.

Proof. Consider the graph G in Figure 3. We olor the verties a1, a2, . . . , an
with χt

d(Pn) olors. Then we give the new olor χt
d(Pn)+1 to all the adjaent
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v

a
1

a
2

a
3

a
n

Fig. 3: Graph G in the proof of Theorem 5

verties of v and χt
d(Pn) + 2 to v. Obviously this is a TD-oloring for G. So

we have:

χt
d(G) = 2 + χt

d(Pn) =











2⌈
n

3
⌉ + 1 if n ≡ 1 (mod 3),

2⌈
n

3
⌉ + 2 otherwise.

Now by removing the vertex v, we have G−v = Pn ◦K1 and by Theorem

4 we have χt
d(G− v) = n+ 1. So we onlude that |χt

d(G)− χt
d(G− v)| an

be arbitrarily large.

3 Vertex and edge ontration

Let v be a vertex in graph G. The ontration of v in G denoted by G/v is

the graph obtained by deleting v and putting a lique on the (open) neigh-

bourhood of v. Note that this operation does not reate parallel edges; if

two neighbours of v are already adjaent, then they remain simply adjaent

(see [6℄). In a graph G, ontration of an edge e with endpoints u, v is the

replaement of u and v with a single vertex suh that edges inident to the

new vertex are the edges other than e that were inident with u or v. The

resulting graph G/e has one less edge than G ([7℄). We denote this graph

by G/e. In this setion we examine the e�ets on χt
d(G) when G is modi-

�ed by an edge ontration and vertex ontration. First we onsider edge

ontration:

Theorem 6. Let G be a onneted graph and e ∈ E(G). Then we have:

χt
d(G)− 2 ≤ χt

d(G/e) ≤ χt
d(G) + 1.
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Proof. First, we �nd a TD-oloring for G. Suppose that the end points

of e are u and v. The vertex u has the olor i and the vertex v has the

olor j. We give all the used olors in the previous oloring to the verties

E(G)− {u, v}. Now we give the new olor k to u = v. Every verties on the

edges of E(G) − {u, v} an uses the previous olor lass (or even k) in this

oloring. The vertex u = v uses the olor lass whih used for u or v unless

u used the olor lass j and v used the olor lass i. In this ase, if there

is another vertex with olor i, then u = v uses olor lass i and if there is

another vertex with olor j, then u = v uses olor lass j. If any other vertex
does not have the olor i and j, then it su�es to give olor i to one of the

adjaent verties of u (or v) in G. Then this is a TD-oloring for G/e. So we
have χt

d(G/e) ≤ χt
d(G) + 1.

To �nd the lower bound, we shall give a TD-oloring to G/e. We add

the removed vertex and all the orresponding edges to G/e and keep the old

oloring for the new graph. Now we onsider the endpoints of e and remove

the used olor. Now add new olors i and j to these verties. All the verties
of edges in E(G)−{u, v} an use the previous olor lass and u an use olor

lass j and v an use olor lass i. So this is a TD-oloring and we have

χt
d(G) ≤ χt

d(G/e) + 2. Therefore χt
d(G)− 2 ≤ χt

d(G/e).

Remark 2. The bounds in Theorem 6 are sharp. For the upper bound on-

sider the yle C4 as G and for the lower bound onsider yle C5.

Corollary 1. Suppose that G is a onneted graph and e ∈ E(G) is not a

bridge of G. We have:

χt
d(G− e) + χt

d(G/e)− 3

2
≤ χt

d(G) ≤
χt
d(G− e) + χt

d(G/e) + 3

2

Proof. It follows from Theorems 2 and 6.

Now we onsider the vertex ontration of graph G and examine the e�et

on χt
d(G) when G is modi�ed by this operation:

Theorem 7. Let G be a onneted graph and v ∈ V (G). Then we have:

χt
d(G)− 2 ≤ χt

d(G/v) ≤ χt
d(G) + deg(v)− 1.

Proof. First we present a TD-oloring for G. We remove the vertex v and

reate G/v. We onsider one of the adjaent verties of v like u and do

not hange its olor and give the new olors i, i + 1, . . . , i + deg(v) − 1 to

other adjaent verties of v. Now eah vertex whih was not adjaent to
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v an use the previous olor lass (or if the olor lass hanged, the new

olor lass we give to adjaent verties of v). Therefore we have χt
d(G/v) ≤

χt
d(G) + deg(v)− 1.
To �nd the lower bound, at �rst we shall give a TD-oloring to G/v.

We add the vertex v, add all the removed edges and remove all the added

edges. It su�es to give the vertex v the new olor i and only to one of its

adjaent verties like w the new olor lass j. All the verties whih are not

adjaent to v an use the previous olor lasses. All the adjaent verties

of v an use the olor lass i and v an use the olor lass j. So we have

χt
d(G) ≤ χt

d(G/v) + 2. Therefore we have the result.

Remark 3. The bounds in Theorem 7 are sharp. For the upper bound on-

sider the omplete bipartite graph K2,4 as G. We have χt
d(K2,4) = 2. By

hoosing a vertex whih is adjaent to four verties as v, we have K2,4/v = K5

whih is the omplete graph of order 5 and χt
d(K5) = 5. For the lower bound,

we onsider yle graph C5. For every v ∈ V (C5) we have C5/v = C4. Now

by Theorem 1 we have the result.

Corollary 2. Let G be a onneted graph. For every v ∈ V (G) whih is not

ut vertex of G, we have:

χt
d(G− v) + χt

d(G/v)

2
− deg(v) + 1 ≤ χt

d(G) ≤
χt
d(G− v) + χt

d(G/v)

2
+ 2.

Proof. It follows from Theorems 3 and 7.

Here we onsider another operation on vertex of a graph G and examine

the e�ets on χt
d(G) when we do this operation. We denote by G⊙v the graph

obtained from G by the removal of all edges between any pair of neighbors

of v, note v is not removed from the graph [8℄. The following theorem gives

upper bound and lower bound for χt
d(G⊙ v).

Theorem 8. Let G be a onneted graph and v ∈ V (G). Then we have:

χt
d(G)− deg(v) + 1 ≤ χt

d(G⊙ v) ≤ χt
d(G) + 1.

Proof. First we prove χt
d(G⊙ v) ≤ χt

d(G) + 1. We give a TD-oloring for the

graph G. Suppose that the vertex v has the olor i. We have the following

ases:

Case 1) The olor i uses only for the vertex v. In this ase, adjaent

verties of the vertex v, an use the olor lass i and all the other verties

an use the old olor lass. So we have χt
d(G⊙ v) ≤ χt

d(G).
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353
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22
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(v)

2

Fig. 4: TD-oloring of the graph G and G⊙ v.

Case 2) The olor i uses for another vertex exept v. In this ase, we give

the new olor j to all of these verties (exept v). This is a TD-oloring for

G⊙ v, beause if a vertex is adjaent to v, it an use the olor lass i and all

the other verties an use old olor lass and if the old olor lass hanges to

j an use j as new olor lass. So we have χt
d(G⊙ v) ≤ χt

d(G) + 1.

Now we prove χt
d(G)−deg(v)+1 ≤ χt

d(G⊙v). Consider the graph G⊙v
and shall �nd a TD-oloring for it. We make G from G⊙ v and just hange

the olor of all the adjaent verties of v exept one of them like w to the

new olors a1, a2, . . . , adeg(v)−1 and do not hange the olor of v, w and other

verties. This is a TD-oloring for G, beause v an use the the olor lass

a1. Adjaent verties of v, an use the old olor lass of the TD-oloring of

G⊙ v, and other verties an use old olor lass and if the old olor lasses

hanges to a1 or a2 or . . . or adeg(v)−1 an use a1 or a2 or . . . or adeg(v)−1 as

new olor lasses. So we have χt
d(G) ≤ χt

d(G⊙ v)+ deg(v)− 1. Therefore we
have the result.

Remark 4. The bounds in Theorem 8 are sharp. For the upper bound on-

sider the graph G in Figure 4. It is easy to see that these olorings are

TD-oloring. For the lower bound onsider to the omplete graph Kn as G
(n ≥ 3). χt

d(Kn) = n. Now for every v ∈ V (Kn), Kn ⊙ v is the star graph

Sn and we have χt
d(Sn) = 2. By this example we have the following result:

Corollary 3. There is a onneted graph G and v ∈ V (G) suh that

χt

d
(G)

χt

d
(G⊙v)

an be arbitrarily large.
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4 Conlusion

We examined the e�ets on the total dominator hromati number χt
d(G) of

G, when G is modi�ed by deleting a vertex or deleting an edge. Theorem

2 shows that the removing an edge (whih is not a bridge) dereases χt
d(G)

by one and inreases it by two. The e�ets on χt
d(G) when G is modi�ed by

deleting a vertex given in Theorem 3.

Theorem 6 shows that the ontrating an edge dereases χt
d(G) by two and

inreases it by one. Also in Theorem 8 the total dominator hromati number

of another graph obtained from G by the removal of all edges between any

pair of neighbors of a vertex v has investigated.
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