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ABSTRACT 
 
Climatic changes may affect soil quality of agricultural lands, especially by increasing salts deposition in the 
soil which results in soil salinity. Salinity stress affects several aspects of plant physiology, such as 
suppressing seed germination, reducing growth of roots and shoots, and altering growth regulators. 
Breeding salt tolerant plant cultivars has been proven inadequate to fully alleviate this problem. Salinity 
tolerance results from diverse mechanism, each controlled by a multi-gene system. Over the past decades, 
substantial progress has been made to elucidate the mechanisms underlying plant responses to mitigate 
adverse impacts of salinity. The overall problem is more tractable, if the plant response is dissected into 
diverse traits that are hypothesized to be involved in the tolerance to salinity. In this review, we 
comprehensively discuss plant adaption to salinity, the salt overly sensitive (SOS) pathway, ion 
homeostasis, determination of solutes and various molecular and proteomic approaches to understanding 
the salinity responses. This review provides response guidelines to enhance improvement of plant salt 
tolerance in combination with improved agricultural practices under saline conditions. Comprehensive 
understanding of all mechanisms for salinity stress response should be the ultimate of future studies. 
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INTRODUCTION 
 
Several types of abiotic environmental stresses are 
unfavorable for the plant growth and productivity. These 
abiotic stresses include drought, heat, salinity and 
alkalinity. Salt accumulation is one of the most important 
and common soil problems, especially in arid and 
semiarid regions, which have a negative impact on 
development and plant growth (Parvaiz and Satyawati, 
2008). Normally, soil salinity can affect the plants in two 
different ways, i.e. higher salts concentration can hinder 
water intake through the roots, and can also affect the 
plant itself (Munns and Tester, 2008). Most plants are 
quite sensitive to environmental stresses, such as 
drought and salinity. However, plants can be divided into 
two major types on the basis of salinity tolerance, such as 
halophytes (can grow in saline conditions), and 
glycophytes (limited growth or early plant death under 

salinity). The most important crops belong to the second 
category. In fact, crops belong to second category 
produced less yields under NaCl stress (Sadat Noori et 
al., 2011).  

In this review, we discussed about three main 
categories such as; physiological; biochemical and 
molecular factors associated with salt tolerance 
mechanisms. 
 
 
REVIEW 
 
Plant adaptation to salinity (Background) 
 
Some plants have ability to develop different defense 
mechanisms  and  able  to  adapt  unfavorable  situations  
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including salt stress (Fu et al., 2011). The reduction of 
plant productivity caused by the salinity stress involves 
physiological and metabolic processes depending on the 
level of exposure and duration of stress (James et al., 
2011). Among major cereals barley (Hordeum vulgare) 
demonstrated highest degree of salt tolerance as 
compared to rice (Oryza sativa) and wheat (Triticum 
aestivum) (Deivanai et al., 2011; Ndimba et al., 2005). 
Salinity stress is a complicated factor in plant 
development especially in physiological classification, 
because plants integrate positive and negative-regulation 
under salinity. However, photosynthesis plays an 
important role with combination of organic solutes under 
salt stress treatment (Ashraf, 2004). Leaves of 
glycophytic plants cannot prevent a high level of salt 
damage, the study of Rawson et al. (1988) ensured that, 
compared to control treatments, NaCl stress reduced the 
overall area of all leaves gradually under 175 mol m

-3
 

NaCl treatment, while the reduction was more than twice 
that in 100 mol m

-3
 NaCl. Table 1 represents a wide 

range of salinity from non-saline to very strong saline. 
Salinity of soil varies from spring to fall, and high 
concentrations of salts commonly appear on the surface 
of soil after spring thaw. 
 

 
Ion homeostasis in salinity (physiological 
perspective) 
 
Ion uptakes play a vital role in the growth process during 
salt stress. Plants uptake Na

+
 and K

+
 by their roots and 

transport them to other organs of plant. Previously 
working with sea aster (Aster tripolium) and ajwan 
(Trachyspermum ammi) found that the uptake of Na

+
 and 

K
+
 reduced root osmotic potential (Ashraf and Orooj, 

2006; Ueda et al., 2003). Study by Wang et al. (2001) 
showed that, sea-blites (Suaeda salsa) growth under 0.1 
M KCl was reduced by osmotic stress. Yokoi et al. (2002) 
explained different transport systems that facilitate 
cellular capacity to utilize Na

+
 for osmotic adjustment in 

plant growth. The vacuolar sodium sequestration is 
mediated by secondary active Na

+
 antiport and energized 

by a proton force which driven by vacuolar H
+
 

_
ATPase 

under salinity stress in the halophytic plant (ice plant, 
Mesembryanthemum crystallinum). Every crop has 
different salinity tolerance mechanisms for example, 
barley (Hordeum vulgare) is superior to wheat and has 
more capability to accumulate high amount of Na

+
 in its 

shoot (Roy et al., 2014). In accordance to this fact, some 
genes play a vital role in ion homeostasis in different 
plants such as HAL5 and AtNHXI in Arabidopsis thaliana, 
TaSTRG in wheat (Triticum aestivum), (Table 2) under 
different salinity stress. 
 
 
Determination of solutes (biochemical perspective) 
 
Plants  accumulate  a  variety  of compatible osmolytes in  
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the cytosol, in order to decrease osmotic potential, 
maintain water uptake from saline soil solutions and limit 
salt absorption (Shahbaz and Ashraf, 2013). However, 
many plants contain organic osmolytes to tolerate 
osmotic stress. Under environmental stress the 
metabolism of plants is changed, e.g. different protein 
genes are induced in plant metabolism and investigation 
of these changes is necessary (Chinnusamy et al., 2005). 
Technologies like mass spectrometry (MS), Nuclear 
magnetic resonance spectroscopy (NMR), and Gas 
chromatography–mass spectrometry (GC-MS) can 
analyze a large number of small molecules (Kopka et al., 
2004). Moreover, plants can also alter osmotic stress by 
accumulating high concentration of compatible solutes in 
the cytoplasm. Compatible solutes in the plant’s cells 
include N-containing compounds (proline and glycine 
betaine), straight-chain polyhydric polyols (cyclic 
polyhydric alcohols, mannitol and sorbitol), and sugars 
(sucrose and raffinose). Recently, several researchers 
have reported the external application of metabolites, 
such vitamins (biotin and thiamine), amino acids 
(cysteine and methionine), and thioredoxin system 
(glutathione lipoic acid and glucosinolates) which can 
enhance the salinity tolerance in plants (Chen and 
Murata, 2002; Ashraf and Harris, 2013). At the end of last 
century, and with the help of genetic transformation new 
pathways for the biosynthesis of various compatible 
solutes into plants were established and produced 
transgenic plants with improved tolerance to stress 
(Nuccio et al., 1999). With the benefit of gene 
transformation technology many researchers modified 
different genes for enhancing the salt tolerance 
mechanism in different crops to cope with different 
salinity conditions. Some of these genes documented in 
(Table 2).  
 
 

Molecular approaches in salinity (molecular 
perspectives) 
 
Salinity tolerance is a polygenic process, which controls 
numerous physiological and biochemical functions at 
cellular, molecular and/or whole plant levels. The 
mechanism of salt tolerance at different stages of plant 
development is very complex (Ismail et al., 2014). The 
organization of molecular networks cascades is 
correlated to salt stress. Salt sensitivity; precise gene 
expression, metabolites, and signal transduction (from 
roots into cellular and total plant levels) are factors 
contributing to plant variation in environmental stress 
tolerance. The tolerance mechanism at molecular level is 
an essential regulator in breeding and genetic 
engineering to the salinity tolerance of crops. The salinity 
tolerance mechanism consists of key factors such as 
antioxidant defense system, ion homeostasis, buildup of 
compatible solutes and transcription factors (Chaitali and 
Sengupta, 2014). To increase the salt tolerance of plants, 
there  is  a  need  to  consider  the  control  mechanism at  
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Table 1. Salinity ranges according to soil depth. 
 

Soil depth 
Soil saline 

Non Weak Moderate Strong Very Strong 

0-60 cm (0-2 ft) <2 mM NaCl 2-4 mM NaCl 4-8 mM NaCl 8-16 mM NaCl >16 mM NaCl 

60-120 cm (2-4 ft) <4 mM NaCl 4-8 mM NaCl 8-16 mM NaCl 16-24 mM NaCl >24 mM NaCl 
 
 
 

Table 2. Compatible solutes (genes) enhanced tolerance stress in plants. 
 

Gene name Species Enhanced tolerance Reference 

mt1D Arabidopsis Salt Thomas et al. (1995) 

S6PDH Persimmon Salt Gao et al. (2001) 

imt1 Tobacco Salt Sheveleva et al. (1997) 

PDH45 Tobacco Salt 
Sanan-Mishra et al. 
(2005) 

PDH45 Rice Salt Amin et al. (2012) 

PSP68 Rice Salt Banu et al. (2015) 

AtHELPS Arabidopsis  Salt Xu et al. (2011) 

PSP68 Pea Salt Tuteja et al. (2015) 

PeJRL Arabidopsis Salt Zhang et al. (2019) 

SOS1 Egg plant Salt Li et al. (2019) 
 
 
 

molecular levels of plant development. Saline conditions 
lead to changes in the pattern of gene expression, 
qualitative and quantitative variation in the protein 
amalgamation. On the other hand, there is more common 
observation that salt stress obtains quantitative changes 
in the protein expressions. Comprehensive approach is 
really important to understand the molecular mechanism 
of salinity tolerance in different crops. With the help of 
transcription and proteomics technologies, we can 
approach and evaluate the molecular mechanisms of salt 
stress in plant (Roy et al., 2014; Shang et al., 2012). 
 
 
Salt overly sensitive signaling  
 
Salt overly sensitive (SOS) pathway has been 
demonstrated to play a key role in ion homeostasis and 
salt tolerance (Hasegawa, 2013). The SOS pathway 
consists of three types, i.e. SOS1, SOS2 (protein module 
is the Ser/Thr protein kinase), and SOS3 (calcium binding 
protein) as shown in Table 3. Among all the components 
of SOS pathway, SOS1 gene is considered particularly 
important and is responsible for encoding the gene for 
Na

+
/H

+
 transporter in plasma membrane. Moreover, 

phosphorylation of SOS3 and SOS2 complex leads to 
activation of SOS1 (Zhu, 2003). The newly activated 
pathway of SOS3-SOS2 has many effects and stimulates 
several genes and transcriptional factors of SOS1 and 
stabilizes cellular levels of SOS1 mRNA (Martínez et al., 
2007). The phosphorylated form of SOS1 plays an 
essential role in Na

s
 efflux and contributes to the 

reduction of Na
+
 toxicity. Overall, SOS1 functions as an 

Na
+
 transporter and mainly exists in the cytosolic 

compartment of the cell along with the Na
+
 sensor (Plett 

and Møller, 2010). SOS1 is expressed in all growing 
tissues and it is more active in the epidermal cells which 
are surrounded by the root tip and parenchyma cells 
bordering with the xylem. Moreover, SOS2 and SOS3 
genes play important role in kinase activity and protein 
binding in plants during salinity, these SOS pathway 
genes are similar like other signal transduction pathways, 
The SOS2 and SOS3 supposed to facilitate the Na

+
/H

+
 

antiport activity of SOS1 (Ji et al., 2013). This plasma 
membrane Na

+
/K

+
 antiporter controls Na

+
 efflux from the 

roots and transports these Na
+
 ions into the xylem, which 

are important for the regulation of Na
+
/K

+
 homeostasis, 

salt tolerance, and SOS1. The SOS pathway in salt 
stress generates Ca

2+
 signal which is mainly contributed 

by SOS3. Numerous investigations have shown that 
SOS3 can interface with SOS2. It may well operate 
between the SOS2-SOS1 interaction to reduce down 
extreme Na

+
 damage and support ion homeostasis 

(Tester and Davenport, 2003; Kim et al., 2007). 
 
 
Transcriptional factors associated with salinity 
 
Transcription factors are DNA binding protein activators 
and/or repressors for transcription of genes related to 
stress as shown in (Table 4). Physiological and 
biochemical alterations in salt-affected plant organs are 
accompanied by changes in transcriptional factors (Wei 
et al., 2000). Gene expression analysis of rice varieties 
differing  in  salt  tolerance  suggested   that   OsEREBP2  
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Table 3. Function of SOS family and ion homeostasis genes of salinity. 
 

 Gene name Species Gene functions Reference 

SOS family genes 

SOS1  Plasma membrane Na
+
/K

+
 antiporter 

Chakraborty et al. 
(2012) 

SOS2 Brassica juncea Protein kinase 

SOS3 Brassica campestris Calcium-binding protein 

     

Genes involved in the ion 
homeostasis 

HAL5  Regulate Na
+
/K

+
 homeostasis Lim et al. (2010) 

AtNHX1 Arabidopsis thaliana vacuolar Na
+
/K

+
 antiporter Shang et al. (2012) 

TaSTRG Triticuma estivum Higher salt tolerance, Na
+
/K

+
 ratio Zhou et al. (2009) 

 
 
 

 Table 4. List of transcriptional factors. 
 

Gene name Species Gene functions Reference 

AtSKIP Arabidopsis thaliana Transcription factor Lim et al. (2010) 

JcDREB Arabidopsis thaliana Transcription factor Tang et al. (2011) 

SNAC1 Oryza sativa Transpiration rate Liu et al. (2014) 

ANAC092 Arabidopsis Transcription factor Balazadeh et al. (2010) 

CaRAV1 Pepper Transcription factor Lee et al. (2010) 

SNAC2 Rice Transcription factor Hu et al. (2008) 

GmDREB1 Alfalfa Transcription factor Jin et al. (2010) 

HD-Zip Cotton Transcription factor Ni et al. (2008) 

VvWRKY30 Grape Transcription factor Zhu et al. (2019) 

NRAMP-2 Wheat Transcription factor Oyiga et al. (2019) 

 
 
 

gene is involved in the salt stress. Similarly, bZIP class of 
ABRE binding transcription factor known as OSBZ8 has 
been identified in rice and showed high expression in salt 
tolerant cultivars as compared to salt sensitive ones 
(Serra et al., 2013). In Arabidopsis thaliana AtSKIP gene 
plays an important role in the transcription levels at 150 
mM concentration of salt. JcDREB gene regulation was 
observed in Arabidopsis thaliana at 300 mM 
concentration of salinity. Seki et al. (2002) reported that, 
salinity induced 194 transcripts and these transcripts play 
important role in different proteins, which might be 
functioning in stress tolerance of arabidopsis 
(Arabidopsis thaliana). In another study, the 
overexpression of SNAC1 transcript induced more 
tolerance to salt stress in cotton and reduced respiration 
rate. In agreement with above statements, we assume 
that, transcriptional factors play vital role during salinity 
treatments and improve the salt tolerance mechanism in 
plants (Liu et al., 2014). 
 
 
Proteomic response to salinity 
 
Developments in proteomic knowledge concerning 
protein separation and detection have an increasing 
impact on the study of plants responses to salinity stress. 
Proteomic studies for the analysis of salt tolerance were 
carried out in plant species such as Arabidopsis 

(Arabidopsis thaliana), rice (Oryza sativa), barley 
(Hordeum vulgare), wheat (T. aestivum), tomato 
(Solanum lycopersicum) and tobacco (Nicotiana 
tabacum). Proteomics provides a potent method for 
studying secondary metabolism in plants and plant cells. 
In fact, during translation process, transcripts (mRNAs) 
converted to protein. Each mRNA corresponds to a 
specific amino acid sequence and forms the resultant 
proteins. So, many proteins play a dynamic role in plant 
stress tolerance, such as HSPs, LEAs, proteins involved 
in repair and protection from damages (Khan et al., 
2007). The study of Moons et al. (1995) revealed that, the 
accumulation of proteins in two salt-tolerant rice 
genotypes, Pokkali and Nona Bokra under salt stress 
were significantly higher compared to control. The 
proteins which play an important role in salinity tolerance 
in different crops are presented in Table 5. 
 
 
OVERALL CONCLUSION AND FUTURE 
PERSPECTIVES 
 
Salinity is a substantial problematic issue all over the 
world and disturbing agricultural practices. It is predicted 
that after few years in future, salinity will become a bigger 
issue for farmers and researchers. In our review, we 
discussed salinity issue and tried to figure out the 
different    aspects    associated     with    salt     tolerance  
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Table 5. Identified major proteins increased in crop plants under salt stress using proteomics. 
 

Protein name Species Studies Reference 

SalT Rice 
2-DE analysis for characterization of gene 
showing specific expression 

Claes et al. (1990) 

    

OEE1 Halophytes 
Proteomic approach for the analysis of OEE1 
protein in response to salt treatment in Bruguiera 
gymnorrhiza 

Sugihara et al. (2000) 

    

26 kDa Wheat  2-DE analysis of salt stress on peptide pattern Majoul et al. (2000) 
    

Tubulin α D Rice 
Proteomic analysis of salt stress response in 
seedlings of two African rice cultivars 

Damaris et al. (2016) 

    

MLP-like protein 328 canola 
Proteomic analysis of salt-responsive proteins in 
canola roots by 2-DE and MALDI-TOF MS 

Kholghi et al. (2019) 

    

cpPDC Sea purslane 
Proteomic analyses of the chloroplasts Sesuvium 
portulacastrumun under differential salt conditions 

Peng et al. (2019) 

    

OEE1 Rice 
Mapping the ‘early salinity response’ triggered 
proteome adaptation in contrasting rice 
genotypes using iTRAQ approach 

Lakra et al. (2019) 

    

PS II 5 kDa p Watermelon 
iTRAQ-based quantitative proteomics analysis of 
cold stress-induced mechanisms in grafted 
watermelon seedlings 

Shi et al. (2019) 

    

PSB27 
Narrow-
leaved purple 
coneflower 

Proteomics Analysis of E. angustifolia seedlings 

inoculated with Arbuscular Mycorrhizal Fungi 
under salt stress 

Jia et al. (2019)  

    

FBA Rice 
TRAQ-based protein profiling and biochemical 
analysis of two contrasting rice genotypes 
revealed their differential responses to salt stress 

Hussain et al. (2019) 

 
 
 

mechanisms. In the first section, we indicated important 
parameter of salt stress such as, ion homeostasis (the 
fundamental feature of salt stress). In second section, we 
focused on the biochemical aspects and emphasized 
about new technology for solutes analysis from salty 
plants and their genetic functions related to salt tolerance 
mechanisms. In our third section we discuss about 
molecular tactics to enlighten the salt stress problem and 
uses of different approaches to overcome these issues 
such as, salt signaling pathway, the genes/ transcripts 
interrelated with salinity in different plants, genetic 
functions linked with proteins accumulations with different 
experimental methodologies. In these scenarios, we 
concluded that traditional breeding approaches are not 
sufficient to overcome this issue. The breeders, scientists 
and researcher are needed to consider more about 
salinity issue. They should address more authentic 
experimental results, implementation of new technologies 
and genetic manipulation, transformation, and emphasis 
the new revaluations and most important subject is to 
develop salt-tolerant cultivars to cope with salinity issue. 
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