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 The wide range of applications of cooling fins are evident in heat transfer 
enhancements for various thermal systems and also, for the control and 
prevention of thermal damages in mechanical and electronic equipment. In this 
work, nonlinear thermal behaviour of convective-radiative cooling fin with 
convective tip and subjected to magnetic field is analyzed using Galerkin finite 
element method. The numerical solutions are verified by the exact analytical 
solution of the linearized models using Laplace transforms method. Based on the 
numerical investigations, it is established that increase in Biot number, 
convective, radiative and magnetic parameters increase the rate of heat transfer 
from the fin and consequently improve the efficiency of the cooling fin. Also, the 
study shows that for a relatively short cooling fin operating for prolonged 
periods of time or steady state, the adiabatic/hypothetical condition (or 
negligible heat transfer) at the tip can be assumed without any significant loss in 
accuracy or equality as compared to the convective condition at the tip. However, 
for a long cooling fin of finite length operating in a transient state, especially for 
short period of time, the assumption of insulated tip produces significant 
different results as compared to the results of the convective tip. Therefore, for 
transient thermal studies of fins, the assumption that no heat transfer takes place 
at the fin tip should be taken with caution for a long cooling fin of finite length 
operating within a relatively short period of time. It is hope that the present 
study will enhance the understanding of transient thermal response of the solid 
fin under various factors and fin tip conditions. 
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1. Introduction 

The increasing demands for high performance thermal equipment require the 
development of enhanced heat transfer devices. Also, the generation of excessive heat that 
leads to thermal-induced failure in various thermal systems calls for the production of 
effective heat dissipating devices that will enhance the rate of heat transfer from the 
thermal equipment. In order to meet these needs, extended surfaces such as fins and spines 
have been applied in various thermal and electronic equipment. Consequently, the 
applications of the extended surfaces in the thermal systems such as air conditioning, 
refrigeration, super heaters, automobile, power plants, heat exchangers, convectional 
furnaces, economizers, gas turbines, chemical processing equipment, oil carrying 
pipelines, computer processors, electrical chips, electronic and microelectronics 
components, high-power semi-conductor devices, high-power lasers, light emitting diodes 
(LEDs), computer cooling, sensitive devices etc. have attracted various research interests 
in few past decades.  The thermal analysis of the extended surfaces involves the 
development of thermal models for various operating conditions. Different analytical 
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(exact and approximate) and numerical methods have been employed by various 
researchers to analyze the developed thermal models of the extended surfaces. Exact 
analytical methods such as methods of superposition and separation of variables were 
employed by Wang et al. [1] while Moitsheki and Harley [2], Mhlongo and Moitsheki [3], 
Ali et al. [4] and Kader et al. [5] adopted Lie point symmetry method for the thermal 
analysis of fins. Kirchoff’s transformation method was adopted by Moitsheki and Rowjee 
[6]. In an earlier work, Cole et al. [7] made use of Green’s functions (GF) in the form of 
infinite series to present analytical solutions to the differential equations governing the 
thermal behaviour of fins.  

The above reviewed works provided exact analytical solutions to the thermal models 
governing the thermal behaviours of the fins under various operating conditions. However, 
most of the developed exact analytical solutions are based on the assumptions of constant 
thermal properties. Indubitably, the idealization of a constant or uniform heat transfer 
coefficient is not realistic. This is because in practice, heat transfer coefficients has 
significantly greater values at the fin tip more than the fin base. Additionally, the heat 
transfer coefficients vary with temperature. Such variation of the heat transfer coefficient 
as a function of temperature is often governed by a power law. Moreover, the thermal 
conductivity of the fin is temperature-dependent. Under these circumstances, the 
differential equations governing the thermal responses of the fin under various conditions 
become strictly nonlinear. Therefore, large numbers of the past studies have applied 
various approximate analytical methods to solve the nonlinear thermal models under 
various geometrical, internal and external conditions.  In past few decades, Jordan et al. [8] 
utilized optimal linearization method while Kundu and Das [9] adopted Frobenius 
expanding series for the nonlinear fin problems. Homotopy analysis method was used by 
Khani et al. [10] and Amirkolaei and Ganji [11]. Aziz and Bouaziz [12] employed method of 
least squares while Sobamowo [13], Ganji et al. [14] and Sobamowo et al. [15] applied 
Galerkin method of weighted residual to analyze the thermal behaviour of the extended 
surfaces. In recent times, double decomposition and variation of parameter methods were 
employed by Sobamowo [16] and Sobamowo et al. [17], respectively to investigate the heat 
transfer characteristics of fins. In some other works, Moradi and Ahmadikia [18], Sadri et 
al. [19], Ndlovu and Moitsheki [20], Mosayebidarchech et al. [21], Ghasemi et al. [22] and 
Ganji and Dogonchi [23] adopted differential transformation method to determine the 
temperature distribution in fins. Applications of homotopy perturbation method to the fin 
problem was presented by Sobamowo et al. [24], Arslanturk [25], Ganji et al. [26] and 
Hoshyar et al. [27].  

The developed series solutions for the thermal analyses of fins using different approximate 
analytical methods involve large number of terms. In practice, such expressions involving 
large number of terms are not convenient for use by designers and engineers [13]. 
Therefore, over the years, various numerical methods have been explored to analyze the 
thermal behavior of various extended surfaces. In an earlier work on numerical analysis of 
determination of temperature distribution in fins, Singh et al. [28] adopted meshless 
element free Galerkin method. Few years later, Basri et al. [29] presented a study on the 
applications of efficient finite element and differential quadrature methods to the heat 
transfer problems.  Singh et al. [30] and Sao and Banjare [31] used quasi- steady theory 
while in the same year, Lotfi and Belkacem [32] and Al- Rashed et al. [33] utilized finite 
volume method for the thermal analysis of fins.  In another study, Taler and Taler [34] 
presented the coupling of finite volume finite element methods to the heat transfer 
problem. Incremented differential quadrature method was used by Malekzadeh and 
Rahideh [35].   Reddy et al. [36] adopted B- spline based finite element method while Sun 
et al. [37] applied collocation spectral method to the fin problem. Rajul et al. [38] examined 
the thermal response of the fin using Meshless Local Petrov-Galerkin (MLPG). In the 
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preceding year, Wei et al. [39] investigated the thermal behaviour of fin through field 
synergy principle optimization analysis. Hajabdollahi et al. [40] presented genetic 
algorithm while symbolic programming was used by Fatoorehchi and Abolghasemi [41]. 
Three years later, Latif et al. [42] successfully applied symmetry reduction method to 
address nonlinear heat transfer problems of fins. In the same year, Mahmoudi and Mejri 
[43] used to Lattice Boltzmann method to investigate the effect of variable thermal 
conductivity and variable refractive index on transient conduction and radiation heat 
transfer. In some recent studies, Sobamowo [44] and Sobamowo et al. [45] applied finite 
difference and finite volume method, respectively for thermal analysis of longitudinal fin 
with temperature-dependent thermal conductivity and internal heat generation. Also, 
Sobamowo et al. [46] and Sobamowo [47] adopted Legendre wavelet collocation method 
to investigate the effects of magnetic field on the thermal performance of convective-
radiative fin and also to study heat transfer in porous fin with temperature-dependent 
thermal conductivity and internal heat generation. Sobamowo and Kamiyo [48] studied 
multi-boiling heat transfer behavior of a convective straight fin with temperature-
dependent thermal properties and internal heat generation using finite volume method. In 
another study, Chebychev spectral collocation method was used by Sobamowo [49] to 
examine the heat transfer in porous fin with temperature-dependent thermal conductivity 
and internal heat generation.  

It should be noted that most of the above reviewed studies are based on steady state 
analysis of fin. However, in many engineering practices and devices such as in automobiles, 
study of heat transfer in building, industrial applications, transient analysis is very 
important. In fact, an accurate transient analysis provides insight into the design of fins 
that would fail in steady-state operations but are sufficient for desired operating periods. 
Consequently, there have been comparatively few studies on the transient analysis of the 
fin. In some earlier works, transient closed form solutions were developed for fin with 
assumed constant thermal properties. Chapman [50] studied the transient behavior of an 
annular fin of uniform thickness subjected to a sudden step change in the base 
temperature. Few years later, Donaldson and Shouman [51] presented a study on the 
transient temperature distribution in a straight fin for a step change in base temperature 
and a step change in base heat flow rate. Also, in a subsequent works, Suryanarayana 
[52,53] investigated the transient response of straight fins of constant cross-sectional area. 
Mao and Rooke [54] utilized Laplace transform method to analyze straight fins for different 
cases of a step change in base temperature, a step change in base heat flux and a step 
change in fluid temperature. Method of Green’s functions was adopted by Beck et al. [55] 
to study transient behavior of fins of constant cross-section area. In an earlier work, Kim 
[56] developed an approximate solution to the transient heat transfer in straight fins of 
constant cross-sectional area and constant physical and thermal properties. Three years 
later, Aziz and Na [57] examined the transient response of a semi-infinite fin of uniform 
thickness, initially at the ambient temperature, subjected to a step change in temperature 
at its base, with fin cooling governed by a power-law type dependence on temperature 
difference. In another work, Aziz and Kraus [58] presented a variety of analytical results 
for transient fins, developed by separation of variable and Laplace transform techniques. 
Campo and Salazar [59] explored the analogy between the transient conduction in a planar 
slab for short times and the steady state conduction in a straight fin of uniform cross-
section. Saha and Acharya [60] submitted a detailed parametric analysis of the unsteady 
three-dimensional flow and heat transfer in a pin-fin heat exchanger. Furthermore, several 
numerical studies of transient fins combined with complicating factors, such as natural 
convection [61, 62], spatial arrays of fins [63, 64] and phase change materials [65] have 
been presented. Mutlu and Al-Shemmeri [66] studied a longitudinal array of straight fins 
suddenly heated at the base.  
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In the above reviewed studies, heat dissipation from the fin tip has been assumed 
negligible. Therefore, the analyses of the reviewed works were based on fins with insulated 
tips or negligible heat transfer at the tips. However, effects of fin tip on the thermal 
response and performance of the fin have been pointed out in some few studies in 
literature. In such studies, Irey [67], Laor and Kalman [68], Lau and Tau [69] and Ǜnal [70] 
examined fins that dissipate heat also by their tips with constant or various temperature-
dependence heat coefficients under steady state conditions. 

Sequel to the above, there have been various studies on the thermal analysis of fin. 
However, there are limited studies in literatures on the applications of finite element 
methods for transient heat transfer analysis of fin with convective tip and under the 
influence of magnetic field. Therefore, in this present study, Galerkin finite element method 
is used study the transient thermal behavior of convective-radiative fin with convective tip 
and under the influence of magnetic field. The inherent advantages, wide range of 
applications and high level of accuracy of the method justify the consideration of the 
method for the problem under consideration. FEM is geometrically flexible and it enjoys 
an advantage in memory use and speed for large problems. It can handle Neumann 
boundary condition as readily as the Dirichlet boundary condition as demonstrated in the 
present study. Of all the numerical methods developed so far, the finite-element method 
has been found to be the most general method, not only to solve the problems of heat 
transfer but also to solve various problems in different areas of engineering and science. 
Finite element method provides superior versatility to other numerical methods and is 
generally very stable with excellent convergence characteristics. To the best of the authors’ 
knowledge, the transient analysis of heat transfers in convective-radiative cooling fin with 
convective tip and subjected to magnetic field using finite element method has not been 
studied in open literature. As part of the aims of the present paper, a step-by-step finite 
element analysis is presented in this work. The numerical solutions are used to investigate 
the effects of convective, radiative, magnetic and convective tip parameters on the 
transient thermal performance of the cooling fin. Also, effect the thermal stability values 
for the various multi-boiling heat transfer modes are established. 

2. Problem formulation 

Consider a straight fin of length L and thickness t which is exposed on both faces to a 

convective-radiative environment at temperature  and subjected to a uniform magnetic 

field as shown in Fig.1. In order to develop the mathematical model governing the thermal 
behavior, the following assumptions are made:  

I. The fin material is homogeneous and isotropic and with constant physical 
properties.  

II. The thermal properties of the fin, surrounding medium and the magnetic field 
vary with temperature according to power-law. The temperature of the 
surrounding fluid is uniform. 

III. The heat flow to or from the fin surface at any point is directly proportional to 
the temperature difference between the surface at that point and the 
surrounding fluid.  

IV. The fin thickness is so small compared to its height and length that 
temperature gradients normal to the surface (across the fin thickness) may be 
neglected. Therefore, the temperature variation inside the fin is one-
dimensional i.e. temperature varies along the fin length only. heat loss through 
the fin edges is negligible compared to that which passes through the sides.   

V. There is no contact resistance where the base of the fin joins the prime surface.  
Also, the temperature of the base of the fin is uniform 

T



Sobamowo / Research on Engineering Structures & Materials 5(1) (2019) 43-74 

 

47 

 

 

VI. There are no heat sources or internal heat generation within the fin. 
 

 

Fig. 1 (a) Schematic of longitudinal fin subjected to magnetic field(b) Computational 
domain of the fin 

Based on following the above assumptions, the thermal energy balance could be expressed 

𝑞𝑥 − (𝑞𝑥 +
𝛿𝑞

𝛿𝑥
𝑑𝑥) = ℎ(𝑇)𝑃(𝑇 − 𝑇∞)𝑑𝑥 + 𝜎𝜀(𝑇)𝑃(𝑇

4 − 𝑇∞
4)𝑑𝑥 

+
𝑱𝑐 × 𝑱𝒄
𝜎

𝑑𝑥 + 𝜌𝐴𝑐𝑟𝑐𝑝
𝜕𝑇

𝜕𝑡
𝑑𝑥 

(1) 

Where; 

Jc = σ(E + V × B) (2) 

As dx→0, Eq. (1) reduces  

−
𝑑𝑞

𝑑𝑥
= ℎ(𝑇)𝑃(𝑇 − 𝑇𝑎) + 𝜎𝜀(𝑇)𝑃(𝑇4 − 𝑇𝑎

4) +
𝑱
𝒄

× 𝑱
𝒄

𝜎
+ 𝜌𝐴𝑐𝑟𝑐𝑝

𝜕𝑇

𝜕𝑡
 (3) 

From Fourier’s law of heat conduction, the rate of heat conduction in the fin is given by  

𝒒 = −𝒌𝑨𝒄𝒓
𝒅𝑻

𝒅𝒙
 

 

(4) 

             
Following, the radiation heat transfer rate is  

𝒒 = −𝒌𝑨𝒄𝒓
𝒅𝑻

𝒅𝒙
 

 

(4) 

𝑞 = −
4𝜎𝐴𝑐𝑟
3𝛽𝑅

𝑑𝑇4

𝑑𝑥
 

 
  (5) 

 
 
                                                                                                                                                                      
 

Therefore, the total rate of heat transfer is given by; 

𝑞 = −𝑘𝐴𝑐𝑟
𝑑𝑇

𝑑𝑥
−
4𝜎𝐴𝑐𝑟

3𝛽𝑅

𝑑𝑇4

𝑑𝑥
 (6) 

On substituting Eq. (6) into Eq. (3), one gets 
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𝑑

𝑑𝑥
(𝑘𝐴𝑐𝑟

𝑑𝑇

𝑑𝑥
+
4𝜎𝐴𝑐𝑟

3𝛽𝑅

𝑑𝑇4

𝑑𝑥
) = ℎ(𝑇)𝑃(𝑇 − 𝑇∞) + 𝜎(𝑇)𝜀𝑃(𝑇

4 − 𝑇∞
4) 

+
𝑱𝒄 × 𝑱𝒄

𝜎
+ 𝜌𝐴𝑐𝑟𝑐𝑝

𝜕𝑇

𝜕𝑡
 

 

(7) 

Further simplification of Eq. (7) gives the governing differential equation for the fin as  

𝑑2𝑇

𝑑𝑥2
+

4𝜎

3𝛽𝑅𝑘

𝑑

𝑑𝑥
(
𝑑𝑇4

𝑑𝑥
) −

ℎ(𝑇)𝑃

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) −

𝜎𝜀(𝑇)𝑃

𝑘𝐴𝑐𝑟
(𝑇4 − 𝑇∞

4) 

−
𝑱𝒄×𝑱𝒄

𝜎𝑘𝐴𝑐𝑟
=

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
,                                     

(8) 

The initial and boundary conditions are 

𝑡 = 0,  0 < 𝑥 < 𝑏,    𝑇 = 𝑇𝑏 , 
𝑡 > 0,     𝑥 = 0,  𝑇 = 𝑇𝑏,                                                                                                              

𝑡 > 0,     𝑥 = 𝑏,  −𝑘
𝑑𝑇

𝑑𝑥
= ℎ(𝑇 − 𝑇∞) 

(9a) 

However, if the tip of the fin is assumed insulated or a negligible rate of heat transfer from 
it, we have         

𝑡 > 0,     𝑥 = 𝑏, 
𝑑𝑇

𝑑𝑥
= 0 (9b) 

It should be noted that 

𝑱𝒄 × 𝑱𝒄

𝜎
= 𝜎𝑚𝐵𝑜

2𝑢2 (10) 

After substitution of Eq. (10) into Eq. (8),  

𝑑2𝑇

𝑑𝑥2
+

4𝜎

3𝛽𝑅𝑘

𝑑

𝑑𝑥
(
𝑑𝑇4

𝑑𝑥
) −

ℎ(𝑇)𝑃

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) −

𝜎𝜀(𝑇)𝑃

𝑘𝐴𝑐𝑟
(𝑇4 − 𝑇∞

4) 

−
𝜎𝑚(𝑇)𝐵𝑜

2𝑢2

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) =

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 

(11) 

The first case that is considered in this work is a situation where small temperature 
difference exists within the fin material during the heat flow. This actually necessitated the 
use of temperature-invariant physical and thermal properties of the fin. Also, it has been 
established that under such scenario, the term T4can be expressed as a linear function of 
temperature. Therefore, we have 

𝑇4 = 𝑇∞
4 + 4𝑇∞

3(𝑇 − 𝑇∞) + 6𝑇∞
2(𝑇 − 𝑇∞)

2+. . . ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4 (12) 

Also, using Rosseland’s approximation                                                                  

4𝜎

3𝛽𝑅𝑘

𝜕𝑇4

𝜕𝑥
≅
16𝜎𝑇∞

3

3𝛽𝑅𝑘

𝜕2𝑇

𝜕𝑥2
 (13) 

On substituting Eqs. (15) and (16) into Eq. (14), we arrived at 

 
𝑑2𝑇

𝑑𝑥2
+
16𝜎

3𝛽𝑅𝑘

𝑑2𝑇

𝑑𝑥2
−
ℎ(𝑇)𝑃

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) −

4𝜎𝑃𝜀(𝑇)𝑇∞
3

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) 

−
𝜎𝑚(𝑇)𝐵𝑜

2𝑢2

𝑘𝐴𝑐𝑟
(𝑇 − 𝑇∞) =

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 

(14) 

However, for most industrial applications the heat transfer coefficient may be given as the 
power law [2,19], where the exponent p and ho are constants. The constant p may vary 
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between −6.6 and 5. However, in most practical applications it lies between −3 and 3 [19]. 
So, the power temperature-dependent thermal properties of the surrounding fluid and the 
magnetic field are defined as  

ℎ(𝑇) = ℎ𝑜 (
𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞

)
𝑝

 (15) 

Extending the same power temperature-dependent relationship to the fin emissivity and 
the magnetic field, we have 

𝜀(𝑇) = 𝜀𝑜 (
𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞

)
𝑞

 (16) 

𝜎𝑚(𝑇) = (𝜎𝑚)𝑜 (
𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞

)
𝑟

 (17) 

The exponent p on the heat transfer coefficient represents laminar film boiling or 
condensation when p = −1/4, laminar natural convection when p = 1/4, turbulent natural 
convection when p = 1/3, nucleate boiling when p = 2, radiation when p = 3. p = 0 implies 
a constant heat transfer coefficient.  

Substitution of Eq. (16) - (17) gives 
𝑑2𝑇

𝑑𝑥2
+
16𝜎

3𝛽𝑅𝑘

𝑑2𝑇

𝑑𝑥2
−
ℎ𝑜𝑃(𝑇 − 𝑇∞)

𝑝+1

𝑘𝐴𝑐𝑟(𝑇𝑏 − 𝑇∞)
𝑝

−
4𝜎𝜀𝑜𝑃𝑇∞

3(𝑇 − 𝑇∞)
𝑞+1

𝑘𝐴𝑐𝑟(𝑇𝑏 − 𝑇∞)
𝑞

 

−
𝜎𝑚,𝑜𝐵𝑜

2𝑢2(𝑇 − 𝑇∞)
𝑟+1

𝑘𝐴𝑐𝑟(𝑇𝑏 − 𝑇∞)𝑟
=
𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 

(18) 

For constant thermal properties of the surrounding fluid and the magnetic field, we have a 
linear equation of the form  

𝑑2𝑇

𝑑𝑥2
+
16𝜎

3𝛽𝑅𝑘

𝑑2𝑇

𝑑𝑥2
−
ℎ𝑃(𝑇 − 𝑇∞)

𝑘𝐴𝑐𝑟
−
4𝜎𝜀𝑃𝑇∞

3(𝑇 − 𝑇∞)

𝑘𝐴𝑐𝑟
 

−
𝜎𝑚𝐵𝑜

2𝑢2(𝑇 − 𝑇∞)

𝑘𝐴𝑐𝑟
=
𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 

(19) 

It should be noted that the above Eq. (19) can be solved analytically. Using Laplace 
transform, it can easily be shown that the exact analytical solution of the equation based 
on the boundary conditions in Eq. (9) is given as; 

𝑇 = 𝑇∞ + (𝑇𝑏 −

𝑇∞)

{
 
 
 
 
 

 
 
 
 
 ((ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)𝑐𝑜𝑠ℎ(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)(𝐿−𝑥)+(

ℎ𝐿

𝑘
)𝑠𝑖𝑛ℎ(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)(𝐿−𝑥)

(
(ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)𝑐𝑜𝑠ℎ(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)+(

ℎ𝐿

𝑘
)𝑠𝑖𝑛ℎ((

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
))

−2∑

{
 
 

 
 𝜆𝑛

3𝑠𝑖𝑛(
𝜆𝑛𝑥

𝐿
){𝑒𝑥𝑝−[(𝜆𝑛

2+(
(ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

)(
(𝑘+

16𝜎
3𝛽𝑅

)𝑡

𝜌𝑐𝑝𝐿2
)]}

(𝜆𝑛
2+(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

)((
ℎ𝐿

𝑘
)
2
+(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

+
ℎ𝐿

𝑘
)𝑠𝑖𝑛2𝜆𝑛

}
 
 

 
 

∞
𝑛=1

}
 
 
 
 
 

 
 
 
 
 

      

 

(20a) 

For the insulated tip, we have 
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     𝑇 = 𝑇∞ + (𝑇𝑏 −

𝑇∞)

{
 
 
 
 
 

 
 
 
 
 (

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)𝑐𝑜𝑠ℎ(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)(𝐿−𝑥)

(
(ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)𝑐𝑜𝑠ℎ(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

−2∑

{
 
 

 
 𝜆𝑛

3𝑠𝑖𝑛(
𝜆𝑛𝑥

𝐿
){𝑒𝑥𝑝−[(𝜆𝑛

2+(
(ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

)(
(𝑘+

16𝜎
3𝛽𝑅

)𝑡

𝜌𝑐𝑝𝐿
2 )]}

(𝜆𝑛
2+(

(ℎ𝑃+4𝜎𝜀𝑇∞
3 𝑃+𝜎𝑚𝐵𝑜

2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

)((
(ℎ𝑃+4𝜎𝜀𝑇∞

3 𝑃+𝜎𝑚𝐵𝑜
2𝑢2)𝐿

𝐴𝑐𝑟(𝑘+
16𝜎
3𝛽𝑅

)
)

2

)𝑠𝑖𝑛2𝜆𝑛

}
 
 

 
 

∞
𝑛=1

}
 
 
 
 
 

 
 
 
 
 

 

 

(20b) 

where λn are the positive roots of the characteristic’s equation 

𝜆𝑛𝑐𝑜𝑠𝜆𝑛 + (
ℎ𝐿

𝑘
) 𝑠𝑖𝑛𝜆𝑛 = 0 (21a) 

It should be noted that a steady state is attained when t→∞ 

For the sake of convenience in subsequent analysis, it should be noted that “b” has been 
replaced with “L” in the above analytical solution.  
 

3. Finite Element Method for the Transient Analysis 

It is very difficult to develop exact analytical solution to the nonlinear equation in Eq. (14) 
or Eq. (18). Therefore, Galerkin finite element method is used in this work to solve the 
nonlinear equation. The procedures of the numerical method are outlined as follows: 

I. Finite element discretization: The whole domain is divided into a finite number 
of sub-domains, designated as the discretization of the domain. Each sub-domain 
is called an element.  The collection of elements comprises the finite-element 
mesh.   
 

II. Generation of the element equations: From the mesh, a typical element is 
isolated and the variational formulation of the given problem over the typical 
element is constructed. An approximate solution of the variational problem is 
assumed and the element equations are generated by substituting the assumed 
solution in the formulation. The element matrix, which is called stiffness matrix, 
is constructed by using the element interpolation functions. 

 
III. Assembly of element equations: The algebraic equations obtained from the 

element matrix are assembled by imposing the inter-element continuity 
conditions. This yields a large number of algebraic equations known as the global 
finite element model, which governs the whole domain.  
 

IV. Imposition of boundary conditions: The essential and natural boundary 
conditions as given in the problem under consideration are imposed on the 
assembled equations.  

 
V. Solution of assembled equation: The assembled equations after the imposition 

of the boundary conditions are solved by any numerical technique that is 
developed for solving systems of linear equations. The numerical techniques are 
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Gaussian elimination method, Gauss-Jordan iterative method, Gauss-Jacobi 
iterative method, Gauss-Seidel iterative method, LU decomposition method, 
Choleski decomposition, Crout’s method, Householder’s technique, etc. 

 

In order to demonstrate the application of the finite element method to the present 
nonlinear problem, a weak formulation of the nonlinear governing differential equation is 
derived using Galerkin finite element method. For the purpose of the finite element 
analysis, one can rewrite Eq. (14) as; 

(𝑘 +
16𝜎

3𝛽𝑅
)
𝑑2𝑇

𝑑𝑥2
− (
(ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝑃𝜀𝑜𝑇∞

3 + 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2)

𝐴𝑐𝑟
) (𝑇 − 𝑇∞) 

−𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 0 

(21b) 

where temperature-dependent thermal properties of the surrounding fluid and the 
magnetic field are defined in Eqs. (15) – (17). Using the shape/interpolating function on 
the governing equation and Integrating over the domain V of the control volume according 
to Galerkin finite element method, we have 

∫ 𝑊

(

 
 (𝑘 +

16𝜎

3𝛽𝑅
)
𝑑2𝑇

𝑑𝑥2
− (
(ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝑃𝜀𝑜𝑇∞

3 + 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2)

𝐴𝑐𝑟
)(𝑇 − 𝑇∞)

−𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 0

)

 
 

𝑉

𝑑𝑉 = 0 (22) 

For the one-dimensional problem which the dependent variable varies only along x-axis 
and the boundary integrals turn to be a point value on the boundaries, one can replace, dV 
by Acrdx in the Eq. (22).  Here, Acr is the uniform cross-sectional area of the fin and P is the 
perimeter of the fin from which convection takes place. 

∫𝑊

(

 
 (𝑘 +

16𝜎

3𝛽𝑅
)
𝑑2𝑇

𝑑𝑥2
− (
(ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝑃𝜀𝑜𝑇∞

3 + 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2)

𝐴𝑐𝑟
) (𝑇 − 𝑇∞)

−𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 0

)

 
 

𝐿

𝐴𝑐𝑟𝑑𝑥 = 0 (23) 

After expansion, one arrives at 

∫𝑊((𝑘 +
16𝜎

3𝛽𝑅
)
𝜕2𝑇

𝜕𝑥2
𝐴𝑐𝑟𝑑𝑥)

𝐿

−∫((ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃)(𝑇 − 𝑇∞)

𝐿

𝑑𝑥 

− ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2(𝑇 − 𝑇∞)𝑑𝑥𝐿 − ∫ 𝜌𝑐

𝜕𝑇

𝜕𝑡
𝐴𝑐𝑟𝑑𝑥𝐿 = 0 

(24) 

For the fin of length, L          

∫ 𝑊

(

 
(𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕2𝑇

𝜕𝑥2
− ((ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃)(𝑇 − 𝑇∞)

−𝜎𝑚(𝑇)𝐵𝑜
2𝑢2(𝑇 − 𝑇∞) − 𝜌𝑐𝐴𝑐𝑟

𝜕𝑇

𝜕𝑡 )

 
𝐿

0

𝑑𝑥 = 0 
(25) 

The expansion of Eq. (24) gives 

∫ 𝑊 (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕

𝜕𝑥
[
𝜕𝑇

𝜕𝑥
]

𝐿

0

𝑑𝑥
⏟                    

(1)

−

[
 
 
 
 ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃𝑊𝑇
𝐿

0

𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇

𝐿

0

𝑑𝑥

−∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞𝑊

𝐿

0

𝑑𝑥 −∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇∞𝑑

𝐿

0

𝑥
]
 
 
 
 

⏟                                        
2

− 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟𝑊
𝐿

0

𝜕𝑇

𝜕𝑡
𝑑𝑥

⏟            
3

= 0 

(26) 

For the term (1) in Eq. (26), one can write 
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∫ 𝑊(𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
)

𝐿

0

𝑑𝑥 = (𝑘 +
16𝜎

3𝛽𝑅
) 𝐴𝑐𝑟∫ 𝑊𝜕 (

𝜕𝑇

𝜕𝑥
)

𝐿

0

 
(27) 

Applying integration by part(∫ 𝑢𝜕𝑣
𝐿

0
= 𝑢𝑣|0

𝐿 − ∫ 𝑣
𝐿

0
𝑑𝑢) to Eq. (27), where; 

= 𝑊 ⇒
𝜕𝑢

𝜕𝑥
=
𝜕𝑊

𝜕𝑥
𝑎𝑛𝑑𝜕𝑣 = 𝜕 (

𝜕𝑇

𝜕𝑥
) ⇒ 𝑣 =

𝜕𝑇

𝜕𝑥
𝑢 (28) 

Applying Eq. (28) in Eq. (27), gives 

∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟𝑊

𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
)

𝐿

0

𝑑𝑥 = (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 ∫ 𝑊𝜕 (

𝜕𝑇

𝜕𝑥
)

𝐿

0

 

= (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 {𝑊

𝜕𝑇

𝜕𝑥
|
0

𝐿

−∫
𝜕𝑊

𝜕𝑥

𝜕𝑇

𝜕𝑥

𝐿

0

𝑑𝑥} 

(29) 

Substituting Eq. (29) into Eq. (26), leads to  

𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿

𝑊 −∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕𝑊

𝜕𝑥

𝜕𝑇

𝜕𝑥

𝐿

0

𝑑𝑥 

− [
∫ (ℎ(𝑇)+ 4𝜎(𝑇)𝜀𝑜𝑇∞

3 )𝑃𝑊𝑇𝐿
0 𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2𝑊𝑇𝐿
0 𝑑𝑥

− ∫ (ℎ(𝑇)+ 4𝜎(𝑇)𝜀𝑜𝑇∞
3 )𝑃𝑇∞𝑊

𝐿
0 𝑑𝑥 − ∫ 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2𝑊𝑇∞𝑑
𝐿
0 𝑥

] − ∫ 𝜌𝑐𝑝𝐴𝑐𝑟𝑊
𝐿
0

𝜕𝑇

𝜕𝑡
𝑑𝑥 = 0 

(30) 

Eq. (30) can be written as 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟𝑊
𝐿

0

𝜕𝑇

𝜕𝑡
𝑑𝑥 + ∫ (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕𝑊

𝜕𝑥

𝜕𝑇

𝜕𝑥

𝐿

0

𝑑𝑥 + ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑊𝑇

𝐿

0

𝑑𝑥

+∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇

𝐿

0

𝑑𝑥 

= ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞𝑊

𝐿

0

𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇∞𝑑

𝐿

0

𝑥 + 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿

𝑊 

(31) 

 

 

The above Eq. (31) is a weak formulation of the nonlinear governing differential equation.  

In order to carry out the finite element discretization as stated in the step 1 of the finite 
element analysis, the whole domain is divided into a finite number of sub-domains as 
shown in Fig. 2. For a one-dimensional problem, linear elements are used. The finite 
element discretization is done in a way such that the given length of the body is divided 
into number of divisions, say ‘n’ elements which consequently, gives (n + 1) nodes to 
represent the body as shown in Table 1.  

Table 1. Element and node numbers of linearone-dimensional elements 

Element No.             Node i             Node  j 
 

1                               1                      2 

2                               2                      3 

3                               3                      4 

e                                i                       j 

n                                n                     n+1 
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Table 2. Element and node numbers of linear one-dimensionalelements used in this study 

 

Element No.             Node i             Node  j 
 

1                               1                      2 

2                               2                      3 

3                               3                      4 

.                                .                       . 

.                                .                       . 

.                                .                       . 

48                            48                     49 

49                            49                     50 

50                            50                     51 

 

In the finite element analysis of the present problem (one-dimension transient state), 2-
node linear elements are used and the given length of the fin is divided into 50 elements 
which give 51 nodes to represent the total length of the fin as shown in Table 2 and Fig. 2.  

 

Fig. 2. Finite element 

In order to construct a variational formulation of the given problem over an element, a 
typical element is isolated (Fig. 3) from the mesh shown in Fig. 2. The typical 2-node linear 
element with end nodes ‘i’ and ‘j’ having the corresponding temperature being denoted by 
Ti and Tj. respectively is shown in Fig. 3. 

 

 

Fig. 3. A 2-node element 

For the 2-node element, the following analysis for the variational formulation is carried 
out. Following Eq. (31), it could be stated that the weak form formulation of the governing 
Equation for an element of length “Le” is given as 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟𝑊
𝐿𝑒

0

𝜕𝑇

𝜕𝑡
𝑑𝑥 +∫ (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝜕𝑊

𝜕𝑥

𝜕𝑇

𝜕𝑥

𝐿𝑒

0

𝑑𝑥 +∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑊𝑇

𝐿𝑒

0

𝑑𝑥

+∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇

𝐿𝑒

0

𝑑𝑥 

= ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞𝑊

𝐿𝑒

0

𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑊𝑇∞𝑑

𝐿𝑒

0

𝑥 + 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿𝑒

𝑊 

(32) 

The linear temperature variation in the element is represented by 

𝑇 = 𝜆1 + 𝜆2𝑥 (33) 
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where T is the temperature at any location x and the parameters λ1 and λ2 are constants. 
Since there are two arbitrary constants in the linear representation, it requires only two 
nodes to determine the values of λ1 and λ2. Thus, we have 

𝑇𝑖 = 𝜆1 + 𝜆2𝑥𝑖  (34a) 

𝑇𝑗 = 𝜆1 + 𝜆2𝑥𝑗  (34b) 

On solving Eq. (34a) and (34b), we have  

𝜆1 =
𝑇𝑖𝑥𝑗−𝑇𝑗𝑥𝑖

𝑥𝑗−𝑥𝑖
,          𝜆2 =

𝑇𝑗−𝑇𝑖

𝑥𝑗−𝑥𝑖
 (35) 

After substituting the values of λ1 and λ2 in Eq. (35) into Equ. (33), one arrives at 

𝑇 = 𝑇𝑖 (
𝑥𝑗 − 𝑥

𝑥𝑗 − 𝑥𝑖
) + 𝑇𝑗 (

𝑥 − 𝑥𝑖

𝑥𝑗 − 𝑥𝑖
) (36) 

The above Eq. (36) can be written as  

𝑇 = 𝑇𝑖𝑊𝑖 + 𝑇𝑗𝑊𝑗 = [𝑊𝑖  𝑊𝑗] {
𝑇𝑖
𝑇𝑗
} (37) 

Where 

𝑊𝑖 =
𝑥𝑗−𝑥

𝑥𝑗−𝑥𝑖
,          𝑊𝑗 =

𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
 (38) 

 Wi and Wj are called shape/interpolation/test/basis functions.  Furthermore, one can 
write Equ. (37) as; 

𝑇 = [𝑾]{𝑻} (39) 

 

Where; 

[𝑾] = [𝑊𝑖  𝑊𝑗] (40) 

is the shape function matrix and 

{𝑻} = [
𝑇𝑖
𝑇𝑗
] (41) 

is the vector of unknown temperatures taking 

𝑥𝑖 = 0,  𝑥𝑗 = 𝐿𝑒,  ⇒ 𝑥𝑗 − 𝑥𝑖 = 𝐿𝑒  (42) 

Substitute Eq. (42) into Eq. (38), we have the shape functions as; 

𝑊𝑖 = 1 −
𝑥

𝐿𝑒
,𝑊𝑗 =

𝑥

𝐿𝑒
 (43) 

On substituting Eq. (43) into Eq. (37), we can see that the temperature at any point “x” in 
the 2-node element is approximated by; 

𝑇 = (1 −
𝑥

𝐿𝑒
)𝑇𝑖 + (

𝑥

𝐿𝑒
)𝑇𝑗  ⇒ 𝑇 = 𝑇𝑖𝑊𝑖 + 𝑇𝑗𝑊𝑗𝑇 = [𝑊𝑖  𝑊𝑗] {

𝑇𝑖
𝑇𝑗
} = [𝑾]{𝑻} (44) 
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Therefore 

𝜕𝑇

𝜕𝑡
= (1 −

𝑥

𝐿𝑒
)
𝜕𝑇𝑖
𝜕𝑡
+ (

𝑥

𝐿𝑒
)
𝜕𝑇𝑗

𝜕𝑡
 ⇒

𝜕𝑇

𝜕𝑡
= 𝑊𝑖

𝜕𝑇𝑖
𝜕𝑡
+𝑊𝑗

𝜕𝑇𝑗

𝜕𝑡
= [𝑊𝑖  𝑊𝑗] {

𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡

} = [𝑾] {
𝜕𝑻

𝜕𝑡
} (45) 

𝜕𝑇

𝜕𝑥
=
𝜕𝑇

𝜕𝑥
=
𝜕𝑊𝑖

𝜕𝑥
𝑇𝑖 +

𝜕𝑊𝑗

𝜕𝑥
𝑇𝑗 = (−

1

𝐿𝑒
)𝑇𝑖 + (

1

𝐿𝑒
)𝑇𝑗 =

1

𝐿𝑒
(𝑇𝑗 − 𝑇𝑖)  ⇒ 𝑇 = [−

1

𝐿𝑒
 
1

𝐿𝑒
] {
𝑇𝑖
𝑇𝑗
}

= [𝑩]{𝑻} 

(46) 

Where; 

[𝑩] = [
𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
] 

 

(47) 

After substitution of Eq. (44), (45), (46) and (47) into Eq. (32), we have 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟

𝐿𝑒

0

[
𝑊𝑖

𝑊𝑗
] [𝑊𝑖  𝑊𝑗] {

𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡

}𝑑𝑥 +∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 [

𝜕𝑊𝑖

𝜕𝑥
𝜕𝑊𝑗

𝜕𝑥

] [
𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
] {
𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

+∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃 [

𝑊𝑖

𝑊𝑗
] [𝑊𝑖  𝑊𝑗] {

𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥

+∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2 [

𝑊𝑖

𝑊𝑗
] [𝑊𝑖 𝑊𝑗] {

𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

= ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞ [

𝑊𝑖

𝑊𝑗
]

𝐿𝑒

0

𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞ [

𝑊𝑖

𝑊𝑗
]𝑑

𝐿𝑒

0

𝑥

+ 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿𝑒

[
𝑊𝑖

𝑊𝑗
] 

(48) 

Eq. (48) can be written as 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟

𝐿𝑒

0

[𝑊𝑖 𝑊𝑗]
𝑇
[𝑊𝑖 𝑊𝑗]{

𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡

}𝑑𝑥

+∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 [

𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
]

𝑇

[
𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
] {
𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

+∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃[𝑊𝑖 𝑊𝑗]

𝑇
[𝑊𝑖 𝑊𝑗] {

𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥

+∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2[𝑊𝑖  𝑊𝑗]

𝑇
[𝑊𝑖  𝑊𝑗] {

𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

= ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞[𝑊𝑖  𝑊𝑗]

𝑇
𝐿𝑒

0

𝑑𝑥 +∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞[𝑊𝑖  𝑊𝑗]

𝑇
𝑑

𝐿𝑒

0

𝑥

+ 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿𝑒

[𝑊𝑖  𝑊𝑗]
𝑇

 

(49) 

For the i and j nodes of an element, Eq. (49) can be written in a convenient form as 

[𝐶𝑖𝑗] {

𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡

} + [𝐾𝑖𝑗(𝑇)] {
𝑇𝑖
𝑇𝑗
} = [𝑓𝑖𝑗(𝑇)] 

(50) 

Where 

[𝐶𝑖𝑗] = ∫ 𝜌𝑐𝑝𝐴𝑐𝑟

𝐿𝑒

0

[𝑊𝑖  𝑊𝑗]
𝑇
[𝑊𝑖  𝑊𝑗]𝑑𝑥 

(51) 

[𝐾𝑖𝑗(𝑇)] = ∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 [

𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
]

𝑇

[
𝜕𝑊𝑖

𝜕𝑥
 
𝜕𝑊𝑗

𝜕𝑥
]

𝐿𝑒

0

𝑑𝑥 

               + ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃[𝑊𝑖  𝑊𝑗]

𝑇
[𝑊𝑖  𝑊𝑗]

𝐿𝑒

0

𝑑𝑥 

(52) 
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               + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2[𝑊𝑖  𝑊𝑗]

𝑇
[𝑊𝑖  𝑊𝑗]

𝐿𝑒

0

𝑑𝑥 

[𝑓𝑖𝑗(𝑇)] = ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞[𝑊𝑖  𝑊𝑗]

𝑇
𝐿𝑒

0

𝑑𝑥 

                 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞[𝑊𝑖  𝑊𝑗]

𝑇
𝑑

𝐿𝑒

0

𝑥 

                 + 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿𝑒

[𝑊𝑖 𝑊𝑗]
𝑇
, 

(53) 

Alternatively, using the relationships in Eqs. (44) - (46), one can write Eq. (49) in a compact 
matrix form of as; 

∫ 𝜌𝑐𝑝𝐴𝑐𝑟[𝑾]
𝑇

𝐿𝑒

0

[𝑾] {
𝜕𝑻

𝜕𝑡
} 𝑑𝑥 +∫ (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟[𝑩]

𝑇[𝑩][𝑻]
𝐿𝑒

0

𝑑𝑥 

+∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃[𝑾]𝑇[𝑾][𝑻]

𝐿𝑒

0

𝑑𝑥 +∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2[𝑾]𝑇[𝑾][𝑻]

𝐿𝑒

0

𝑑𝑥 

= ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃[𝑾]𝑇𝑇∞

𝐿𝑒

0

𝑑𝑥 + (𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
)|
0

𝐿𝑒

[𝑾]𝑇  

(54) 

Eq. (54) can be written form as; 

[𝑪] {
𝜕𝑻

𝜕𝑡
} + [𝑲(𝑇)]{𝑻} = [𝒇(𝑇)] (55) 

 
Where 

[𝑪] = ∫ 𝜌𝑐𝑝𝐴[𝑾]
𝑇

𝐿𝑒

0

[𝑾]𝑑𝑥 
(56) 

[𝑲(𝑇)] = ∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟[𝑩]

𝑇[𝑩]
𝐿𝑒

0

𝑑𝑥 +∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃[𝑾]𝑇[𝑾]

𝐿𝑒

0

𝑑𝑥 

               + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2[𝑾]𝑇[𝑾]

𝐿𝑒

0

𝑑𝑥 

(57) 

[𝒇(𝑇)] = ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞[𝑾]

𝑇𝑇∞

𝐿𝑒

0

𝑑𝑥 +∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞[𝑾]

𝑇𝑇∞

𝐿𝑒

0

𝑑𝑥 

             + 𝐴((𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|)|

0

𝐿𝑒

[𝑾]𝑇 

(58) 

In order to develop the matrix equation for the element, we need to expand Eq. (51) - (54) 
or the equivalent equations in Eq. (56) – (58). Therefore, the expansions are carried out as 
follows 

[𝐶𝑖𝑗] = ∫ 𝜌𝑐𝑝
𝐿𝑒

0
𝐴𝑐𝑟[𝑊𝑖  𝑊𝑗]

𝑇
[𝑊𝑖  𝑊𝑗]𝑑𝑥 = ∫ 𝜌𝑐𝑝𝐴𝑐𝑟

𝐿𝑒

0
[
𝑊𝑖

2 𝑊𝑖𝑊𝑗

𝑊𝑖𝑊𝑗  𝑊𝑗
2]𝑑𝑥,              

 
 

(59) 

[𝐾𝑖𝑗(𝑇)] = ∫ (𝑘 +
16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

[
 
 
 
 (
𝜕𝑊𝑖

𝜕𝑥
)
2

 
𝜕𝑊𝑖

𝜕𝑥

𝜕𝑊𝑗

𝜕𝑥
𝜕𝑊𝑖

𝜕𝑥

𝜕𝑊𝑗
𝜕𝑥

 (
𝜕𝑊𝑗
𝜕𝑥
)
2

]
 
 
 
 

{
𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥

+∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃 [

𝑊𝑖
2 𝑊𝑖𝑊𝑗

𝑊𝑖𝑊𝑗  𝑊𝑗
2] {
𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

                + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2 [

𝑊𝑖
2 𝑊𝑖𝑊𝑗

𝑊𝑖𝑊𝑗 𝑊𝑗
2] {
𝑇𝑖
𝑇𝑗
}

𝐿𝑒

0

𝑑𝑥 

(60) 

[𝑓𝑖𝑗(𝑇)] = ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃𝑇∞ [

𝑊𝑖

𝑊𝑗
]

𝐿𝑒

0

𝑑𝑥 (61) 
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+∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞ [

𝑊𝑖

𝑊𝑗
]𝑑

𝐿𝑒

0

𝑥 + 𝐴𝑐𝑟 (𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
|
0

𝐿𝑒

[
𝑊𝑖

𝑊𝑗
] 

On substituting Eq. (43) into Eq. (46) into the above Eqs. (59) -(61), one arrives. For the 
global capacitance matrix, we have 

[𝐶𝑖𝑗] = ∫ 𝜌𝑐𝑝

𝐿𝑒

0

[
 
 
 
 (1 −

𝑥

𝐿𝑒
)
2

 (1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)

(1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)  (

𝑥

𝐿𝑒
)
2

]
 
 
 
 

𝑑𝑥 (62) 

For the stiffness matrix; 

[𝐾𝑖𝑗(𝑇)] = ∫ (𝑘 +
16𝜎

3𝛽𝑅
) 𝐴𝑐𝑟

[
 
 
 
 (−

1

𝐿𝑒
)
2

 (−
1

𝐿𝑒
) (
1

𝐿𝑒
)

(−
1

𝐿𝑒
) (
1

𝐿𝑒
)  (

1

𝐿𝑒
)
2

]
 
 
 
 

𝐿𝑒

0

𝑑𝑥

+∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃

[
 
 
 
 (1 −

𝑥

𝐿𝑒
)
2

 (1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)

(1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)  (

𝑥

𝐿𝑒
)
2

]
 
 
 
 𝐿𝑒

0

𝑑𝑥 

              + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2

[
 
 
 
 (1 −

𝑥

𝐿𝑒
)
2

 (1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)

(1 −
𝑥

𝐿𝑒
) (
𝑥

𝐿𝑒
)  (

𝑥

𝐿𝑒
)
2

]
 
 
 
 𝐿𝑒

0

𝑑𝑥 

(63) 

For the load vector  

[𝑓𝑖(𝑇)] = ∫ (ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞
3)𝑃 [

(1 −
𝑥

𝐿𝑒
)

(
𝑥

𝐿𝑒
)
] 𝑇∞

𝐿𝑒

0

𝑑𝑥 + ∫ 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2 [

(1 −
𝑥

𝐿𝑒
)

(
𝑥

𝐿𝑒
)
] 𝑇∞

𝐿𝑒

0

𝑑𝑥

+ 𝐴𝑐𝑟 ((𝑘 +
16𝜎

3𝛽𝑅
)
𝜕𝑇

𝜕𝑥
)|

0

𝐿𝑒

[

(1 −
𝑥

𝐿𝑒
)

(
𝑥

𝐿𝑒
)
] 

(64) 

After the integrations, we have the global capacitance matrix, stiffness matrix and the load 
vector as; 

[𝐶𝑖𝑗] =
𝜌𝑐𝑝𝐴𝐿𝑒

6
[
21
12
] (65) 

[𝐾𝑖𝑗(𝑇)] = [
(𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝐿𝑒
[
1 − 1
−11

] +
(ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃𝐿𝑒
6

[
21
12
] +

𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝐿𝑒

6
[
21
12
]] (66) 

[𝑓𝑖(𝑇)] =
(ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃𝑇∞𝐿𝑒 + 𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞𝐿

2
[
1
1
] + (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 [

−
𝜕𝑇(0)

𝜕𝑥
𝜕𝑇(𝐿𝑒)

𝜕𝑥

] (67) 

Substitution Eq. (65) – (67) into Eq. (50), gives the characteristic equation over the space 
interval Δx as; 

𝜌𝑐𝑝𝐴𝐿𝑒
6

[
21
12
]{

𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡

} + [
(𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

𝐿𝑒
[
1 − 1
−11

] +
(ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃𝐿𝑒
6

[
21
12
]

+
𝜎𝑚(𝑇)𝐵𝑜

2𝑢2𝐿𝑒
6

[
21
12
]] {
𝑇𝑖
𝑇𝑗
} 

(68) 
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==
(ℎ(𝑇) + 4𝜎(𝑇)𝜀𝑜𝑇∞

3)𝑃𝑇∞𝐿𝑒
2

[
1
1
] +

𝜎𝑚(𝑇)𝐵𝑜
2𝑢2𝑇∞𝐿𝑒
2

[
1
1
] + (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟 [

−
𝜕𝑇(0)

𝜕𝑥
𝜕𝑇(𝐿𝑒)

𝜕𝑥

] 

 

 

Fig. 4. A 3-node element 

The steps above are general. Both the results and the analysis can be different if one uses 
3-node element. Using a 3-node element, one arrives at  

[𝐶𝑖𝑗]

{
 
 

 
 
𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗

𝜕𝑡
𝜕𝑇𝑘
𝜕𝑡 }
 
 

 
 

+ [𝐾𝑖𝑗(𝑇)] {

𝑇𝑖
𝑇𝑗
𝑇𝑘

} = [𝑓𝑖𝑗(𝑇)] 
(69) 

 

Where; 

[𝐶𝑖𝑗] =
𝜌𝑐𝑝𝐴𝑐𝑟𝐿𝑒

6
[
8 4 −2
4 32 4

−2 4 8
] (70) 

[𝐾𝑖𝑗(𝑇)] = [
(𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

3𝐿𝑒
[
7 −8 1

−8 16 −8
1 −8 7

]

+ (ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞
3𝑃 + 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2)
𝐿𝑒
60
[
8 4 −2
4 32 4

−2 4 8
]] 

(71) 

[𝑓𝑖(𝑇)] = (ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞
3𝑃 + 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2)
𝑇∞𝐿𝑒
6
[
1
4
1
] + (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

[
 
 
 
 
 −
𝜕𝑇(0)

𝜕𝑥
𝜕𝑇(𝑀)

𝜕𝑥
𝜕𝑇(𝐿)

𝜕𝑥 ]
 
 
 
 
 

 (72) 

After the substitution of Eqs. (69) - (72), we arrived at 
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𝜌𝑐𝑝𝐴𝑐𝑟𝐿𝑒
6

[
8 4 −2
4 32 4

−2 4 8
]

{
 
 

 
 
𝜕𝑇𝑖
𝜕𝑡
𝜕𝑇𝑗
𝜕𝑡
𝜕𝑇𝑘
𝜕𝑡 }
 
 

 
 

+ [
(𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

3𝐿𝑒
[
7 −8 1

−8 16 −8
1 −8 7

]

+ (ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞
3𝑃 + 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2)
𝐿𝑒
60
[
8 4 −2
4 32 4

−2 4 8
]]{

𝑇𝑖
𝑇𝑗
𝑇𝑘

} 

= (ℎ(𝑇)𝑃 + 4𝜎(𝑇)𝜀𝑜𝑇∞
3𝑃 + 𝜎𝑚(𝑇)𝐵𝑜

2𝑢2)
𝑇∞𝐿𝑒
6
[
1
4
1
] + (𝑘 +

16𝜎

3𝛽𝑅
)𝐴𝑐𝑟

[
 
 
 
 
 −
𝜕𝑇(0)

𝜕𝑥
𝜕𝑇(𝑀)

𝜕𝑥
𝜕𝑇(𝐿)

𝜕𝑥 ]
 
 
 
 
 

 

(73) 

3.1. Time discretization using the Finite Difference Method (FDM)  

The above equation is a general representation of a one-dimensional problem with one 
linear element. All the terms are included irrespective of the boundary condition. Eq. (50) 
or (55) is semi-discrete as it is discretized only in space. The differential operator still 
contains the time-dependent term and it has to be discretized. We now require a method 
of discretizing the transient terms of the equation. The following subsections give the 
details of how the transient terms is discretized.  

[𝐶𝑖𝑗]

{
 

 
𝑇𝑖
𝑚+1 − 𝑇𝑖

𝑚

𝛥𝑡
𝑇𝑗
𝑚+1 − 𝑇𝑗

𝑚

𝛥𝑡 }
 

 

+ [𝐾𝑖𝑗(𝑇)] {
𝜃𝑇𝑖

𝑚+1 + (1 − 𝜃)𝑇𝑖
𝑚

𝜃𝑇𝑗
𝑚+1 + (1 − 𝜃)𝑇𝑗

𝑚+1} = {
𝜃𝑓𝑖

𝑚+1 + (1 − 𝜃)𝑓𝑖
𝑚

𝜃𝑓𝑗
𝑚+1 + (1 − 𝜃)𝑓𝑗

𝑚+1} (74) 

which can be compactly written as; 

[𝑪] {
{𝑻𝑚+1 − 𝑻𝑚}

𝛥𝑡
} + [𝑲(𝑇)]{𝜃𝑻𝑚+1 + (1 − 𝜃)𝑻𝑚} = {𝜃𝒇𝑚+1 + (1 − 𝜃)𝒇𝑚} (75) 

Therefore, 

[[𝑪] + 𝜃𝛥𝑡[𝑲(𝑇)]]𝑻𝑚+1 = [[𝑪] − (1 − 𝜃)𝛥𝑡[𝑲(𝑇)]]𝑻𝑚 + 𝛥𝑡{𝜃𝒇𝑚+1 + (1 − 𝜃)𝒇𝑚} (76) 

where, “m” denotes the time level. 

Table 3. Different time-stepping schemes 

θ                 Name of the Scheme                                 Comments 

0.0            Fully explicit scheme                       Forward different method 
1.0            Fully implicit scheme                      Backward difference method 
0.5            Semi-implicit scheme                      Crank-Nicolson method 

 

Eq. (76) gives the nodal values of temperature at the m + 1, time level. These temperature 
values are calculated using the m time level values. However, both the m + 1 and m time 
level values of the forcing vector {f} must be known. By varying the parameter θ, different 
transient schemes can be constructed, which are shown in Table 4 for varying values of θ. 
Therefore, for the temporal discretization, two-level θ method has been used for the 
analysis. This approach varies between explicit and implicit strategies and results in the 
algebraic systems of nonlinear equations. 
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It is very difficult to provide explicit solutions to the developed systems of nonlinear 
equations. Therefore, recourse is made to use an iterative predictor-corrector scheme, 
based on direct substitution iteration to handle nonlinearity in the present analysis. Based 
on the name, this scheme is an algorithm that proceeds in two steps, namely; the predictor 
step and then the corrector step. It calculates a rough approximation of the desired 
quantity in the predictor step and refines the approximation in the corrector step. This 
scheme combines the advantages associated with explicit and implicit time schemes and 
hence provides the stable solution to solve complex nonlinear problems (Lewis and 
Roberts [51]). The steps are shown as follows: 

Predictor 

[[𝑪(𝑻𝑚)] + 𝜃𝛥𝑡𝑨(𝑻𝑚)]𝑻∗
𝑚+1 

= [[𝑪(𝑻𝑚)] − (1 − 𝜃)𝛥𝑡𝑨(𝑻𝑚)]𝑻𝑚 + 𝛥𝑡{𝜃𝑩(𝑻𝑚)𝒇𝑚+1 +𝑩(𝑻𝑚)(1 − 𝜃)𝒇𝑚} 
(77) 

 

Corrector 

 

[[𝑪(𝑻𝑝
𝑚̄)] + 𝜃𝛥𝑡𝑨(𝑻𝑝

𝑚̄)] 𝑻𝑝
𝑚+1 

= [[𝑪(𝑻𝑝
𝑚̄)] − (1 − 𝜃)𝛥𝑡𝑨(𝑻𝑝

𝑚̄)] 𝑻𝑚 + 𝛥𝑡{𝜃𝑩(𝑻𝑝
𝑚̄)𝒇𝑚+1 + 𝑩(𝑻𝑝

𝑚̄)(1 − 𝜃)𝒇𝑚} 

(78) 

 
Where p = 0,1,2, 3… up to convergence 

𝑻𝑝
𝑚̄ = 𝑤𝑻𝑝

𝑚+1 + (1 − 𝑤)𝑻𝑚      0 ≤ 𝑤 ≤ 1 (79a) 

𝑻0
𝑚+1 = 𝑻∗

𝑚+1 (79b) 

3.2. Time discretization using the Finite Element Method  
 

Alternatively, the temporal term in the transient equation can be discretized by using finite 
element method to discretize Eq. (76) in the time domain. In  Equ. (76), the temperature is 
now discretized in the time domain as in Fig. (4). 

 

Fig. 5 Time discretization between nth (i) and n + 1th (j) time levels 

 

𝑇(𝑡) = 𝑁𝑖(𝑡)𝑇𝑖(𝑡) + 𝑁𝑗(𝑡)𝑇𝑗(𝑡) = [𝑁𝑖(𝑡) 𝑁𝑗(𝑡)] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} (80) 

Following the similar procedure as done previously, we can derive the linear shape 
functions as 

𝑁𝑖(𝑡) = 1 −
𝑡

𝛥𝑡
, 𝑁𝑗(𝑡) =

𝑡

𝛥𝑡
 (81) 

Therefore, the time derivative of the temperature is thus written as 
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𝜕𝑇(𝑡)

𝜕𝑡
=
𝜕𝑁𝑖(𝑡)

𝜕𝑡
𝑇𝑖(𝑡) +

𝜕𝑁𝑗(𝑡)

𝜕𝑡
𝑇𝑗(𝑡) = (−

1

𝛥𝑡
)𝑇𝑖(𝑡) + (

1

𝛥𝑡
)𝑇𝑗(𝑡) =

1

𝛥𝑡
(𝑇𝑗(𝑡) − 𝑇𝑖(𝑡)) 

               ⇒
𝜕𝑇(𝑡)

𝜕𝑡
= [−

1

𝛥𝑡
 
1

𝛥𝑡
] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} 

(82) 

Substituting Equs. (77) and (79) into Equ. (54) and applying the weighted residual 
principle (Galerkin method), we obtain for a time interval of Δt, 

∫ [[
𝑁𝑖(𝑡)

𝑁𝑗(𝑡)
] [[𝑪] [−

1

𝛥𝑡
 
1

𝛥𝑡
] {
𝑇𝑖(𝑡)

𝑇𝑗(𝑡)
} + [𝑲(𝑇)][𝑁𝑖(𝑡) 𝑁𝑗(𝑡)] {

𝑇𝑖(𝑡)

𝑇𝑗(𝑡)
}

𝛥𝑡

− [𝒇(𝑇)]]] 𝑑𝑡 

(83) 

After expansion, we have 

∫ [[[𝑪] [
𝑁𝑖(𝑡)

𝑁𝑗(𝑡)
] [−

1

𝛥𝑡
 
1

𝛥𝑡
] {
𝑇𝑖(𝑡)

𝑇𝑗(𝑡)
} + [𝑲(𝑇)] [

𝑁𝑖(𝑡)

𝑁𝑗(𝑡)
] [𝑁𝑖(𝑡) 𝑁𝑗(𝑡)] {

𝑇𝑖(𝑡)

𝑇𝑗(𝑡)
}

𝛥𝑡

− [
𝑁𝑖(𝑡)

𝑁𝑗(𝑡)
] [𝒇(𝑇)]]] 𝑑𝑡 

(84) 

Substituting Equ. (78) into Equ. (81) 

∫

[
 
 
 
 

[
 
 
 
 

[𝑪] [
1 −

𝑡

𝛥𝑡
𝑡

𝛥𝑡

] [−
1

𝛥𝑡
 
1

𝛥𝑡
] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} + [𝑲(𝑇)] [
1 −

𝑡

𝛥𝑡
𝑡

𝛥𝑡

] [1 −
𝑡

𝛥𝑡
 
𝑡

𝛥𝑡
] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

}
𝛥𝑡

− [
1 −

𝑡

𝛥𝑡
𝑡

𝛥𝑡

] [𝒇(𝑇)]

]
 
 
 
 

]
 
 
 
 

𝑑𝑡 

(85) 

Again, after expansion of Eq. (85), one arrives at 

∫

[
 
 
 
 

[
 
 
 
 

[𝑪] [
− (1 −

𝑡

𝛥𝑡
) (
1

𝛥𝑡
)  (1 −

𝑡

𝛥𝑡
) (
1

𝛥𝑡
)

− (
𝑡

𝛥𝑡
) (
1

𝛥𝑡
)       (

𝑡

𝛥𝑡
) (
1

𝛥𝑡
)

] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

}
𝛥𝑡

+ [𝑲(𝑇)]

[
 
 
 (1 −

𝑡

𝛥𝑡
)
2

 (1 −
𝑡

𝛥𝑡
) (
𝑡

𝛥𝑡
)

(1 −
𝑡

𝛥𝑡
) (
𝑡

𝛥𝑡
)    (

𝑡

𝛥𝑡
)
2

]
 
 
 

{
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} − [
1 −

𝑡

𝛥𝑡

 
𝑡

𝛥𝑡

] [𝒇(𝑇)]

]
 
 
 
 

]
 
 
 
 

𝑑𝑡 

(86) 

After the evaluation of Eq. (86), we obtained the characteristic equation over the time 
interval Δt as 

1

2𝛥𝑡
[[𝑪] [

−1 1
−1 1

] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} +
1

3
[𝑲(𝑇)] [

2 1
1 2

] {
𝑇𝑖(𝑡)
𝑇𝑗(𝑡)

} =
1

2
[
1
1
] {
𝑓1
𝑓2
}] (87) 

 

The above equation involves the temperature values at the mth and (m + 1)th level. The 
quadratic variation of temperature with respect to time shown in Eq. (73) can be treated 
in a similar fashion. 

The boundary conditions and the temperature-dependent parameters are incorporated in 
the computer program used to solve the system of differential equations. Although, a 
dimensionless form of the governing equation can be derived for the computer program, 
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so that the handling of physical quantities is simplified. It should be noted that the thermal 
properties are evaluated directly in each time step from the nodal temperatures. This 
eliminates any iteration within each time step for the evaluations of the temperature-
dependent parameters.  

The element equation/matrix has been derived as shown in the previous equations. It 
should be noted that the whole domain was divided into a set of 50line elements. 
Assembling all the elements equation/matrices, a global matrix or a system of equations 
was obtained. After applying the boundary conditions, the resulting systems of equations 
is solved numerically.  

 
The convergence criterion of the numerical solution along with error estimation has been 
set to   

∑|𝜙𝑖
𝑖 − 𝜙𝑖−1|

𝑁

𝑖

≤ 10−4 (88) 

      where φ is the general dependent variable T and i is the number of iterations. 

It should be noted that a steady state is attained when 
𝜕𝑇

𝜕𝑡
= 0 or t→∞. 

      Table 4: Thermo-geometric parameters used for the simulation 

S/N               Parameter                                               Value of Parameter 
1               Fin thickness (δ)                                                    0.005 m                                   
2               Fin length (L)                                                          0.10 m 
3               Specific heat (C)                                                     0.048 kJ/kgoC 
4               Density of the fin material (ρ)                           7800 kg/m3 

5               Thermal conductivity (k)                                   12W/moC 
6               Heat transfer coefficient (ho)                            20 W/m2oC 
7               Electrical conductivity (σm)                               5x107 S/m 
8               Magnetic field intensity (BO)                             5µT 
9               Axial velocity (u)                                                   2.5 m/s 
10             power-index, p = q = r                                         0.175 
11             Fin base temperature (Tb)                                 200oC 
12             Initial temperature (To)                                      200oC 
13             Ambient temperature (T∞)                                30oC 
14             Time step (Δt)                                                        10 sec 

4. Results and Discussion 

For the computational domain, numerical solutions are computed and the necessary 
convergence of the results is achieved with the desired degree of accuracy. Using the 
numerical solutions, parametric studies are carried out. Also, in order to define the validity 
of the results of thermal analysis of fin with assumed insulated tip and that of convective 
tip, effects of the fin tip conditions on the transient thermal response are investigated. The 
results with the discussion are illustrated through the Figs. 6-18 and Tables 5-6 to 
substantiate the applicability of the present analysis.  

 

4.1 Verification of results 

In order to verify the accuracy of the present numerical method, the numerical results are 
compared with results obtained by exact analytical method for the linear equation in Eq.  
(14) as shown in Table 5 and Fig. 6. It is inferred from the figure that there are excellent 
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agreements between the FEM results and the analytical results, which testifies to the 
validity of the FEM code. This validation boosts the confidence in the numerical outcomes 
of the present study. Moreover, it is observed that in the same domain by increasing the 
polynomial degree of approximation or the number of nodes in an element, one can achieve 
the desired accuracy with less DOF. 

Table 5 shows the comparison of the results obtained by exact analytical and finite element 
methods for a conductive-convective fin with constant thermal and physical properties of 
fin having negligible radiation and magnetic field effects. Very good agreements are found 
between the exact analytical and finite element solutions. The average percentage error of 
the numerical solution is 0.133 %. 

        Table 5. Comparison of results  

x(m)     Exact analytical          Finite Element               Error           % Error 
                 Method (oC)                  Method (oC) 
0.000            200.000                        200.000                       0.000                0.000 
0.020            148.133                        148.184                       0.051                0.034 
0.040            113.895                        114.031                       0.136                0.119 
0.060            92.169                           92.339                         0.170                0.184 
0.080            79.725                           79.912                         0.187                0.235 
0.100            74.710                           74.880                         0.170                0.228 

 

  
Fig. 6 Comparison of results  Fig. 7(a) Fin temperature profile at 

different location (convective tip) 

  
Fig. 8 Fin temperature profile at different 

location (insulated tip) 
Fig. 7(b) Effects of multi-boiling 

parameter on the fin temperature 
distribution   
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Fig. 9 Fin temperature profile at different 
time(convective tip) 

Fig. 10 Fin temperature profile at 
different time(convective tip) 

Figs. 7 and 8 depict temperature-time history at different four points (0.025 m, 0.050m, 
0.075 m and 0.100 m) of the convective-radiative fin with convective and insulated tips, 
respectively while Fig. 9 and 10 show the temperature profiles of the fin at difference 
times. The temperature histories at the four points decrease at a faster rate initially, slows 
down thereafter and finally tending to reach a constant value showing to be near to steady 
state.  Also, a marginal or slightly higher temperature differences are notice between the 
convective and insulated tip. However, this temperature differences become appreciable 
as the length of the fin increases and heat is transferred within a short period of time. It 
could be inferred form the figures and the preceding discussion that for a short fin that 
undergo heat transfer for a prolonged period of time, adiabatic/insulted condition at the 
tip can be assumed without any significant loss in accuracy. 

  

Fig. 11 Effects of Biot number on the fin 
temperature profile  (convective-tip)  

Fig. 12 Effects of Biot number on the fin 
temperature profile(insulated tip) 
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Fig. 13 Effects of heat transfer coefficient 
on the fin temperature profil 

Fig. 14 Effects of emissivity on the fin 
temperature profile 

  

Fig. 15 Effects of magnetic parameter on 
the fin temperature profile 

Fig. 16 Effects of thermal conductivity on 
the fin temperature profile 

 
 

Fig. 17 Effects of thermo-geometric 
parameter on fin temperature profile 

Fig. 18 Effects of multi-boiling parameter 
on thermal stability of the fin 
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heat transfer from the fin to the fluid surrounding it is less than 1% [67, 68].  However, 
when the Biot number is greater than 0.1 (Bi > 0.1), two-dimensional analysis of the fin is 
recommended as one-dimensional analysis predicts unreliable results for such limit.  

Figs. 11 and 12 show the effects of Biot number (conduction-convection parameter) on the 
temperature distribution in the fin with convective and insulated tips, respectively. From 
the figures, it is shown that as the Biot number increases, the rate of heat transfer through 
the fin increases as the temperature in the fin drops faster (becomes steeper reflecting high 
base heat flow rates) as depicted in the figures.  

Effects of heat transfer coefficient on the temperature distribution in the fin is shown in 
Fig.13. It is shown that the temperature profiles for the various heat transfer coefficient 
coincide initially but part away as we move towards the tip of the fin. This is due to the fact 
that coefficient of heat transfer coefficient is a factor/multiplier of the temperature 
difference between the fin surface and surrounding medium (T-T∞). It should be noted that 
the temperature difference between the fin surface and the surrounding decreases as we 
move away from the fin base to the fin tip even despite the increase in the heat transfer 
coefficient increases.    

It should be noted that for the fin with heat transfer coefficient which varies according to 
power-law, the hypothetical boundary condition (that is, insulation) at the tip of the fin is 
taken into account. If the tip is not assumed to be insulated, then the problem becomes 
overdetermined [68]. This boundary condition is realized for sufficiently long fins. Also, it 
should be stated that the assumption that the heat transfer coefficient is constant yields 
incorrect.  

Fig. 14 presents the impact of emissivity on the temperature distribution. The temperature 
of the fin decreases with increase of emissivity value. This is because of increase of 
emissive heat by radiation from the fin surface especially when the distance from the base 
increase. Therefore, heat transfer rate increases as the emissivity increases. The radiative 
eat transfer can be neglected if the base temperature of the fin is low and the emissivity of 
the fin surface is near zero. The important things in fins surface must be emissive because 
of high emissivity give a great amount of heat radiation transfer from the fin [38]. It is also 
established that by increasing the generation-conduction parameter and radiation-
conduction parameter, the fin temperature will increase [71]. 

Fig.15 shows that effects of magnetic parameter, Hartman number on the temperature 
distribution in the porous fin. The figure depicts that the induced magnetic field in the fin 
can improve heat transfer through the fin. It is shown that increase in magnetic field on the 
fin increase the rate of heat transfer from the fin and consequently improve the efficiency 
of the fin. Fig. 16 shows the effect thermal conductivity of the fin materials on the thermal 
response of the fin. It could be inferred from the figure that more heat is transferred from 
fin made of copper material than the fins made of stainless steel and aluminum materials. 

Effects of the thermal and geometric parameters on the temperature profile of the fin are 
shown in Fig. 17 while Fig. 18 shows the influence of thermo-geometric parameter 
(M=(hP/kA)0.5) on the thermal stability of the fin. It was established that the value 
of M produces physically unsound behavior for larger values of the thermo-geometric 
parameter. It is shown that for growing values of the thermo-geometric parameter the 
temperature tends to negative values at the tip of the fin which shows thermal instability, 
contradicting the assumption of Eq. 9. Following the assumptions made regarding the 
numerical solution of the problem, it was realized that these solutions are not only 
physically unsound but also point toward thermal instability. Therefore, in order for the 
solution to be physically sound the fin thermo-geometric parameter Mmax must not exceed 
a specific value. By extension, in order to ensure stability and avoid numerical diffusion of 
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the solution by the Galerkin finite element method, the thermo-geometric 
parameter, M must not exceed a certain value.  

Table 6a. Effects of convective and insulated tip on the fin temperature distribution 

 
Time 
(sec.) 

Fin Temperature (oC) at x=0.025 m                 Fin Temperature (oC) at x=0.050 m 
Convective tip   Insulated tip   Difference        Convective tip   Insulated tip      Difference 

500 
1000                                                
1500 
2000 
2500 
∞ 

129.09                 129.45                   0.36                           102.07                 103.00                  0.93 
118.86                 119.16                   0.30                            84.41                   85.08                   0.67 
116.84                 117.04                   0.20                            80.84                   81.31                   0.47 
116.41                 116.58                   0.17                            80.10                   80.49                   0.39 
116.32                 116.48                   0.16                            79.94                   80.31                   0.38 
116.30                 116.45                   0.15                            79.90                   80.26                   0.36 

 

Table 6b. Effects of convective and insulated tip on the fin temperature distribution 

 
Time 
(sec.) 

Fin Temperature (oC) at x=0.075 m                  Fin Temperature (oC) at x=0.100 m 
Convective tip   Insulated tip   Difference         Convective tip    Insulated tip   Difference 

500 
1000                                                
1500 
2000 
2500 
∞ 

 90.01                     91.95                   1.94                       84.06                   87.60                   3.93 
 68.30                     69.53                   1.23                       62.61                   64.76                   2.51 
 63.85                     64.74                   0.89                       58.23                   59.84                   1.61 
 62.91                     63.69                   0.78                       57.30                   58.76                   1.46 
 62.71                     63.46                   0.75                        57.10                   58.53                  1.43 
 62.66                     63.39                   0.74                        57.05                   58.46                  1.41 

 

It is established from the results in the Tables 6a and 6b, that for a relatively short fin 
operating for prolonged periods of time, the results indicate that the 
adiabatic/hypothetical condition (or negligible heat transfer) at the tip can be assumed 
without any significant loss in accuracy or equality as compared to the convective 
boundary at the tip. This is because, for the relatively short fin operating under a steady 
state, the assumption of insulated tip (or negligible heat transfer at the tip) predicted 
almost the same results as there is no significant difference between the results of the 
assumed insulated tip and convective tip. Moreover, for a sharp ended fin, its performance 
is the same as insulated tip fin. Under such scenario, the fin tip heat convection analysis 
becomes meaningless due to the infinitesimally small dissipating area. However, for a long 
cooling fin of finite length operating in a transient state, especially for short period of time, 
the assumption of insulated tip produces significant different results as compared to the 
results of the convective tip (Table 6b). It is therefore implied that if it is assumed that no 
heat transfer takes place at the fin tip, the results obtained for some ranges of thermal and 
geometric parameters indicate that the determination of temperature distribution and the 
rate of heat transfer from the fin to its surroundings includes a fairly large error for some 
conditions which are important for practical applications.  Therefore, for transient thermal 
studies of fins, the assumption of no heat transfer takes place at the fin tip should be taken 
with caution in thermal analysis of a long cooling fin of finite length operating within a 
short period of time such as the fin operating under picosecond or nanosecond. Also, such 
an assumption should not be made when the convective heat transfer coefficient at the tip 
of the fin is very high or the thermal conductivity of the fin material is very low. It was 
established that the difference between the results of the insulated tip and convective tip 
increases as the tip Biot number is increased. In fact, the percentage error of the difference 
between the results of the insulated tip and convective tip for a very high value of heat 
transfer coefficient could be as high as 20 % [72].  
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5. Conclusion 

In this work, transient thermal behavior of convective-radiative cooling fin with convective 
tip and subjected to magnetic field have been analyzed using Galerkin finite element 
method. The numerical solutions are verified by the exact solution developed using 
Laplace transform. The study revealed that increase in Biot number, convective, radiative 
and magnetic parameters increase the rate of heat transfer from the fin and consequently, 
improved the efficiency of the fin. Also, it was established that for a relatively short fin 
operating for prolonged periods of time or steady state, the adiabatic/hypothetical 
condition (or negligible heat transfer) at the tip can be assumed without any significant 
loss in accuracy or equality as compared to the convective condition at the tip. However, 
for a long cooling fin of finite length operating in a transient state, especially for short 
period of time, the assumption of insulated tip produces significant different results as 
compared to the results of the convective tip. Therefore, for transient thermal studies of 
fins, the assumption that no heat transfer takes place at the fin tip should be taken with 
caution for a long cooling fin of finite length operating within a relatively short period of 
time. It is hope that the present study will enhance the understanding of thermal response 
of solid fin under various factors and especially of practical significance in chemical and 
nuclear engineering. 

Nomenclature 

A   cross sectional area of the fins, m2 

Bo  Magnetic field intensity (T) 

Bi   Biot number 

Cp  specific heat (J kg−1 K−1) 

H   Heat transfer coefficient (Jm−2 K−1) 

hb  heat transfer coefficient at the base of the fin,  (Wm-2k-1) 

J   Total current intensity (A) 

Jc  Conduction current intensity (A) 

k    thermal conductivity of the fin material, (Wm-1k-1) 

kb  thermal conductivity of the fin material at the base, (Wm-1k-1) 

L    Length of the fin (m)  

M   dimensionless thermo-geometric parameter 

P     perimeter of the fin(m) 

q    heat transfer rate W  

t      time 

T     fin temperature (K) 

T∞    ambient temperature, K 

Tb   Temperature at the base of the fin, K 

w   width of the fin 

x    axial length measured from fin base (m) 

w width of the fin 
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Greek Symbols 

ε Emissivity  

σ Electric conductivity (A/m)  

σst Stefan–Boltzmann constant (Wm2 K4) 

ρ Density of the fluid (kgm−3) 

β      thermal conductivity parameter  

δ      thickness of the fin, m 
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