# Existence of solutions for hybrid Caputo fractional $q$ - differential equations 

Mohamed HOUAS ${ }^{\text {a }}$, Mihoub BOUDERBALA ${ }^{a}$, Abdelkader BENALI b<br>${ }^{\text {a }}$ Department of Mathematics, UDBKM, Khemis Miliana University, Algeria<br>${ }^{\mathrm{b}}$ Department of Mathematics, UHB, Chlef University, Algeria

## ARTICLE INFO

## Article history :

Received May 2019
Accepted September 2019

## Keywords

Fractional $q$ - differential equations ; Hybrid differential equations; Fixed point ;
Existence.


#### Abstract

This paper studies the existence of solutions for Caputo fractional hybrid q-differential equations. The existence obtained by using the LeraySchauder's alternative, while the uniqueness of solutions is established by means of Banach's contraction mapping principle. An illustrative examples are also included.


## 1. Introduction

In this work, we discuss the existence and uniqueness of solutions for the following fractional $q$-differential hybrid equations :

$$
\left\{\begin{array}{c}
D_{q}^{\alpha}\left(\frac{x(t)}{g(t, x(t))}\right)=f(t, x(t)), t \in J=[0,1], 0<q<1,  \tag{1}\\
x(0)=0, x(1)-\theta=0,
\end{array}\right.
$$

where $D_{q}^{\alpha}$ denote the Caputo fractional derivative, with $1<\alpha \leq 2, \theta \in \mathbb{R}, f \in C(J \times \mathbb{R}, \mathbb{R})$, $g \in C(J \times \mathbb{R}, \mathbb{R}-\{0\})$. In recent years, boundary value problems of fractional $q-$ differential equations involving a variety of boundary conditions have been investigated by several researchers, see for example [ $1,9,14,15,17]$. By using fixed point theory, many researchers have established existence results for some $q$-differential equations. For more details, we refer the reader to [ $14,16,20,22,23]$ and the references therein. Fractional hybrid differential equations have recently been studied by several researchers. For

[^0]some earlier work on the topic, we refer to $[3,5,6,7,8,12]$, whereas some recent work on the existence theory of fractional hybrid differential equations can be found in [ 10, 11, 13, 19, 21]. Recently, many researchers have studied the existence of solutions for some fractional ( $q$-fractional) hybrid difference equations. For some recent work on fractional differential equations, we refer to [ $1,17,20,23]$ and the references therein.

The rest of this paper is organized as follows : In section 2, basic definitions and notations are given. Section 3 is devoted to establish an existence and uniqueness result for the $q$-fractional hybrid problem (1). The first main result is based on Leray Schauder alternative and the second on Banach contraction principle. In section 4, an illustrative examples are discussed.

## 2. Preliminaries

We give some necessary definitions and mathematical preliminaries of fractional $q$-calculus. More details, one can consult [ $2,4,18$ ].

For a real parameter $q \in(0,1)$, a $q$-real number denoted by $[a]_{q}$ is defined by

$$
[a]_{q}=\frac{1-q^{a}}{1-q}, a \in \mathbb{R} .
$$

The $q$-analogue of the power function $(a-b)^{n}$ with $n \in \mathbb{N}$ is

$$
(a-b)^{(0)}=1,(a-b)^{(n)}=\prod_{j=0}^{n-1}\left(a-b q^{j}\right), n \in \mathbb{N}^{*}, a, b \in \mathbb{R} \text {. }
$$

More generally, if $\beta \in \mathbb{R}$, then

$$
(a-b)^{(\beta)}=a^{\beta} \prod_{i=0}^{\infty} \frac{a-b q^{i}}{a-b q^{\beta+i}} .
$$

It is easy to see that $[a(y-z)]^{(\beta)}=a^{\beta}(y-z)^{(\beta)}$. And note that if $b=0$ then $a^{(\beta)}=a^{\beta}$.
The $q$-gamma function is defined by

$$
\Gamma_{q}(v)=\frac{(1-q)^{(v-1)}}{(1-q)^{v-1}}, v \in \mathbb{R} \backslash\{0,-1,-2, \ldots\}, 0<q<1,
$$

and satisfies $\Gamma_{q}(v+1)=[v]_{q} \Gamma_{q}(v)$.
The $q$-derivative of a function $f$ is defined by

$$
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{(1-q) x}, x \neq 0,\left(D_{q} f\right)(0)=\lim _{x \rightarrow 0}\left(D_{q} f\right)(x)
$$

and the $q$-derivatives of higher order by

$$
D_{q}^{0} f=f, D_{q}^{n} f=D_{q}\left(D_{q}^{n-1} f\right), n \in \mathbb{N}^{*}
$$

The $q$-integral of a function $f$ defined in the interval $[0, b]$ is given by

$$
\left(I_{q} f\right)(x)=\int_{0}^{x} f(t) d_{q} t=x(1-q) \sum_{n=0}^{\infty} f\left(x q^{n}\right) q^{n}, x \in[0, b] .
$$

If $a \in[0, b]$ and $f$ is defined in the interval $[0, b]$, its $q$-integral from $a$ to $b$ is defined by

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

Similarly as done for derivatives, an operator $I_{q}^{n}$ can be defined as

$$
I_{q}^{0} f(x)=f(x), I_{q}^{n} f(x)=I_{q}\left(I_{q}^{n-1} f\right)(x), n \in \mathbb{N}^{*}
$$

The fundamental theorem of calculus applies to these operators $D_{q}$ and $I_{q}$, i.e.,

$$
D_{q} I_{q} f(x)=f(x),
$$

Definition 1 [ 2]. Let $\alpha \geq 0$ and $f$ be a function defined on [0,T]. The fractional $q$-integral of the Riemann-Liouville type is given by $I_{q}^{0} f(t)=f(t)$ and

$$
I_{q}^{\alpha} f(t)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q s)^{(\alpha-1)} f(t) d_{q} t, \alpha>0, t \in[0, T]
$$

Definition 2 [4]. The Caputo fractional $q$-derivative of order $\alpha \geq 0$ is defined by

$$
D_{q}^{\alpha} f(t)=I_{q}^{m-\alpha} D_{q}^{m} f(t), \alpha>0
$$

where $m$ is the smallest integer greater than or equal to $\alpha$.
For more details on $q$-integral and fractional $q$-integral, we refer the reader to [18].
Lemma 3 [4]. Let $\alpha, \beta \geq 0$ and $f$ be a function defined in $[0, T]$. Then the following formulas hold:

$$
\begin{aligned}
& \text { 1. } I_{q}^{\alpha} I_{q}^{\beta} f(t)=I_{q}^{\alpha+\beta} f(t) \\
& \text { 2. } D_{q}^{\alpha} I_{q}^{\alpha} f(t)=f(t)
\end{aligned}
$$

Lemma 4 [4]. Let $\alpha>0$ and $\sigma$ be a positive integer. Then the following equality holds:

$$
I_{q}^{\alpha} D_{q}^{\sigma} f(t)=D_{q}^{\sigma} I_{q}^{\alpha} f(t)-\sum_{j=0}^{\sigma-1} \frac{t^{\alpha-\sigma+j}}{\Gamma_{q}(\alpha+j-\sigma+1)} D_{q}^{j} f(0)
$$

Lemma 5 [4]. Let $\alpha \in \mathbb{R}^{+} \backslash \mathbb{N}$ and $a<t$, then the following is valid:

$$
I_{q}^{\alpha} D_{q}^{\alpha} f(t)=f(t)-\sum_{j=0}^{n-1} \frac{t^{j}}{\Gamma_{q}(j+1)} D_{q}^{j} f(0) .
$$

Lemma 6 Let $g \in C((J, \mathbb{R}-\{0\})$ and $\varphi \in C(J, \mathbb{R})$. Then, the solution of the equation

$$
\begin{equation*}
{ }^{c} D_{q}^{\alpha}\left(\frac{x(t)}{g(t, x(t))}\right)=\varphi(t), t \in J, 0<q<1,1<\alpha \leq 2 \tag{2}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
x(0)=0, x(1)-\theta=0, \tag{3}
\end{equation*}
$$

given by :

$$
\begin{align*}
x(t)= & g(t, x(t))\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} \varphi(s) d_{q} s\right.  \tag{4}\\
& \left.+t\left[\theta-\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} \varphi(s) d_{q} s\right]\right)
\end{align*}
$$

Proof. Applying the operator $I_{q}^{\alpha}$ on the equation $D_{q}^{\alpha}\left(\frac{x(t)}{g(t, x(t))}\right)=\varphi(t)$ and using (3), we get

$$
\begin{equation*}
x(t)=g(t, x(t))\left(I_{q}^{\alpha} \varphi(t)+c_{0}+c_{1} t\right), \tag{5}
\end{equation*}
$$

where $c_{0}, c_{1}$ are arbitrary constants.
Using the condition (3), we can write $c_{0}=0$ and

$$
c_{1}=\theta-I_{q}^{\alpha} \varphi(1) .
$$

Substituting the value of $c_{0}$ and $c_{1}$ in (5), we obtain the desired quantity in Lemma 6.

## 3. Main Results

We denote by $X=C(J, \mathbb{R})$ the Banach space of all continuous functions from $[0,1] \rightarrow \mathbb{R}$ endowed with a topology of uniform convergence with the norm defined by :

$$
\|x\|=\sup \{|x(t)|: t \in J\}
$$

In view of Lemma 6 , we define the operator $O: X \rightarrow X$,

$$
\begin{align*}
O x(t)= & g(t, x(t))\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} f(s, x(s)) d_{q} s\right.  \tag{6}\\
& \left.+t\left[\theta-\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} f(s, x(s)) d_{q} s\right]\right) .
\end{align*}
$$

We impose the following hypotheses :
$\left(H_{1}\right)$ : There exists nonnegative constant $k$, such that for all $t \in J$ and $x \in \mathbb{R}$, we have : $|f(t, x)-f(t, y)| \leq k|x-y|$.
$\left(H_{2}\right)$ : There exists nonnegative constant $N$ such that for each $t \in J$ and $x \in \mathbb{R}$, $|g(t, x)| \leq N$.
$\left(H_{3}\right)$ : There exist real constants $\rho>0$ and $\sigma \geq 0$ such that, $\forall \in x \in \mathbb{R}$ we have

$$
|f(t, x)| \leq \rho+\sigma|x|
$$

In our first result, we discuss the existence of solutions for the problem (1) by means of Leray-Schauder alternative [ 11].

Lemma 7 (Leray-Schauder alternative). Let $F: E \rightarrow E$ be a completely continuous operator (i.e., a map that restricted to any bounded set in $E$ is compact). Let $\Theta(F)=\{u \in E: u=\lambda F(u)$ for some $0<\lambda<1\}$.

Then either the set $\Theta(F)$ is unbounded, or $F$ has at least one fixed point.

Theorem 8 Let $f: J \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions satisfying the conditions $\left(H_{2}\right)$ and $\left(H_{3}\right)$. In addition it is assumed that

$$
\begin{equation*}
2 N \sigma<\Gamma_{q}(\alpha+1), \tag{7}
\end{equation*}
$$

Then the problem (1) has at least one solution on $J$.

Proof. In the first step, we show that the operator $O: X \rightarrow X$ is completely continuous. By continuity of the functions $f, g$, it follows that the operator $T$ is continuous.

Let $\Theta \subset X$ be bounded. Then, there exist positive constants $L$ such that

$$
|f(t, x(t))| \leq L, \forall x \in \Omega .
$$

Then for any $x \in \Theta$, we have

$$
\begin{aligned}
|O x(t)| \leq & |g(t, x(t))|\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))| d_{q} s\right. \\
& \left.+t\left[|\theta|+\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))| d_{q} s\right]\right) \\
\leq & N\left[\frac{L}{\Gamma_{q}(\alpha+1)}+\theta+\frac{L}{\Gamma_{q}(\alpha+1)}\right]
\end{aligned}
$$

which implies that

$$
\|O(x)\| \leq N\left[\frac{2 L}{\Gamma_{q}(\alpha+1)}+\theta\right]
$$

From the above inequalitie, it follows that the operator $O$ is uniformly bounded.
Next, we show that $O$ is equicontinuous. Let $t_{1}, t_{2} \in J$ with $t_{1}<t_{2}$. Then we have

$$
\begin{aligned}
& \left|O(x)\left(t_{2}\right)-O(x)\left(t_{1}\right)\right| \\
\leq & \frac{N L}{\Gamma_{q}(\alpha)} \int_{0}^{t_{1}}\left[\left(t_{2}-q s\right)^{(\alpha-1)}-\left(t_{1}-q s\right)^{(\alpha-1)}\right] d_{q} s \\
& +\frac{N_{1} M_{1}}{\Gamma_{q}(\alpha)} \int_{t_{1}}^{t_{2}}\left[\left(t_{2}-q s\right)^{(\alpha-1)}\right] d_{q} s+\left|t_{2}-t_{1}\right|\left[N \theta+\frac{N L}{\Gamma_{q}(\alpha+1)}\right] \\
\leq & \frac{N L}{\Gamma_{q}(\alpha+1)}\left|t_{2}^{(\alpha)}-t_{1}{ }^{(\alpha)}\right|+\left|t_{2}-t_{1}\right|\left[N \theta+\frac{N L}{\Gamma_{q}(\alpha+1)}\right] .
\end{aligned}
$$

we can obtain which is independent of $x$ and tends to zero as $t_{2}-t_{1} \rightarrow 0$. This implies that the operator $O$ is equicontinuous. Thus, by the above findings, the operator $O$ is completely continuous.

Finally, it will be verified that the set $\Theta=\{x \in X, x=\lambda O(x), 0<\lambda<1\}$ is bounded. Let $x \in \Theta$, then, $x=\lambda O(x)$. For each $t \in J$, we can write

$$
x(t)=\lambda O(x)(t) .
$$

Then

$$
\|x\| \leq \frac{2 N}{\Gamma_{q}(\alpha+1)}(\rho+\sigma\|x\|)+N \theta
$$

which imply that

$$
\|x\| \leq \frac{2 N \rho}{\Gamma_{q}(\alpha+1)}+\frac{2 N \sigma}{\Gamma_{q}(\alpha+1)}\|x\|+N \theta
$$

Consequently,

$$
\|x\| \leq \frac{2 N \rho-N \theta \Gamma_{q}(\alpha+1)}{\Gamma_{q}(\alpha+1)-2 N \sigma}
$$

This shows that the set $\Theta$ is bounded. Hence, by Lemma 7, the operator $O$ has at least one fixed point. Hence, problem (1) has at least one solution. The proof is complete.

Now, we are in a position to present the existence and uniqueness of solutions for the problem (1). This result is based on Banach's contraction mapping principle.

Theorem 9 Let $f: J \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions satisfying the conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$.

If

$$
\begin{equation*}
2 N k<\Gamma_{q}(\alpha+1), \tag{8}
\end{equation*}
$$

then the problem (1) has a unique solution on $J$.

Proof. Define $\sup _{t \in J}|f(t, 0)|=M<\infty$, such that

$$
r \geq \frac{N M \Gamma_{q}(\alpha+1)+2 N \theta}{\Gamma_{q}(\alpha+1)-2 N k} .
$$

We first show that $T B_{r} \subset B_{r}$; where $B_{r}=\{x \in X:\|x\|<r\}$. For $x \in B_{r}$, we find the following estimates based on the assumptions $\left(H_{1}\right)$, we observe that

$$
\begin{align*}
|f(t, x(t))| & \leq|f(t, x(t))-f(t, 0)|+|f(t, 0)|  \tag{9}\\
& \leq k\|x\|+M \leq k r+M
\end{align*}
$$

Hence, we get

$$
\begin{aligned}
|O x(t)| \leq & |g(t, x(t))|\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))| d_{q} s\right. \\
& \left.t\left[|\theta|+\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))| d_{q} s\right]\right)
\end{aligned}
$$

Using (9), we can write

$$
\|O(x)\| \leq N \theta+\frac{2 N k r+2 N M}{\Gamma_{q}(\alpha+1)}
$$

Consequently,

$$
\|O(x)\| \leq r
$$

which implies that $T B_{r} \subset B_{r}$.

Next, for $x, y \in X$ and, for each $t \in J$, we have :

$$
\begin{aligned}
& \|O(x)-O(y)\| \\
\leq & N \times \sup _{t \in J}\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))-f(s, y(s))| d_{q} s\right. \\
& \left.+t\left[\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)}|f(s, x(s))-f(s, y(s))| d_{q} s\right]\right) .
\end{aligned}
$$

Thanks to $\left(H_{1}\right)$, we can write

$$
\begin{aligned}
& \|O(x)-O(y)\| \\
\leq & N \times \sup _{t \in J}\left\{\left(\int_{0}^{t} \frac{(t-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} k\|x-y\| d_{q} s\right.\right. \\
& \left.+t\left[\int_{0}^{1} \frac{(1-q s)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} k\|x-y\| d_{q} s\right]\right)
\end{aligned}
$$

This implies that

$$
\|O(x)-O(y)\| \leq \frac{2 N k}{\Gamma_{q}(\alpha+1)}\|x-y\|
$$

In view of condition $\frac{2 N k}{\Gamma_{q}(\alpha+1)}<1$, it follows that $O$ is a contraction. So Banach's fixed point theorem applies and hence the operator $O$ has a unique fixed point. This, implies that the problem (1) has a unique solution on $J$. This completes the proof.

## 4. Example

Example 10 Consider the following $q$-fractional hybrid boundary value problem

$$
\left\{\begin{array}{c}
D_{q}^{\frac{3}{2}}\left(\frac{x(t)}{\left.\frac{1}{2} \cos x(t) \right\rvert\,+1}\right)=\frac{e^{-t}}{25+t^{2}}+\frac{1}{35} e^{-5 t} \sin x(t), t \in[0,1], q=\frac{1}{2},  \tag{10}\\
x(0)=0, x(1)-3=0 .
\end{array}\right.
$$

For this example, we have $\alpha=\frac{5}{3}, q=\frac{1}{2}, \theta=\frac{5}{7}$ and for $x \in \mathbb{R}, t \in[0,1]$, we have

$$
f(t, x(t))=\frac{e^{-t}}{25+t^{2}}+\frac{1}{35} e^{-5 t} \sin x(t)
$$

and

$$
g(t, x(t))=\frac{1}{2}|\cos x(t)|+1 .
$$

Moreover for any $x \in \mathbb{R}$, and any $t \in[0,1]$, we have

$$
\begin{aligned}
|f(t, x(t))| & \leq \frac{1}{25}+\frac{1}{35}|x| \\
|g(t, x(t))| & \leq \frac{3}{2}
\end{aligned}
$$

We can take, $\rho=\frac{1}{25}, \sigma=\frac{1}{35}, N=\frac{3}{2}$ and $2 N \sigma=0.085<\Gamma_{q}(\alpha+1)=1.2593$.
It is clear that the conditions of Theorem 8 hold. Then the problem (10) has at least one solution on $[0,1]$.

Example 11 Let us consider the following q-fractional hybrid boundary value problem

$$
\left\{\begin{array}{c}
D_{q}^{\frac{3}{2}}\left(\frac{x(t)}{\frac{1}{3}|\sin x(t)|+2}\right)=\frac{5}{31} \tan ^{-1} x(t)+\cos \left(e^{t}\right), t \in[0,1], q=\frac{1}{2},  \tag{11}\\
x(0)=0, x(1)-\frac{2}{5}=0 .
\end{array}\right.
$$

Here $\alpha=\frac{3}{2}, q=\frac{1}{2}, \theta=\frac{2}{5}$ and for $x \in \mathbb{R}, t \in[0,1]$, we have

$$
\begin{aligned}
& f(t, x(t))=\frac{5}{31} \tan ^{-1} x(t)+\cos \left(e^{t}\right), \\
& g(t, x(t))=\frac{1}{3}|\sin x(t)|+2 .
\end{aligned}
$$

Note that

$$
|f(t, x)-f(t, y)| \leq \frac{5}{31}|x-y|, \quad|g(t, x(t))| \leq \frac{7}{3}
$$

and

$$
\frac{2 N k}{\Gamma_{q}(\alpha+1)}=0.6325<1 .
$$

Thus all the conditions of Theorem 9 are satisfied and, consequently, there exists a unique solution for the problem (11).

## 5. Conclusion

In this paper, a new intelligent method for fault detection in PV module is introduced. The case of partial shading effect is studied. The main advantage of the developed ANNBM is that doesn't require a complex system for the estimation of the photovoltaic module output power, neither a mathematical model, it can also detect any power decreasing carried out by a large types of failures that can be happened in the PV panel. This new strategy can be easily implemented in a numeric calculator using FPGA, and could also be integrated as a function for PV applications in a numeric instrument that will be our subject in the future works.

## REFERENCES

[1] B. Ahmad, S. K. Ntouyas, Fractional q-difference hybrid equations and inclusions with Dirichlet boundary conditions, Adv. Difference . Equ. 2014 (2014), 1-14.
[2] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc. 66(1969), 365-370.
[3] A. Ali, K. Shah and R.A Khan, Existence of solution to a coupled system of hybrid fractional differential equations, Bull. Math. Anal. Appl. 9(1) (2017), 9-18.
[4] M. H. Annaby, Z. S. Mansour, $q$-fractional calculus and equations, Lecture Notes in Mathematics 2056, Springer-Verlag, Berlin, 2012.
[5] T. Bashiri, S. M. Vaezpour and C. Park, Existence results for fractional hybrid differential systems in banach algebras, Adv. Difference . Equ. 2016 (2016), 1-13.
[6] S. Chasreechai1 and T. Sitthiwirattham, Existence Results of Initial Value Problems for Hybrid Fractional Sum-Difference Equations, Discrete Dynamics in Nature and Society, Volume 2018, Article ID 5268528, 12 pages.
[7] B. C. Dhage and V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear. Anal : Hybrid Sys. 4(3), (2010), 414-424.
[8] B. Dhage and N. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math, 44(2) (2013), 171-186
[9] M. El-Shahed, F.M. Al-Askar, On the existence and uniqueness of solutions for $q$-fractional boundary value problem, Int. J. Math.Anal. 5 (2011) 1619-163.
[10] M. A. E. Herzallah and D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal. 2014 (2014), 1- 8.
[11] K. Hilal and A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Difference. Equ. 183 (2015), 1-19.
[12] M. Houas and Z. Dahmani, New results for a coupled system of fractional differential equations, Facta Univ. Ser. Math. Inform. 28 (2013), 133-150.
[13] M. Houas, Existence results for a system of $n$-fractional hybrid differential equations, J.Frac Calc.Appl. Submitted.
[14] X. Li, Z. Han, S. Sun, Existence of positive solutions of nonlinear fractional $q$-difference equation with parameter. Adv.Differ. Equ.2013, 260 (2013), 1-13.
[15] K. Ma, X. Li and S. Sun, Boundary value problems of fractional q-difference equations on the half-line, Bound. Value. Probl. 2019 (2019), 1-16.
[16] J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional $q$-difference equation, Electron. J. Qual. Theory Differ. Equ. No. 92 (2011), pp. 1-10.
[17] K. Ma, S. Sun and Z. Han, Existence of solutions of boundary value problems for singular fractional $q$-difference equations, J. Appl Math. Comp, 54 (1,2), (2017), 23-40.
[18] P.M. Rajkovic, S.D. Marinkovic, M.S. Stankovic, On $q$-analogues of Caputo derivative and Mittag-Leffer function, Fract. Calc. Appl. Anal. 10 (2007), 359-373.
[19] S. Sitho, S. K. Ntouyas and J. Tariboon, Existence results for hybrid fractional integrodifferential equations, Bound. Value. Probl. 2015 (2015), 1-13.
[20] W. Yang, Existence results for nonlinear fractional $q$-difference equations with non local Riemann-Liouville $q$-integral boundary conditions. Filomat. 28(8), (2014), 1719 -1736.
[21] Y. Zhao, S. Sun, Z. Han and Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl. 62 (2011), 1312-1324.
[22] Y. Zhao, H. Chen and Q. Zhang, Existence results for fractional $q$-difference equations with non local $q$-integral boundary conditions. Adv.Differ. Equ.2013, (2013), 48, 1-15.
[23] C. Zhai and J. Ren, The unique solution for a fractional q-difference equation with three-point boundary conditions, Indagationes Mathematicae. 29, (2018), 948-961.


[^0]:    *Email : houasmed@yahoo.fr

