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Sergiu Ciprian Catinas 

Numerical Methods Application for Reinforced Con-
crete Elements-Theoretical Approach for Direct 
Stiffness Matrix Method 

A detailed theoretical and practical investigation of the reinforced con-
crete elements is due to recent techniques and method that are imple-
mented in the construction market. More over a theoretical study is a 
demand for a better and faster approach nowadays due to rapid devel-
opment of the calculus technique. The paper above will present a study 
for implementing in a static calculus the direct stiffness matrix method 
in order capable to address phenomena related to different stages of 
loading, rapid change of cross section area and physical properties. The 
method is a demand due to the fact that in our days the FEM (Finite 
Element Method) is the only alternative to such a calculus and FEM are 
considered as expensive methods from the time and calculus resources 
point of view. The main goal in such a method is to create the mo-
ment-curvature diagram in the cross section that is analyzed. The pa-
per above will express some of the most important techniques and new 
ideas as well in order to create the moment curvature graphic in the 
cross sections considered. 

Keywords: manipulating of the stiffness matrix; direct stiffness matrix 
method; numerical methods; initial stress link between stiffness matrix 
and initial strain 

 1. Introduction  

After a deep analysis of incremental computational techniques and research 
carried out in linear structures analyses I oriented towards the direct method, con-
sidered by the author to provide more convenient on the potential for improve-
ment and development. In fact, to characterize a finite element reinforced and/or 
prestressed these key points are sufficient. In fact, as stresses is shown figure 1, 
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they delimit the working and stress/strain stages and reinforced concrete enough 
to be implemented in the calculations, according to Kwak and Kim [1]. Such an 
approach involves assessing the initial rigidity of the structural element ( in this 
case it is proposed initial tangent stiffness ) after revaluation in subsequent steps 
of secant stiffness with respect to load stage. 
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Figure 1. Schematic moment-curvature graphic 

In a control cross sections a curved bar stiffness is governed by the relation-
ship between bending moment and curvature. 

As mentioned before, one of the main goals in order to achieve direct stiffness 
matrix method through an algorithm is to create control cross section that will be 
defining the moment curvature relation. Nevertheless to mention that this step is 
one of the main factor that will define the accuracy of a certain calculus and is of 
great importance For a given area, it can be built through the mesh in straight 
segments defined by pairs of points in the plane MO- Φ . Identification of coordi-
nates ( MO, Φ ) must start mainly with identifying key points that define the be-
havior of an element . These are (see figure 1.), according to Melosh [2]: 
 -Concrete cracking in far fiber-stretched; 

 -Reinforcement yielding point; 

 -Reaching extreme resistance to compression compressed layer; 

 -Achieve specific ultimate strain in extreme compression layer. 



 140 

Figure 2. Schematic characteristic diagrams for concrete 
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Figure 3. Schematic characteristic diagrams for reinforcement steel 

 As seen in figure 2 and in figure 3, the concrete has distinctive points due to 
geometry that is involved, especially due to the fact that the section becomes 
devided by layers that are either tensioned either compressed. As for the RC sec-
tion the key points are imported from both concrete and reinforcement and obvi-
ously the values are distinctive as in figure 4, according to Bonora [3]. 
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Figure 4. Schematic characteristic diagrams for RC elements 

2.  Iteration methods 

The calculation of the key points is performed by a series of preliminary 
calculations as seen in figure 5 and figure 6. 
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Figure 5. Cross RC section with initial strain along with strain from exterior efforts 

in “r” step analyses 
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Figure 6. Cross RC section with initial strain in “r” step analyses 

The calculation of the overall sectional analysis conducted by the method of 
direct iterations. Since direct stiffness method itself can be implemented in succes-
sive biographical analysis, conducted by constitution relations on updated models 
(in terms of time and effort, etc.), updating diagrams constituents and conse-
quently moment-curvature diagrams reference should be made at the beginning of 
each stage of “r” load. 
If is considered an element having a matrix component as embedded components 
“0” and “n”. Prior to explaining the approach developed further please note that 
the initial implementation of efforts in the section analyses can identify several 
curves theoretically each component can have its own sectional curvature. I enter 
the following notations as Liu [4]: 
-The vector of initial strains for lower fiber/layer of each component 
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The vector of initial strains components fibre/layer at the bottom of each compo-
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nent. 
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-Zz axis direction height of the vect. of all n +1 components for sectional analyses: 
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-Minimum rates vect. Zz axis direction of all n+1 components for sectional analyses  
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Given prestressed concrete practice (see figure 7.), further curvature will be 
considered as the main material sectional curvature, which provides embedding 
matrix of other components (for reinforced and prestressed concrete). Please note 
that the constituent relations are expressed as matrix formulations. 

Applying the methodology of implementation of constitutional models devel-
oped by Mircea and collective [5], when given the interior bending moment for a 
certain deformability condition ( cumulative initial stress and appropriate outside 
response) is calculated 
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As expected, finding key points defining moment - curvature diagrams to step 
“r” load consists of a series of iterative processes , setting a specific strain of fibers 
from one extreme ( stretched or compressed , depending on the nature of the key 
point ). Figures 5 and figure 6 expresses iteration on how sectors convergence tak-
ing place from both sides of the solution, and specific deformations can be seen in 
table 1, that provides key points extreme control values. 

Table 1. Specific strain/deformations for key points values 

Imposed static 
strain 

εfix,r 

Start strain 

εvar,r 
Key points 

layer 
(+) 

layer (-) layer (+) layer (-) 

Concrete cracking εct - - εcu/2 
Yielding of reinforce-
ment* εsy - - - 

Maximum compression 
concrete effort 

- εc εsu/2 - 

Maximum strain for 
compressioned con-
crete  

- εcu εsu/2 - 

 

εfix,r specific deformation , in “r” is considered to have the center of gravity right 
were tensioned reinforcement groups ( layers ) are positioned. At section level, by 
neglecting the adhesion, there is a variation in the specific strains and the nodal 
forces associated with the one shown in figure 6. Give initial strain/deformation 
vectors of relations (1) and (2) directly the assemble and calculation efforts and 
nodal forces associated by applying relations (5) and (7). Please note that this kind 
of efforts is easy to implement in thermostatic calculus as well as calculus that are 
related to certain chemical factors or dynamic factors. 
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Figure 7. Schematic bending moment calculus with respect to strain from maxi-
mum stretched layer-left convergence 
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 Figure 8. Schematic bending moment calculus with respect to strain from maxi-
mum stretched layer-right convergence 

Convergence is achieved when equilibrium is obtained horizontally, that is to 
say in the present case, “r”=0, where the axial force Nx at each iteration is calcu-
lated by the relation (7) as follows, according to Wen [6]. 
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The elements subject to eccentric compression, convergence is obtained when 
axial interior effort is equal to the effort of compression applied. 
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Figure 9. Schematic bending moment calculus with respect to strain from maxi-

mum compressed layer-left convergence 
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Figure 10. Schematic bending moment calculus with respect to strain from maxi-

mum compressed layer-right convergence  
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In addition to the checkpoints, you can identify other pairs (M, Φ ) by taking 
other deformations imposed as fixed , especially in the compression area .The pro-
posed method generally involves the following steps: 
 -Assuming constitutive models of materials from the cross section com-
ponents (eg concrete, mild steel, high strength steel, etc.); 
 - Specific control is assumed for deformations of the key points εfix,r , r 
and deformations/strains εvar,r , as well as “r” for starting iterative procedure ; 
 - Calculate axial relationship (7) and compared with external effort 
(curved sections it is null); 
 - If the convergence is recalculated εvar,r and restore the previous step, 
to achieve convergence; 
 - After convergence is obtained, the flexural bending moment is to be 
calculates according to the relationship (5) and the associated curve with the rela-
tionship as expressed in (8), as in figure 9. 

( )
H

ε-ε
ΦtanΦ

s0
rxt,

i0
rxt,

rx,rx, =≅             (8) 

 - After obtaining checkpoints, to increase the refinement of the diagram 
is assumed other fixed values for specific control deformations εfix,r in compressed 
area with εvar,r=su/2 and calculated in other sections of the moment-curvature 
diagram, with a repetitive structure as seen for key points. 
 - By comparison algorithm checkpoints are inserted in the string of 
points (M, Φ) to give the final shape of moment-curvature relationship through 
discrete points; any other point in the chart can be obtained with sufficient accu-
racy interpolating linearly between the nearest points on the chart. 

There is the possibility that convergence is not achieved if there is a large flow 
of steel bars, in which case this checkpoint is missing in the chart. This situation is 
rare and is specific for sections with too large amount of reinforcement steel. 

Building moment-curvature diagrams is a preoccupation of about half a cen-
tury for scientists. In 1964 Pfrang and staff [7] proposed an analytical approach 
based on equal curvature interpolation of curves embedded in axial interaction 
diagram - time along the line corresponding to a constant axial effort. This is 
achieved by having previously analytical calculation of axial force and bending 
moment assuming a constant curvature and different values for specific extreme 
deformations/strains, as explained in figure 11. The method is very ingenious and 
required a huge amount of computing its implementation in practice through a se-
ries of charts reported quality of concrete, steel and section. Implementing the 
method in numerical applications is easy and can have a high degree of applicabil-
ity, but may encounter difficulties in accurate assessment of key points. 

Many other analytical methods, iterative and/or analytical methods were de-
veloped along past time. The method proposed in this paper brings in terms of 
new elements the integration components that make up the outline of a cross sec-
tion and iterative determination of the points needed to build the chart as Mircea 
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and collective [5] suggested the same way but integration diagrams obtained 
through an incremental approach - Raphson Newton [8], but using tangential sec-
tional rigidity as Hognestad [9] proposed. 

Φ 1

εc

εs

Φ n

εs

Φ1

Φ1

εc

M

Φn

N

N=const.

 

Figure 11. Building of moment-curvature graphic using equal curb lines as Pfrang 
–Siess – Sozen [7] sugested 

And this approach, however, has difficulty in assessing the exact same control 
points. Numerous other applications build moment-curvature diagrams using nu-
merical integration of layers. 
 

3. Proposed algorithm 

 
Algorithm is essential in understanding the method of work. The algorithm 

presents a new method to estimate the deformations that occur in a reinforced 
concrete element. It should be noted that the algorithm is quite difficult and diffi-
cult to be presented in full detail, so this algorithm will generally work and will pre-
sent schematic working that were used to achieve secondary objectives of the 
computer soft program to be created. The claim that is necessarily required to de-
velop algorithms that work properly was needed is a careful study of literature, to 
achieve adequate documentation. 

Please note that this algorithm represents a new element of nonlinear method 
of calculation. It is observed that incorporation methods must be used to reduce 
the number of iterations. This approach shows a sustainable algorithm and delivers 
fast results. Besides this I would mention that this kind of approach is easier for 
programmers’ point of view and are easy to understand. 
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Figure 12. Algorithm suggested for static linear/nonlinear calculus by direct stiff-
ness method  

Please note that similar algorithms can be created and this algorithm can be 
improved as the available databases can be created so that more elements can be 
considered like aging, initial strain/deformations and new materials as well. 

 

 



 150 

 4. Conclusions 

 Based on the results expressed in this paper and the theoretical study some 
conclusions can be drawn: 

1. Reliable algorithms can be created in order to address the static analyse 

for a reinforced concrete element; 

2. The algorithm proposed in this paper is easy to understand and practical, 

and furthermore it was transformed in a functional computer soft program;  

3. The idea of creating reliable methods for static calculus can be applied 

easily to dynamic calculus through the change of the stiffness matrix; 

4. For a reliable computer soft is necessary a good calibration of the algo-

rithm proposed in this paper in order to eliminate mathematical errors that are 

accumulated. 
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