Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

GC-MS analysis and Antimicrobial Activity of Sudanese *Eucalyptus camaldulensis* Dehn.(Myrtaceae) Essential Oil

Abdel Karim, M.¹*, Mawahib, A.¹, Salah, H.²

¹Sudan University of Science and Technology, Faculty of Science ²Western Kordofan University, Faculty of Education

Abstract Eucalyptus oil has been used traditionally for bronchitis and asthma. The oil which is plentiful in leaves has also been used against diabetes, cystitis, malaria, kidney disorders, leucorrhoea and laryngitis. The anticancer activity of this oil has been studied *in vivo*.

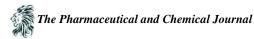
The GC-MS analysis revealed the presence of 42 components. Major constituents are: eucalyptol (21.24%), decahydro-1,1,7-trimethyl-4-methylene - 1H-cycloprop[e]azulen-7-ol (12.59 %), p-cymene (12.11 %), decahydro-1,1,4,7-tetramethyl-1H-cycloprop[e]azulen-4-ol (11.64 %) and β -phellandrene (8.59%).

The oil was evaluated for antibacterial activity *via* the agar diffusion bioassay against: Gram positive: *Staphylococcus aureus* and Gram negative: *Escherichia coli* using ampicillin and gentamicin as positive controls. At a concentration of 100mg/ml the oil showed moderate activity against *Escherichia coli* and *Staphylococcus aureus*.

Keywords Eucalyptus camaldulensis, Essential Oil, GC-MS analysis, Antibacterial Activity

Introduction

The genus Eucalyptus is a large genus (about 900 species) in the family Myrtaceae which is indigenous to Australia, Tasmania and New Guinea. This genus is now grown worldwide for its economic value .The genus Eucalyptus is widely distributed in Sudan [1-4].


Eucalyptus oil has been used traditionally for bronchitis and asthma. The oil which is plentiful in leaves has also been used against diabetes, cystitis, malaria, kidney disorders, leucorrhoea and laryngitis [5-9]. The anticancer activity of this oil has been studied *in vivo* [10].

The oil contains, among others, geraniol, β -pinene, camphene, limonene beside some mono- and sesquiterpenes. However, depending on plant origin, it could be dominated by the bioactive constituent 1,8-cineole [11-15].

It has been reported that the genus Eucalyptus contains some secondary metabolites like flavonoids, tannins, terpenoids and cyanogenic glycosides [16].

Eucalyptus camaldulensis Dehn. is a perennial medium-sized to tall tree (up to 30m high) in the family Myrtaceae [17]. Among the diverse uses of this species is the production of its bioactive essential oil which is used traditionally and in pharmaceutical preparations [18-19].

Babaya *et al* [20] demonstrated that the methanolic extract of *Eucalyptus camaldulensis* leaves inhibited the growth of *Bacillus subtilis*, while the plant crude extract exhibited anticandidal properties. The antinociceptive activity of some constituents of *Eucalyptus camaldulensis* essential oil has been outlined [21]. Also it has been shown that the leaves of *Eucalyptus camaldulensis* exhibited good free radical scavenging capacity [22].

Materials and Methods

Plant material

Eucalyptus camaldulensis leaves were collected from, Khartoum, Sudan. The plant was identified and authenticated by The Institute of Medicinal and Aromatic Plants, Khartoum, Sudan.

Instruments

A Shimadzo GC-MS-QP2010 Ultra instrument with a RTX-5MS column (30m, length; 0.25mm diameter ; 0.25 μ m, thickness) was used for GC-MS analysis.

Test organisms

Test organisms used in this study are: Staphylococcus aureus and Escherichia coli.

Methods

Extraction of oil

Powdered leaves of *Eucalyptus camaldulensis* (300g) were water distilled in a Clevenger type apparatus for four hours.

GC-MS analysis

The volatile oil from *Eucalyptus camaldulensis* was analyzed by GC-MS using a Shimadzo GC-MS-QP2010 Ultra instrument. Oven temperature was held at 150 °C for one minute and then programmed from 150 °C to 300 °C at 4 °C /minute. Other chromatographic conditions are presented in Table 1.

Table 1: Chromatographic conditions					
Injection mode	Split				
Flow control mode	Linear velocity				
Pressure	139.3KPa				
Total flow	50.0ml/ min				
Column flow	1.54ml/sec.				
Linear velocity	47.2cm/sec.				
Purge flow	3.0ml/min.				
Spilt ratio	- 1.0				

Antibacterial assay

The cup-plate agar diffusion bioassay was used, with some minor modifications, to assess the antibacterial activity of the oil. Standardized bacterial stock suspension (2ml) was mixed with 200 ml of sterile molten nutrient agar which was maintained at 45 °C in a water bath. (20 ml) Aliquots of the incubated nutrient agar were distributed into sterile Petri dishes.

Cups (6 mm in diameter) were cut using sterile cork borer (No 4). The agar discs were removed and the cups were filled with 0.1 ml samples of test solution and allowed to diffuse at room temperature for two hours. The plates were then incubated in the upright position at 37 °C for 24 hours. After incubation, the diameters of the resultant growth inhibition zones were measured.

Results and Discussion

GC-MS analysis of *Eucalyptus camaldulensis* volatile oil was conducted and the identification of the constituents was based on retention times and computer matching of the MS data with the (NIST) mass spectral library. Excellent matching was observed when comparing the observed mass spectra with the database on the MS library.

Constituents of oil

The GC-MS analysis of the studied oil revealed the presence of 42 components (Table 1). The typical total ion chromatograms (TIC) are depicted in Figure 1.

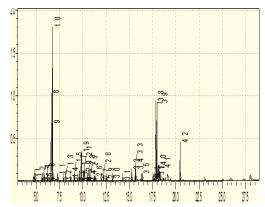


Figure 1: Total ions chromatograms

The major constituents of the oil are briefly discussed below:

Eucalyptol (21.24%)

The EI mass spectrum of eucalyptol is shown in Figure 2. The peak at m/z 154, which appeared at R.T. 6.765 in total ion chromatogram, corresponds $M^+[C_{10}H_{18}O]^+$.

Decahydro-1,1,7-trimethyl-4-methylene - 1H-cycloprop[e]azulen-7-ol (12.59 %)

The mass spectrum of decahydro-1,1,7-trimethyl-4-methylene - 1H-cycloprop[e]azulen-7-ol is presented in Figure 3. The molecular ion- $M^+[C_{15}H_{24}O]^+$ - appeared at m/z 220 (R.T. 17.858).

p-Cymene (12.11 %)

The mass spectrum of p-cymene is displayed in Figure 4. The peak at m/z 134, which appeared at R.T. 6.599 is due to the molecular ion $M^+[C_{10}H_{14}]^+$.

Decahydro-1,1,4,7-tetramethyl- 1H-cycloprop[e]azulen-4-ol (11.64 %)

Figure 5 displays the mass spectrum of decahydro-1,1,4,7-tetramethyl- 1H-cycloprop[e]azulen-4-ol (m.wt.220). The peak at m/z 204 is due to loss of a hydroxyl function.

β-Phellandrene (8.59%)

The mass spectrum of β -phellandrene is shown in Figure 6. The peak at m/z 136 (R.T. 6.701) is attributed to the molecular ion $M^+[C_{10}H_{14}]^+$.

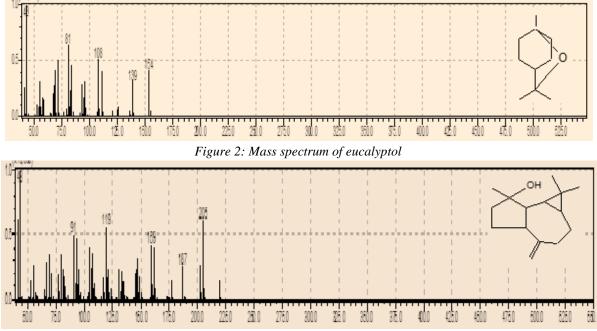
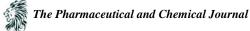
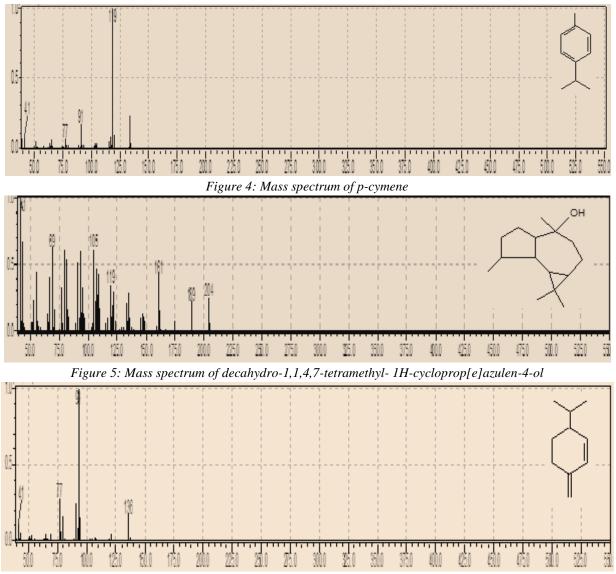




Figure 3: Mass Spectrum of decahydro-1,1,7-trimethyl-4-methylene - 1H-cycloprop[e]azulen-7-ol

Figure 6: Mass spectrum of β *-phellandrene*

The constituents of *Eucalyptus camaldulensis* essential oils are presented in Table 3. The composition of *Eucalyptus camaldulensis* leave oil varies according to plant origin. Zrira *et al* [23] studied the constituents of *Eucalyptus camaldulensis* grown in Morocco and reported p-cymene and spathulenol as major constituents. This result agrees with the findings of Chalchat *et al* [24] who reported on the constituents of a Jerusalem plant material. However, Pagula *et al* [25] on studying *Eucalyptus camaldulensis* grown in Mozambique claimed the predominance of 1,8-cineole and β -pinene. Dethier *et al* [26] reported on the constituents of *Eucalyptus camaldulensis* growing in Burindi and stated the dominance of limonene and 1,8-cineole.

Antibacterial activity

In cup plate agar diffusion assay, the oil was assayed for antibacterial activity. The averages of the diameters of the growth inhibition zones are listed in Table 2. Ampicillin and gentamicin were used as positive controls. At a concentration of 100mg/ml the oil showed moderate activity against *Escherichia coli* and *Staphylococcus aureus*.

Table 2: Antibacterial Activity						
Sample	Escherichia coli	Staphylococcus aureus				
Eucalyptus camaldulensis	16	14				
(100 mg/ml)						
Ampicillin (40 mg/ml)	-	30				
Gentamicin (40 mg/ml)	22	19				

Table 2: Antibacterial Activity

Some reports indicated that Gram negative bacteria are more resistant to essential oils than Gram positive bacteria [27], while many authors claimed that Gram positive bacteria are equally sensitive compared to Gram negative bacteria [27-32]. Some key elements seems to play a crucial role in the antibacterial activity of essential oils including the permeability of the bacterial membrane, intracellular distribution of oil constituents and occurrence of porin proteins in Gram negative bacteria [33].

Literature reports on the antibacterial activity of *Eucalyptus camaldulensis* oil reflected diverse results. Though, Akin –Osanaiya *et al* [34] reported complete inhibition of *E. coli* and *S. aureus* by *Eucalyptus camaldulensis* oil, Cimanga *et al* [35] presented inhibition zones of 10-20mm and 18-30mm for *E. coli* and *S. aureus* respectively. Oskay and Sari [36] studied the oil from the Turkey material of *Eucalyptus camaldulensis* and concluded that the oil exhibited significant activity against both Gram negative *E. coli* and Gram positive *S. aureus*. **Table 3:** Constituents of *Eucalyptus camaldulensis* oil

No.	Name	RT	Formula	Area %	Structure
1	Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1- methylethyl)-	7.124	$C_{10}H_{16}$	0.55	
2	alpha-Pinene	4.853	$C_{10}H_{16}$	1.39	
3	Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-	5.585	$C_{10}H_{16}$		
4	Bicyclo[3.1.1]heptane, 6,6-dimethyl-2- methylene-, (1S)-	5.665	$C_{10}H_{16}$	0.23	
5	beta-Myrcene	5.874	$C_{10}H_{16}$	0.60	
6	alpha-Phellandrene	6.181	$C_{10}H_{16}$	1.68	
7	(+)-2-Carene	6.425	$C_{10}H_{16}$	0.13	
8	p-Cymene	6.599	$C_{10}H_{14}$	12.11	
9	beta-Phellandrene	6.701	$C_{10}H_{16}$	8.59	

10	Eucalyptol	6.765	C ₁₀ H ₁₈ O	21.24	
10	Lucaryptor	0.705	011180	21.24	
11	gamma-Terpinene	7.291	$C_{10}H_{16}$	0.81	
12	Cyclohexene, 1-methyl-4-(1- methylethylidene)-	7.922	$C_{10}H_{16}$	0.15	
13	1,6-Octadien-3-ol, 3,7-dimethyl-	8.138	C ₁₀ H ₁₈ O	0.94	Сн
14	2-Cyclohexen-1-ol, 1-methyl-4-(1- methylethyl)-, trans	8.659	C ₁₀ H ₁₈ O	0.54	
15	Bicyclo[3.1.1]heptan-3-ol, 6,6-dimethyl-2- methylene-, [1S- (1.alpha.,3.alpha.,5.alpha.)]-	9.063	$C_{10}H_{16}O$	0.74	но
16	1,5,7-Octatrien-3-ol, 2,6-dimethyl-	9.375	C ₁₀ H ₁₆ O	0.13	OH
17	Pinocarvone	9.573	$C_{10}H_{14}O$	0.14	
18	LalphaTerpineol	9.652	C ₁₀ H ₁₈ O	0.18	H
19	Terpinen-4-ol	9.870	C ₁₀ H ₁₈ O	3.66	но
20	2-Cyclohexen-1-one, 4-(1-methylethyl)-	10.085	C ₉ H ₁₄ O	1.01	
21	alpha-Terpineol	10.153	C ₁₀ H ₁₈ O	1.61	
22	Bicyclo[3.1.0]hexan-3-ol, 4-methylene-1- (1-methylethyl)-, acetate	10.405	$C_{12}H_{18}O_2$	0.12	
23	2-Cyclohexen-1-ol, 3-methyl-6-(1- methylethyl)-, trans-	10.506	C ₁₀ H ₁₈ O	0.21	ОН

24	Bicyclo[3.1.0]hexan-3-ol, 4-methylene-1- (1-methylethyl)-, (1.alpha.,3.alpha.,5.alpha.)-	10.607	C ₁₂ H ₁₈ O ₂	0.07	ОН
25	2-Cyclohexen-1-ol, 2-methyl-5-(1- methylethenyl)-, cis-	10.745	$C_{10}H_{16}O$	0.07	но
26	(-)-Carvone	11.280	$C_{10}H_{14}O$	0.64	
27	1-Cyclohexene-1-carboxaldehyde, 4-(1- methylethyl)-	11.948	$C_{10}H_{16}O$	0.37	
28	Safrole	12.209	$C_{10}H_{10}O_2$	0.37	
29	Phenol, 2-methyl-5-(1-methylethyl)-	12.487	$C_{10}H_{14}O$	0.58	но
30	Cyclohexane, 1-ethenyl-1-methyl-2-(1- methylethenyl)-4-(1-methylethylidene)-	13.166	$C_{15}H_{24}$	0.45	
31	Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro- 4a,8-dimethyl-2-(1-methylethenyl)-, [2R- (2.alpha.,4a.alpha.,8a.beta.)]-	14.262	C ₁₅ H ₂₄	0.17	
32	Aromandendrene	15.242	$C_{15}H_{24}$	1.62	
33	Bicylo[4.1.0]heptane, 7-bicyclo[4.1.0]hept- 7-ylidene-	15.625	$C_{14}H_{20}$	1.88	
34	1,3-Bis(cinnamoyloxymethyl)adamantane	15.669	$C_{30}H_{32}O_4$	1.22	or of o
35	1,5-Cyclodecadiene, 1,5-dimethyl-8-(1- methylethylidene)-, (E,E)-	16.326	$C_{15}H_{24}$	1.31	

36	Epiglobulol	17.510	C ₁₅ H ₂₆ O	0.76	H HO H
37	(-)-Globulol	17.665	C ₁₅ H ₂₆ O	0.93	он
38	1H-Cycloprop[e]azulen-7-ol, decahydro- 1,1,7-trimethyl-4-methylene-, [1ar(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.a lpha.)]-	17.858	C ₁₅ H ₂₄ O	12.59	ОН
39	1H-Cycloprop[e]azulen-4-ol, decahydro- 1,1,4,7-tetramethyl-, [1aR- (1a.alpha.,4.beta.,4a.beta.,7.alpha.,7a.beta.,7 b.alpha.)]-	17.974	C ₁₅ H ₂₆ O	11.64	ОН
40	Cycloheptane, 4-methylene-1-methyl-2-(2- methyl-1-propen-1-yl)-1-vinyl-	18.118	C ₁₅ H ₂₄	1.77	
41	Kaur-15-ene, (5.alpha., 9.alpha., 10.beta.)-	18.205	$C_{20}H_{32}$	1.53	
42	Alloaromadendrene	20.459	$C_{15}H_{24}$	4.93	

References

- [1]. US National Plant Germplasm System, https://npgsweb. ars-grin.gov/gringlobal/taxonomydetail.aspx ?15867
- [2]. CIMMYT-Maize Germplasm Bank 1.9.4, http://mgb. cimmyt.org/gringlobal/taxonomydetail.aspx?id=40 1197
- [3]. El-Sayed, F.R.S., A pharmacognostical study of *Eucalyptus cinerea* cultivated in Egypt, MSc thesis, Faculty of Pharmacy, Cairo University, 2012.
- [4]. Sastri, B.N. "The Wealth of India : A dictionary of Indian Materials and Industrial Products: Raw Materials, Council of Scientific and Industrial Research, New Delhi, 2002, 5, 203-204
- [5]. WHO monographs on selected medicinal plants. World Health Organization. Geneva. 2002, 1,106-113.
- [6]. African pharmacopoeia. 1st ed. Lagos, Organization of African Unity, Scientific, Technical and Research Commission, 1985, 1.
- [7]. Blumenthal, M. (eds), The complete German Commission E monographs. Austin TX, American Botanical Council, 1998.
- [8]. Assessment report on Eucalytus globulus Labill., Eucalyptus polybractea RT. Baker and/or Eucalyptus smithii RT. Baker, aetheroleum EMA/HMPC/307782/2012, http://www.ema.europa.eu/docs/en_GB /document _library/Herbal_-_HMPC_assessment_report/ 2014/05/ WC500166508.pdf

- [9]. Reichling J.(editor), Hagers Enzyklopädie der Arzneistoffe und Drogen. Eucalyptus. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2007.
- [10]. Lawal, T.O., Adeniyi, B.A., Olaleye, S.B., Arch Bas App Med. 2014, 2,147-152
- [11]. Baranska, M., Schulz, H., Reitzenstein, S., Uhlemann, U., Strehle, M. A., Krüger, H., Quilitzsch, R., Foley, W. & Popp, J. (2005). Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. *Biopolymers: Original Research on Biomolecules*, 78(5), 237-248.
- [12]. Silvestre, A. J., Cavaleiro, J. S., Delmond, B., Filliatre, C., & Bourgeois, G. (1997). Analysis of the variation of the essential oil composition of Eucalyptus globulus Labill. from Portugal using multivariate statistical analysis. *Industrial Crops and Products*, 6(1), 27-33.
- [13]. Wichtl, M.," Teedrogen und Phytopharmaka", 3rd ed. Eucalyptus leaf. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2004.
- [14]. Betts, T. J. (2000). Solid phase microextraction of volatile constituents from individual fresh Eucalyptus leaves of three species. *Planta medica*, 66(02), 193-195.
- [15]. Daroui-Mokaddem, H., Kabouche, A., Bouacha, M., Soumati, B., El-Azzouny, A., Bruneau, C., & Kabouche, Z. (2010). GC/MS analysis and antimicrobial activity of the essential oil of fresh leaves of Eucalytus globulus, and leaves and stems of Smyrnium olusatrum from Constantine (Algeria). *Natural product communications*, 5(10), 1934578X1000501031.
- [16]. Brophy, J.J., Southwell, I.A., Eucalyptus chemistry, In: JJW Coppen (ed.), Eucalyptus: The Genus Eucalyptus, Taylor and Francis, London and New York, 2002, 102-160
- [17]. Bren, L. J., & Gibbs, N. L. (1986). Relationships between flood frequency, vegetation and topography in a river red gum forest. *Australian Forest Research (Australia)*.
- [18]. Ghisalberti, E. L. (1996). Bioactive acylphloroglucinol derivatives from Eucalyptus species. *Phytochemistry*, *41*(1), 7-22.
- [19]. Leung, A.Y., Foster, S. "Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics", 2nd Edition. John Willey and Sons, pp. 232-233.
- [20]. Babayi, H., Kolo, I., Okogun, J. I., & Ijah, U. J. J. (2004). The antimicrobial activities of methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms.
- [21]. Liapi, C., Anifantis, G., Chinou, I., Kourounakis, A. P., Theodosopoulos, S., & Galanopoulou, P. (2007). Antinociceptive properties of 1, 8-cineole and β-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents. *Planta medica*, 73(12), 1247-1254.
- [22]. Atawodi, S. E. (2005). Antioxidant potential of African medicinal plants. *African Journal of Biotechnology*, 4(2), 128-133.
- [23]. Zrira, S. S., & Benjilali, B. B. (1996). Seasonal changes in the volatile oil and cineole contents of five Eucalyptus species growing in Morocco. *Journal of Essential Oil Research*, 8(1), 19-24.
- [24]. Chalchat, J. C., Kundakovic, T., & Gomnovic, M. S. (2001). Essential oil from the leaves of Eucalyptus camaldulensis Dehn., Myrtaceae from Jerusalem. *Journal of Essential Oil Research*, *13*(2), 105-107.
- [25]. Pagula, F. P., Baser, K. H. C., & Kürkçüoglu, M. (2000). Essential oil composition of Eucalyptus camaldulensis Dehn. from Mozambique. *Journal of Essential Oil Research*, 12(3), 333-335.
- [26]. Dethier, M., Nduwimana, A., Cordier, Y., Menut, C., & Lamaty, G. (1994). Aromatic plants of tropical central Africa. XVI. Studies on essential oils of five Eucalyptus species grown in Burundi. *Journal of Essential Oil Research*, 6(5), 469-473.
- [27]. Jeyaseelan, E. C., & Jashothan, P. J. (2012). In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pacific journal of tropical biomedicine, 2(9), 717-721.
- [28]. Lu, Y., Zhao, Y. P., Wang, Z. C., Chen, S. Y., & Fu, C. X. (2007). Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China. *Natural Product Research*, 21(3), 227-233.
- [29]. Lu, Y., Chen, H., Adv Mater Res., 2011, 322, 160-163.

- [30]. Oladosu, I. A., Usman, L. A., Olawore, N. O., & Atata, R. F. (2011). Antibacterial activity of rhizomes essential oils of two types of Cyperus articulatus growing in Nigeria. *Adv Biol Res*, 5(3), 179-183.
- [31]. Pirbalouti, A. G., Malekpoor, F., Enteshari, S., Yousefi, M., Momtaz, H., & Hamedi, B. (2010). Antibacterial activity of some folklore medicinal plants used by Bakhtiari tribal in Southwest Iran. *International Journal of Biology*, 2(2), 55.
- [32]. Mishra, P., & Mishra, S. (2011). Study of antibacterial activity of Ocimum sanctum extract against gram positive and gram negative bacteria. *Am J Food Technol*, 6(4), 336-341.
- [33]. Gao, C., Tian, C., Lu, Y., Xu, J., Luo, J., & Guo, X. (2011). Essential oil composition and antimicrobial activity of *Sphallerocarpus gracilis* seeds against selected food-related bacteria. *Food Control*, 22(3-4), 517-522.
- [34]. Akin-Osanaiye, B. C., Agbaji, A. S., & Dakare, M. A. (2007). Antimicrobial Activity of Oils and Extracts of Cymbopogon citratus (Lemon Grass), Eucalyptus citriodora and Eucalyptus camaldulensis. J. Med. Sci, 7(4), 694-697.
- [35]. Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totté, J., Pieters, L. & Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. *Journal of ethnopharmacology*, 79(2), 213-220.
- [36]. Oskay, M., & Sarı, D. (2007). Antimicrobial screening of some Turkish medicinal plants. *Pharmaceutical Biology*, 45(3), 176-181.

