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Abstract  Öz 

In recent years, there has been a growing attention to model and solve 
resource-constrained project scheduling problem (RCPSP) under 
uncertain environments. In most of the real-life cases, project managers 
may face with many uncertainties in activity durations, resource 
availabilities, resource requirements of the activities, the earliest and 
latest finishing times of the activities etc. In addition to these input 
parameters, project schedule which represents the starting and/or 
completion times of the activities should also be considered as uncertain 
variables in such a fully uncertain environments where all of the project 
data are imprecise. Based on this motivation, this paper presents an 
interval programming based transformation approach to overcome 
fully uncertain nature of the problem. In detail, classical discrete-time 
binary integer programming model of the deterministic problem was 
extended by incorporating interval-valued parameters and decision 
variables. Then, fully uncertain RCPSP was transformed into the crisp 
equivalent form by making use of interval programming, interval 
ranking and interval arithmetic operations. In the proposed approach, 
interval arithmetic operations are performed by using supplementary 
information obtained from the project manager. Thus, the proposed 
approach is also able to take into account the project managers’ 
attitude toward risk and produces more acceptable and risk-free 
solutions. Finally, a real-life liquefied natural gas (LNG) storage tank 
construction project in a petroleum refinery is presented for testing its 
validity and practicality. The computational results have shown that 
more applicable and information efficient project schedules can be 
derived via the proposed approach according to the project manager’s 
attitude toward risk. 

 Son yıllarda, belirsizlik altında kaynak kısıtlı proje çizelgeleme 
problemlerinin modellenmesi ve çözümüne, giderek artan bir ilgi 
olduğu görülmektedir. Gerçek hayat uygulamalarının birçoğunda, proje 
yöneticileri, aktivite süreleri, kaynak kapasiteleri, aktivitelerin kaynak 
gereksinimleri ve en erken/en geç bitiş zamanlarının kesin ve net bir 
şekilde belirlenememesinden ötürü, birçok belirsizlik ile karşı karşıya 
kalmaktadır. Tüm bu parametrelerin belirsizlik içerdiği ortamlarda, 
aktivitelerin başlangıç veya bitiş zamanları olarak tanımlanan karar 
değişkenleri de kesin ve net bir şekilde belirlenememekte olup belirsizlik 
içerecektir. Bu araştırma motivasyonu ile bu çalışmada, aralık 
programlama tabanlı bir yaklaşım önerilerek, tamamen belirsiz 
ortamlarda problemin çözümü gerçekleştirilmiştir. Daha ayrıntılı 
olarak, probleme ait klasik kesikli zamanlı ikili tamsayılı programlama 
modeli, aralık sayılar ile ifade edilen parametre ve karar değişkenleri 
kullanılarak genişletilmiştir. Daha sonra, tamamen belirsiz kaynak 
kısıtlı proje çizelgeleme problemine ait matematiksel formülasyon, 
aralık programlama, aralık sıralama ve aralık aritmetik operasyonlar 
yardımıyla, belirlilik altındaki klasik eşdeğer forma dönüştürülmüştür. 
Önerilen yaklaşımda, aralık aritmetik operasyonlar, proje 
yöneticisinden elde edilen ek bilgiler yardımıyla gerçekleştirilmiştir. Bu 
sayede, proje yöneticilerinin riske karşı tutumları dikkate alınabilmekte 
ve riskten bağımsız, kabul edilebilir çözümler elde edilebilmektedir. Son 
olarak, önerilen yaklaşımın geçerliliğinin ve uygulanabilirliğinin test 
edilebilmesi için, bir petrol rafinerisindeki sıvılaştırılmış doğal gaz 
tankına ait inşaat projesine yer verilmiştir. Elde edilen sonuçlar 
göstermektedir ki, önerilen yaklaşım ile proje yöneticisinin riske karşı 
tutumu doğrultusunda, uygulanabilir ve bilgi etkin çözümler 
üretilebilmektedir. 

Keywords: Resource-Constrained project scheduling, Interval 
programming, Risk attitude 

 Anahtar kelimeler: Kaynak kısıtlı proje çizelgeleme, Aralık 
programlama, Riske karşı tutum 

1 Introduction 

RCPSP is one of the widely studied combinatorial optimization 
problem in operations research and has a NP-hard nature to 
solve optimally. In most of the existing studies in the literature, 
project inputs are generally assumed to be deterministic and 
thus crisp project schedules are generated. However, projects 
are subject to considerable uncertainty in real-life settings. This 
uncertainty may come from several sources. The project scope 
may change, resources may become unavailable or weather 
conditions may cause delays to some of the activities [1]. 
Moreover, exact duration of an activity may not be known 
precisely at the beginning of the project. Similarly, amount of 

the available sources may not be known before project 
execution. Briefly, uncertainties in the project parameters may 
be resulted from estimation errors, unforeseen weather 
conditions, late delivery of some required sources, 
unpredictable incidents such as accidents and breakdowns [2]. 
While dealing with the uncertainty of these project parameters, 
the usage of fuzzy set theory is preferred in this study instead 
of using a stochastic approach (or probability theory) and the 
uncertain project parameters/variables are represented by 
interval-valued numbers. Due to the uniqueness of some 
project cases, it may not be possible to generate probability 
distributions explicitly for the activity durations, resource 
requirements and capacities. Because, similar projects may 
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have not been carried out previously. Therefore, uncertainty of 
the project parameters may not be handled by random 
variables due to the lack of statistical past data. In this case, 
fuzzy set theory may be a useful tool to study the project 
scheduling problems [3]. For this reason, fuzzy set theory can 
be easily utilized in such cases where the uncertain project 
parameters are estimated by project managers based on their 
expertise, knowledge and judgements. Such a human expertise 
on these uncertain parameters may generally involve 
ambiguous or vague information which cannot be modelled by 
using stochastic or probabilistic approaches. Moreover, as it 
was emphasized by Atli and Kahraman [3]-[4] that some of the 
stochastic project scheduling models are generally 
computationally too expensive and theoretically too complex. 
For this reason, it is difficult to apply them to solve practical 
large-scaled project scheduling problems. For all of these 
reasons, uncertain project parameters as well as the project 
schedules are represented by interval numbers in this study 
because of the ease of computation. In fact, interval numbers 
are very useful and the simplest technique for representing the 
uncertainty of project parameters. Moreover, different sources 
of information including objective/subjective and attitudinal 
character of the project manager can be easily reflected by 
interval numbers [5]. 

When all of the project parameters are inherently uncertain, 
solution to a fully uncertain RCPSP can no longer be 
represented as a single deterministic schedule. In other words, 
starting and finishing times of the project activities cannot be 
determined precisely. Therefore, activity schedules should also 
be considered as uncertain variables. For this reason, fuzzy or 
interval-valued project schedules may help the project 
managers to make more appropriate decisions by gathering all 
possible situations that could arise in the future. As also 
highlighted by Atli and Kahraman [3] that fuzzy schedules 
comprise multiple crisp schedules, the choice between which is 
at the discretion of management.  

Based on this motivation, this paper addressed a fully uncertain 
RCPSP in which all of the project parameters and variables 
(activity schedules) are under uncertainty. The first aim of this 
paper is to develop a mathematical programming based 
solution approach for a RCPSP under fully uncertain 
environments. The second and maybe the most important aim 
of this paper is to take project manager’s risk attitude into 
consideration while generating interval-valued project 
schedules. In majority of the existing studies, project manager’s 
role and preferences are not taken into account during the 
project scheduling under resource allocation. Nevertheless, 
project manager’s character and risk tolerance may be crucial 
under such a fully uncertain project planning environments. 
Actually, there are considerable effects of human factors and 
risk attitudes on the goals of practical project management. 
Because, several risky situations and questionable solutions 
may occur for real-life project scheduling settings with full of 
uncertainties. In this paper, four different risky situations in a 
RCPSP are handled and discussed in the later sections. In fact, 
these risky situations are resulted from uncertainties. For this 
reason, project manager’s risk attitude should be considered 
while generating the project schedules. In detail, due to the 
response or state of the mind, which is orientated by naturally 
subjective insight, to a specified uncertain condition is 
dissimilar from one project manager to another, a suitable 
project schedule should be generated and offered to the project 
manager according to his/her risk tolerance [6]-[8]. Therefore, 

various crisp and interval-valued project schedules can be 
derived by using the proposed approach with respect to the 
risk-averse, partially risk-averse and risk-seeking project 
managers. To the best of our knowledge, there is no similar 
study in the literature which developed a transformation 
technique for solving such a fully uncertain RCPSP so far. 
Furthermore, there is a scarcity of researches in the literature 
on RCPSP that focused on the project managers’ risk attitude. 

The rest of this paper is organized as follows. A brief literature 
review on RCPSP under uncertainty is presented in Section 2. 
Basic definitions and preliminaries are given in Section 3. 
Section 4 presents the problem description, mathematical 
formulations and fundamentals of the proposed transformation 
approach. Risky situations in a RCPSP are also illustrated based 
on a numerical example in the same section. The computational 
results of the proposed approach over a real-life construction 
project are presented in Section 5. Finally, concluding remarks 
and future research directions are given in Section 6.  

2 Related literature 

This section presents a brief literature survey on RCPSP under 
uncertainty. In fact, the recent studies in the literature are 
discussed and categorized in terms of the type of uncertainty, 
i.e., fuzzy, stochastic or fuzzy-stochastic project scheduling.  

In the preliminary studies, uncertainty in the key project 
parameters was usually modelled by probability theory [9], 
[10]. In fact, activity durations were generally defined as 
random variables; they followed a known probability 
distribution and the objective was to minimize expected 
makespan. An overview of the recent articles which studied 
stochastic RCPSP can be summarized as follows: Artigues et al. 
[11] developed a robust optimization approach for a stochastic 
RCPSP by assuming that decision maker does not have an 
adequate confidence in the subjective probabilities associated 
with the possible activity durations. They proposed a scenario 
relaxation based heuristic for solution of large-scaled problem 
instances. Li and Womer [12] proposed a closed-loop 
approximate dynamic programming approach based on rollout 
policy for solving a reasonably large-sized RCPSP with 
stochastic task durations. A simulation-optimization approach 
which aims to minimize cost of a project was designed by Perez 
[13] to deal with the stochastic activity times of a RCPSP. 
Ashtiani et al. [14] presented a new class of pre-processor 
policies which integrated the elements of resource-based and 
the earliest-start policies for a stochastic RCPSP. Afterwards, 
new class of generalized preprocessor policies were also 
proposed by Rostami et al. [2] for a RCPSP with stochastic 
activity times. Then, in order to find high-quality solutions, a 
two-phase metaheuristic algorithm consisting of greedy 
randomized adaptive search procedure (GRASP) and genetic 
algorithm (GA) were employed. Wang et al. [15] built on an 
uncertain model based on a chance-constrained program to 
satisfy demand of a risk-averse project manager. They utilized 
a hybrid algorithm which combines GA and an uncertain serial 
SGS as a solution methodology. In order to measure the 
scheduling uncertainty related to evolution of a stochastic 
RCPSP, Tseng and Ko [16] presented a scenario-based approach 
with utility-entropy decision model. Creemers [17] developed 
a new continuous-time Markov chain and used a backward 
stochastic dynamic program for solution of a preemptive 
stochastic RCPSP with exponentially distributed activity 
durations. Six different heuristics were developed by 
Chakrabortty et al. [18] to incorporate random activity 
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durations of a RCPSP as a deterministic constraint into a robust 
optimization model. Then, the resulting model was solved via a 
branch-and-cut algorithm. A two-stage mathematical program 
was formulated by Bruni et al. [19] for a robust RCPSP under 
polyhedral activity durations. A decomposition algorithm 
which separates the resource allocation from project 
scheduling was also designed. Bruni et al. [20] developed two 
exact decomposition approaches for a robust RCPSP under 
budgeted uncertainty polytope. While choosing the value for 
budget of uncertainty, risk-attitude of the decision maker was 
also considered. Chen et al. [1] evaluated the performance of 
several priority rule heuristics on large-scaled stochastic 
RCPSP instances. Most of these previously mentioned studies 
just concentrated on the stochastic activity durations. In 
addition to the uncertain activity times, Chand et al. [21] 
handled stochastic resource availabilities and applied a 
population-based evolutionary algorithm to find robust 
solutions. Uysal et al. [22] formulated a chance-constrained, 
piecewise-linear, mixed integer program (MIP) for a RCPSP 
with stochastic resource demands.  

In many cases, due to the lack of statistical project data to obtain 
the probability distributions of project parameters, they are 
generally estimated by project planners based on their 
expertise and subjective judgments. Due to this fact that several 
researchers attempt to model and solve RCPSP under fuzzy 
environments. Fuzzy RCPSP was first addressed by Hapke et al. 
[23],[24] and priority rule based serial and parallel scheduling 
procedures were extended to deal with fuzzy time parameters, 
i.e., activity durations, ready times and due dates. Özdamar and 
Alanya [25] proposed a generic heuristic algorithm based on 
priority rules for a RCPSP where task durations and start-to-
start precedence relationships among the activities were 
represented by fuzzy numbers. Unlike the existing studies on 
fuzzy RCPSP, they also considered the uncertainty related to 
network topology. Another heuristic method which is named as 
fuzzy parallel scheduling was employed by Pan et al. [26] to 
solve a RCPSP with fuzzy durations. Pan and Yeh [27] also 
developed a fuzzy GA combined with Tabu mechanism for a 
fuzzy RCPSP in order to obtain an approximate optimal 
solution. Liu et al. [28] applied a genetic local search algorithm 
for solving fuzzy RCPSP with imprecise activity durations and 
resource constraints. Long and Ohsato [29] developed a fuzzy 
critical chain method for solving fuzzy RCPSP and added a 
project buffer to the end of the selected critical chain to deal 
with the uncertainty of activity durations. Bhaskar et al. [30] 
presented a non-recursive heuristic method which mainly 
depends on the priority rule for parallel schedule generation 
scheme (SGS) for a RCPSP with triangular fuzzy activity 
durations. Wang and Huang [31] formulated two fuzzy models 
for a RCPSP with minimum expected cost and maximum 
credibility under uncertain activity durations. They integrated 
fuzzy simulation and GA to solve these two types of fuzzy 
models. Atli and Kahraman [3] addressed RCPSP with fuzzy 
durations and utilized resource over time and minimum slack 
priority rules to obtain good initial solutions for the proposed 
modified Taboo search algorithm. Afterwards, Atli and 
Kahraman [4] also handled a multi-mode RCPSP with fuzzy 
activity durations and solved the realistic sized problem 
instances through an integrated taboo search and minimum 
slack priority scheduling algorithms. Kaveh et al. [32] applied 
relatively new metaheuristics namely charged system search 
(CSS) and colliding body optimization (CBO) for solving a real-
life RCPSP with fuzzy activity durations. As mentioned 

previously, risk attitude of the project managers was rarely 
discussed in the literature. In a fuzzy multi-objective, multi-
mode RCPSP, risk acceptance level and the optimism of the 
project managers were considered by Sajadi et al. [33] only.  

Most of these former studies produced crisp activity schedules. 
However, for such a fully uncertain RCPSP where all of the 
project parameters are defined as uncertain data, activity 
schedules should also be uncertain in nature. Based on this 
motivation, some researchers took into consideration the 
uncertainty embedded in the project schedules and defined 
them as uncertain decision variables. For instance, a fuzzy 
beam search algorithm was developed by Wang [34] to 
generate a fuzzy project schedule where the schedule risks 
were also minimized. Wang [35] also proposed a GA based 
robust scheduling methodology to solve a RCPSP with fuzzy 
activity durations. As a final solution, they presented a fuzzy 
project schedule which assists the risk-averse project 
managers for minimizing the risk of the project of being late. 
Masmoudi and Hait [36] provided fuzzy project schedule for a 
RCPSP with fuzzy workload. In order to handle the fuzzy task 
presence and workload, they extended the parallel SGS of 
Hapke and Slowinski [24]. Zha and Zhang [37] investigated a 
fuzzy flexible RCPSP in which employees had multiple skills and 
can choose only one skill to apply to each assigned activity. In 
the solution phase, they only took into account the uncertainty 
of activity durations and employed GA so as to generate a fuzzy 
project schedule. Knyazeva et al. [38] also provided an 
uncertain project schedule including fuzzy starting and 
finishing times for a GIS software development project 
activities under resource allocation and uncertainty. Yousefli 
[39] proposed a fully fuzzy mathematical programming model 
for a RCPSP by considering the fuzzy scheduling concept. In 
detail, they calculated the activity schedule (starting and 
finishing times) as fuzzy numbers because of the uncertainty of 
all the project parameters. Due to the complexity of the 
proposed highly non-linear fuzzy mathematical program, a 
fuzzy ant colony optimization (ACO) algorithm was developed 
to solve large-scaled project instances. Subulan [6] also 
discussed fully uncertain nature of the RCPSP and developed an 
interval programming based transformation approach to 
produce flexible schedules for a real-life LNG storage tank 
construction project. In this paper, that transformation 
approach is extended by considering project manager’s attitude 
toward risk. Actually, some risky situations in project 
scheduling are taken into account while generating interval-
valued project schedules. Moreover, Subulan [6] just 
considered manpower requirements as project resources. 
Fortunately, this paper is able to handle the uncertainty of both 
manpower and machinery requirements of an LNG tank 
construction project. 

Because of the two types of common uncertainties, i.e. fuzziness 
and randomness in real-life applications, some researchers 
focused on modelling and solving hybrid fuzzy-random RCPSP. 
Nematian et al. [40] represented activity durations, ready-time 
and deadline of a project as fuzzy-random variables and 
developed a linearized MIP technique based on the expected 
value of fuzzy-random variables, fuzzy inequality approaches 
and max-min operator of [41]. A similar MIP based 
transformation process was also utilized by Artykov and 
Atymtayeva [42] by focusing on just fuzzy-random activity 
durations. A hybrid GA with fuzzy logic controller was 
employed by Xu and Zhang [43] for a multi-objective resource-
constrained multiple project scheduling problem. The resource 
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consumptions and due-dates were defined as fuzzy-random 
variables. Gang et al. [44] developed a hybrid solution approach 
which combines adaptive Particle Swarm Optimization (PSO), 
hybrid GA and fuzzy-random simulation algorithms for a multi-
project RCPSP with fuzzy-random activity durations and 
resource costs. A bi-level multi-objective PSO algorithm was 
designed by Zhang [45] for a fuzzy-random RCPSP with a 
complex hierarchical organization structure of upper and lower 
level decision makers.  In addition to the activity durations and 
resource availabilities, tardiness penalty costs of the activities 
were taken as fuzzy-random data. Xu and Feng [46] developed 
a combinatorial-priority-based hybrid PSO algorithm for a 
multi-mode resource-constrained multiple project scheduling 
problem. The normal and crashed durations, variable and 
crashing costs and resource consumptions were represented 
by fuzzy-random variables. A proactive strategy was presented 
by Chen and Zhang [47] to formulate a robust optimization 
model of a preemption RCPSP with fuzzy-random activity 
durations and resource consumption. Apart from the former 
studies, they also considered activity splitting as well.  

Finally, most of the above studies are summarized and 
classified in Table 1 with respect to the type of uncertainty, 
uncertain components of the stated problem and relevant 
solution methodology. As it is obviously seen from Table 1 that 
most of the existing researches in the literature focused on the 
crisp project schedules despite of the fully uncertain nature of 
the RCPSP. However, as mentioned earlier, project schedules or 
completion times of the activities should also be stated as 
uncertain variables and represented by intervals when all of the 
project data are imprecise. It should also be noted here that 
resource availabilities and consumptions of the activities were 
generally considered as crisp data by many former studies. 
Moreover, fuzzy, stochastic or fuzzy-stochastic project data are 
taken into account by the former studies to represent the 
uncertainty. According to Table 1, there has been an increasing 
interest in modeling and solving RCPSP under fuzzy-stochastic 
environments. In fact, fuzzy-random RCPSP have become a hot 
research topic nowadays. To the best of our knowledge, interval 
uncertainty and interval programming were not utilized in a 
RCPSP so far. The reasons behind the selection of interval type 
uncertainty are also mentioned before. Additionally, project 
managers’ risk attitude and some risky situations in an 
uncertain RCPSP are rarely discussed by the previous 
researches. Moreover, priority rules and metaheuristics are the 
most commonly used solution methods since the NP-hard 
nature of the problem. However, developing mathematical 
programming based transformation approaches is a 
challenging task for RCPSP under uncertainty. Because, RCPSP 
may have a highly non-linear structure under fuzzy and/or 
stochastic environments. In detail, both of the NP-hard nature 
and highly non-linear structure of the uncertain RCPSP make it 
difficult to solve by mathematical programming. Fortunately, 
using interval numbers for dealing with uncertainties makes 
the usage of mathematical programming based approaches 
possible and easier way. This is the main research motivation 
of this paper.  

Based on all of these motivations, the main contributions of this 
paper can be listed as follows: 

I. A new transformation technique is developed to solve a 
fully uncertain RCPSP in which all of the project 
parameters (input data) as well as project schedules 
(outputs or decision variables) are represented by 
interval numbers. Instead of just a crisp project schedule, 

various interval-valued project schedules can be 
generated, 

II. The proposed approach is able to handle project 
manager’s attitude toward risk. In fact, various crisp 
and/or interval-valued project schedules can be 
generated by using the proposed approach with respect 
to the project manager’s risk attitude. According to the 
computational study, relatively more precise project 
schedules with longer makespan are produced for risk-
averse or partially risk-averse project managers. On the 
other hand, relatively shorter makespan but more 
imprecise completion time intervals (or project 
schedules) with high degree of uncertainty are obtained 
for risk-seekers. For a risk neutral project manager, 
completion time intervals of the activities may have 
relatively lower degree of uncertainty. In other words, 
lower and upper bounds of the completion time interval 
of an activity are close to each other, 

III. The proposed approach can take into account different 
risky situations in an uncertain RCPSP. Four different 
risky situations are examined while transforming the 
interval program into its crisp equivalent form. Therefore, 
more reliable and information efficient project schedules 
can be generated for many real-life settings. Detailed 
explanations for these risky situations are given in Section 
4.1 and they are also basically illustrated by a trivial 
numerical example in Section 4.2. 

3 Background and preliminaries 

In this section, some of the necessary background, definitions 
and fundamental notation regarding to interval numbers, 
interval arithmetic and ranking operations are presented. 

Definition 1 Let A indicate a closed and bounded non-empty 
set of real numbers and 𝐴± represents an interval number with 
known upper and lower bounds 𝐴− and 𝐴+, respectively. Then, 
a non-negative interval number 𝐴± = [𝐴−, 𝐴+] can be 
expressed as 𝐴± = {𝑥|  0 < 𝐴− ≤ 𝑥 ≤ 𝐴+} or interval number 

can also be stated as  𝐴∓ = {𝐴− + 𝑧(𝐴+ − 𝐴−) | 0 ≤ 𝑧 ≤ 1} by 
making use of an auxiliary variable z that can be used to 
transform interval-valued parameter into a crisp one [48]-[50].  

Definition 2 Two interval numbers 𝐴± = [𝐴−, 𝐴+] and 
𝐵± = [𝐵−, 𝐵+] are said to be equal when the equality relation is 
satisfied. The equality relation for interval numbers can be 
defined as: 𝐴± = 𝐵±  ⇔  𝐴− = 𝐵−⋀  𝐴+ = 𝐵+ [51]. 

Definition 3 For any two interval numbers 𝐴± = [𝐴−, 𝐴+] and          
𝐵± = [𝐵−, 𝐵+], let ∗ ∈  {+,−,×,÷} be the binary algebraic 
operations are defined by 𝐴± ∗ 𝐵± = [𝑚𝑖𝑛{𝐴 ∗ 𝐵},𝑚𝑎𝑥{𝐴 ∗ 𝐵} ] 
where 𝐴− ≤ 𝐴 ≤ 𝐴+ and 𝐵− ≤ 𝐵 ≤ 𝐵+ [51],[52]. Some 
arithmetic operations on interval numbers are as follows: 

𝐴± + 𝐵± = [𝐴− + 𝐵−, 𝐴+ + 𝐵+] (1) 

𝐴± − 𝐵± = [𝐴− + 𝐵+, 𝐴+ + 𝐵−] (2) 

𝐴± × 𝐵± = [𝐴−𝐵−, 𝐴+𝐵+] (3) 

𝐴± ÷ 𝐵± = [𝐴−/𝐵+, 𝐴+/𝐵−] (4) 

𝑐 × 𝐴± = [𝑐𝐴−, 𝑐𝐴+]   𝑖𝑓  𝑐 ≥ 0 (5) 

𝑐 × 𝐴± = [𝑐𝐴+, 𝑐𝐴−]   𝑖𝑓  𝑐 < 0 (6) 
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Table 1: An overview of the articles on RCPSP under uncertain environments. 

Article Uncertain data 
representation 

Uncertain Components of RCPSP  
Solution Methodology Activity 

durations 
Resource  

availability 
Resource 

consumption 
Project 

schedule 
Precedence 

relations 
Özdamar and 
Alanya [25] 

Fuzzy   - - -   Heuristic scheduling algorithm  

Liu et al. [28] Fuzzy     -   - Genetic local search  
Wang and Huang 

[31] 
Fuzzy   - - - - Hybrid genetic algorithm and 

fuzzy simulation 
Bhaskar et al. [30] Fuzzy   - - - - Non-recursive heuristic method 
Atli and Kahraman 

[3] 
Fuzzy   - -   - Extended fuzzy CPM & Taboo 

search algorithm 
Kaveh et al. [32] Fuzzy   - - - - CSS and CBO metaheuristic 

algorithms 
Long and Ohsato 

[29] 
Fuzzy   - - - - Fuzzy critical chain method 

Masmoudi and 
Hait [36] 

Fuzzy   - -   - A greedy algorithm based on 
parallel SGS 

Yousefli [39] Fuzzy         - Fuzzy ACO algorithm 
Knyazeva et al. 

[38] 
Fuzzy   - -   - Combined fuzzy and qualitative 

possibility approaches 
Wang [35] Fuzzy   - -   - Genetic algorithm 

Creemers [17] Stochastic   - - - - Stochastic dynamic 
programming 

Li and Womer [12] Stochastic   - - - - Approximate dynamic 
programming 

Chand et al. [21] Stochastic     - - - Robust optimization with 
evolutionary algorithm 

Perez [13] Stochastic   - - - - Simulation-based optimization 
Tseng and Ko [16] Stochastic   - - - - Scenario-based approach with 

utility-entropy decision model 
Artigues et al. [11] Stochastic   - - - - Robust optimization with a 

scenario-relaxation algorithm 
Wang et al. [15] Stochastic   - - - - Hybrid GA and an uncertain 

serial SGS  
Uysal et al. [22] Stochastic - -   - - Chance constraint, piecewise 

linear MIP model 
Rostami et al. [2] Stochastic   - - - - Two-phase local search based 

on GRASP & GA 
Bruni et al. [19] Stochastic   - - - - Benders’ decomposition 

algorithm 
Chakrabortty et al. 

[18] 
Stochastic   - - - - Robust optimization 

Xu and Zhang [43] Fuzzy random   -   - - Hybrid genetic algorithm with 
fuzzy logic controller 

Gang et al. [44] Fuzzy random   - - - - Fuzzy-random simulation 
based PSO and GA 

Zhang [45] Fuzzy random     - - - Bi-level multiple objective PSO 
algorithm 

Xu and Feng [46] Fuzzy random   -   - - Combinatorial-priority based 
hybrid PSO algorithm 

Nematian et al. 
[40] 

Fuzzy random   - -   - MIP based linear 
transformation 

Chen and Zhang 
[47] 

Fuzzy random   -   - - Robust optimization 

The present paper Interval          - Interval programming based 
transformation approach 

Definition 4 The mean or midpoint should be a finite element 
of an interval number and it can be defined by 𝑚(𝐴±) =
(𝐴− + 𝐴+) 2⁄ . Hereafter, the midpoint of an interval number 
represents its real isomorphic copy [53],[54].  

Definition 5 The half-width of an interval number 𝐴± =
[𝐴−, 𝐴+] can be expressed as: 𝑤(𝐴±) = (𝐴+ − 𝐴−) 2⁄  ,[51]. 

Definition 6 For any two interval numbers 𝐴± = [𝐴−, 𝐴+] and 
𝐵± = [𝐵−, 𝐵+], a strict partial order on the set of real interval 
numbers [ℝ] with respect to the inequality < is defined as [51]: 

[𝐴−, 𝐴+] < [𝐵−, 𝐵+] ⇔  𝐴+ < 𝐵− (7) 

Actually, this order relation can only be used if the given 
interval numbers do not intersect. In other words, this relation 
cannot explain ranking between two overlapping intervals [54].  

Definition 7 For comparison of two overlapping interval 
numbers, an acceptability index based on the value judgment 
𝒜⨀ was proposed by [54],[55] as in Equation (8): 
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𝒜⨀(𝐴
±, 𝐵±) =

𝑚(𝐵±) − 𝑚(𝐴±)

𝑤(𝐵±) + 𝑤(𝐴±)
 (8) 

Actually, this index may be interpreted as the grade of 
acceptability of the first interval to be inferior to the second 
one. If 𝒜⨀(𝐴

±, 𝐵±) = 0, then the statement ‘𝐴± is inferior 

to 𝐵±’ cannot be accepted. If 0 < 𝒜⨀(𝐴
±, 𝐵±) < 1, then 

decision maker may accept this statement with different 
degrees of satisfaction ranging from zero to one. 
If 𝒜⨀(𝐴

±, 𝐵±) ≥ 1, then the decision maker completely 

satisfied that 𝐵± is superior to 𝐴±. 

Comment 1 Several ordinary principles for operations on real 
numbers ℝ are not valid for interval arithmetic [7],[8],[56] as 
followings where 𝐴± = 𝐵± = [3, 5];  𝐴± − 𝐴± = [−2, 2] ≠ 0 or 
if 𝐴± + 𝐵± = 𝐶± = [6, 10], then 𝐵± ≠ 𝐶± −  𝐴± = [1, 7]. 
Alternatively, if  𝐴± × 𝐵± = 𝐶± = [9, 25], then    𝐵± ≠ 𝐶± ÷
 𝐴± = [1.8, 8.33]. Similar to the standard fuzzy arithmetic, 
addition/subtraction and multiplication/division operations 
are not  multiplicative inverse for interval numbers. 
Therefore, previously formulated interval arithmetic 
operations may cause some doubtful results for many real-
world applications, especially in project scheduling. For 
instance, after resource allocation to the project activities, 
remaining capacity of a resource may be negative. In other 
words, resource capacity may be inadequate because of the 
negative element of its interval-valued remaining capacity. 
Another example can be given for calculation of starting time of 
an activity that may also be negative due to the interval 
subtraction operation. For these reasons, interval arithmetic 
operations should be performed with requisite constraints or 
additional information as in the constrained fuzzy arithmetic 
concept which was first introduced by [57]-[59]. 

Remark 1 Based on constrained interval arithmetic [57]-[61], 
crisp equality and inequality relations may be defined between 
the base variables of two interval numbers for risk-aversion. 
Equation (9) and (10) denoted interval subtraction operation 
with crisp equality and inequality constraints, respectively. 

(𝐴± − 𝐵±)𝑎==𝑏 = [𝐴
− − 𝐵−, 𝐴+ − 𝐵+] (9) 

(𝐵± − 𝐴±)𝑎≤𝑏 = {
[𝐵− − 𝐴+, 𝐵+ − 𝐴−]  𝑖𝑓 𝐴+ ≤ 𝐵−

[0, 𝐵+ − 𝐴−]  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (10) 

where a and b are base variables of interval numbers, 𝐴± and 
𝐵±. In detail, each interval number can be characterized in 
terms of a base variable whose actual value is in the set of real 
numbers ℝ. This actual value of the base variable can be 
approximated by an interval number [7],[57]. 

Remark 2 In some cases, base variables of interval numbers 
may be constrained in an uncertain way such as “approximately 
equal”. In fact, there may be an uncertain equality relation 
between the base variables of interval numbers. This uncertain 
equality relation can be used in case of risk-seeking [8],[58]. 
The interval subtraction operation can be rewritten as in 
Equation (11) under this uncertain equality relation. 

(𝐴± − 𝐵±)𝑎≈𝑏 = [𝐴
− − 𝐵− − Δ√2,𝐴+ − 𝐵+ + Δ√2] (11) 

where Δ is an auxiliary parameter taking a positive real 
number. The value of this parameter is selected in each context 
with the purpose of providing the uncertain equality relation a 
satisfactory representation of the linguistic term 
“approximately equal”. Actually, this auxiliary parameter 

reflects the project manager’s attitude toward risk in the 
proposed transformation method.  

Remark 3 Depending upon the crisp inequality or uncertain 
equality relations between base variables of interval numbers, 
constraints in an interval program can be transformed into the 
crisp equivalent form. Equations (12)-(13) demonstrated the 
transformation of an interval linear programming constraints 
for a risk-averse and risk-seeking person, respectively [7]. 

𝑨± ≤ 𝑩±  ⇔  (𝑩± − 𝑨±)𝒂≤𝒃 ≥ 𝟎 ⇔ 𝑩− − 𝑨+ ≥ 𝟎 (12) 

𝑨± ≤ 𝑩±  ⇔  (𝑩± − 𝑨±)𝒂≈𝒃 ≥ ± 𝚫√𝟐 𝒘(𝑩
±) (13) 

4 Formulation of fully uncertain RCPSP 

The fully uncertain RCPSP can be briefly described as follows: 
We considered a single project consisting of j = 1, 2,…,J activities 
which are defined in an activity-on-node (AON) network and 
have uncertain durations. Therefore, early-late start-finish 
times of the activities cannot be known precisely. The activities 
0 and J+1 are the dummy ones that identify source and sink 
activities and do not take any durations. Due to the 
technological requirements, there are precedence relations: 
activity j must not start before each of its predecessors 𝑃𝑗 are 

completed [32],[37]. A set 𝑅 = {1,2,… , 𝑟} of resources are 
required for the project to execute. Each resource has a limited 
uncertain capacity in each time period and activities needed an 
uncertain amount of resource r during its execution. The AON 
project network is supposed to be acyclic and an activity cannot 
be interrupted once started [12]. At this point, let us introduce 
required notation, parameters and decision variables. 

J : Set of project activities to be scheduled, 
T : Duration of project without any resource constraint, 

sum of the interval-valued activity durations, 
R : Set of renewable or non-renewable project 

resources, 
𝑃𝑗 : Set of activities that immediately completed before 

𝑗𝑡ℎ activity, 
𝑆𝑗 : Set of immediate successors of the 𝑗𝑡ℎ activity, 

𝐸𝐹𝑇𝑗
±   : uncertain time interval for the earliest finish time 

of 𝑗𝑡ℎ  activity, 

𝐿𝐹𝑇𝑗
±   : uncertain time interval for the latest finish time of 

𝑗𝑡ℎ  activity, 

𝑑𝑗
± : uncertain duration of 𝑗𝑡ℎ activity, 

𝑘𝑗𝑟
±  : uncertain amount of resource r demanded by 𝑗𝑡ℎ 

activity, 
𝐾𝑟± : maximum amount of available resource r in each 

time period, 
𝑡± : current time interval at which the allocation of 

resources to an  activity is considered, 
𝑥𝑗𝑡±  : {

1 
0 

 If activity j finished in the time interval 𝑡± or 

otherwise. 

In addition to these uncertain parameters such as the activity 
durations, resource capacities and resource requirements of 
the activities, all of the time indexes for decision variables, i.e., 
completion times of the activities are also considered as 
uncertain variables in the proposed interval programming 
model. In detail, the basic discrete-time binary integer 
mathematical formulation of RCPSP which was first presented 
by Pritsker et al. [62] can be modified under interval 
uncertainty as follows: 
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𝑀𝑖𝑛 𝑍± =∑ ∑ 𝑡± .  𝑥𝑗𝑡±

𝐿𝐹𝑇𝑗
±

𝑡±∈𝐸𝐹𝑇𝑗
±

𝐽

𝑗

  𝑜𝑟 ∑ 𝑡± .  𝑥𝐽𝑡±

𝐿𝐹𝑇𝑗
±

𝑡±∈𝐸𝐹𝑇𝑗
±

 (14) 

Subject to; 

∑ 𝑥𝑗𝑡± = 1    

𝐿𝐹𝑇𝑗
±

𝑡±∈𝐸𝐹𝑇𝑗
±

   ∀𝑗 ∈ 𝐽 (15) 

∑ 𝑡±. 𝑥𝑖𝑡± 

𝐿𝐹𝑇𝑖
±

𝑡±∈𝐸𝐹𝑇𝑖
±

≲ ∑ (𝑡± − 𝑑𝑗
±). 𝑥𝑗𝑡±  

𝐿𝐹𝑇𝑗
±

𝑡±∈𝐸𝐹𝑇𝑗
±

∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝑃𝑗 (16) 

∑𝑘𝑗𝑟
±

𝐽

𝑗

 . ∑ 𝑥𝑗𝜏±

𝑡±+𝑑𝑗
±−1

𝜏±∈𝑡±

 ≲  𝐾𝑟±   ∀𝑟 ∈ 𝑅   𝑎𝑛𝑑  ∀𝑡± ∈ 𝑇 (17) 

𝑥𝑗𝑡± ∈ {0,1}     ∀𝑗 ∈ 𝐽   𝑎𝑛𝑑   ∀𝑡
± ∈ 𝑇  (18) 

The objective function given by Equation (14) aims to minimize 
makespan or total project time which is the summation of the 
completion times of all activities. Alternatively, it can be defined 
as the minimum completion time of the last or ending activity. 
According to Equation (15), only one completion time interval 
can be assigned to each activity, ranging between its earliest 
and latest finishing time intervals. Equation (16) displays 
precedence relations among the activities. It ensures that an 
activity cannot begin before completion of its preceding 
activity. In deterministic environments, completion time of an 
activity cannot exceed the starting time of its successor. On the 
other hand, completion time interval of an activity may overlap 
with the starting time interval of its successor under fully 
uncertain environments. For this reason, this constraint can be 
relaxed by performing the interval subtraction operation with 
the aid of an additional information based on the project 
manager’s risk attitude. Equation (17) is the constraint on the 
uncertain resource availability at each time period. While 
realizing the project scheduling process, resource capacities 
may be inadequate due to the negative lower bounds of the 
interval-valued remaining capacities which are resulted from 
interval subtraction operation. This also causes risky solutions 
to the project manager. In fact, remaining resource capacities 
should be positive interval numbers for obtaining risk-free 
solutions. In Equation (18), completion time intervals of the 
activities are defined as binary variables. Constraints (15) and 
(18) also impose non-preemption of the activities.  

In order to compute the time intervals for the earliest and latest 
finish times of the activities, traditional forward and backward 
pass calculations are reformulated as in Equations (19)-(22) 
based on the interval arithmetic operations and comparison of 
interval numbers that are given in the previous section.  

𝐸𝑆𝑇𝑗
± =

Max{𝐸𝐹𝑇𝑖
±}

𝑖 ∈ 𝑃𝑗
 (19) 

𝐸𝐹𝑇𝑗
± = 𝐸𝑆𝑇𝑗

± + 𝑑𝑗
± (20) 

𝐿𝐹𝑇𝑗
± =

Min{𝐿𝑆𝑇𝑖
±}

𝑖 ∈ 𝑆𝑗
 (21) 

𝐿𝑆𝑇𝑗
± = 𝐿𝐹𝑇𝑗

± − 𝑑𝑗
± (22) 

In detail, interval addition and subtraction operations are 
performed in Equations (20) and (22), respectively. 
Additionally, maximum early finishing time interval of the 
immediate predecessors should be determined in the forward 
pass. In a similar way, minimum late starting time interval of 
the immediate successors should be found in the backward 
pass. These max/min operators require the comparison of the 
interval numbers. To do this, a strict partial order [51] can be 
employed if the time intervals do not intersect each other. 
Otherwise, acceptability index of [54]-[55] can be applied to 
rank the overlapping time intervals. Finally, total number of 
discrete-time periods, T can be determined as in Equation (23) 
to calculate the latest finishing time intervals of the activities.  

𝑡± ∈ 𝑇  𝑜𝑟 [𝑡, 𝑡] ∈ 𝑇 =  𝑚𝑎𝑥 (∑[𝑑𝑗 , 𝑑𝑗]

𝐽

𝑗

) (23) 

In Equation (23), project duration without any resource 
constraint is calculated by summation of the interval-valued 
activity durations. This duration will also be utilized as the total 
number of planning periods in the proposed transformation 
approach. In the light of this information, interval programming 
model given in Equations (14)-(18) can be rewritten as follows: 

𝑀𝑖𝑛 [𝑍, 𝑍 ] =∑ ∑  [𝑡, 𝑡 ]. 𝑥𝑗[𝑡,𝑡]

[𝐿𝐹𝑇𝑗 ,𝐿𝐹𝑇𝑗]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑗 ,𝐸𝐹𝑇𝑗]

𝐽

𝑗

 (24) 

Subject to; 

∑ 𝑥𝑗[𝑡,𝑡] = 1    

[𝐿𝐹𝑇𝑗 ,𝐿𝐹𝑇𝑗]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑗 ,𝐸𝐹𝑇𝑗]

   ∀𝑗 ∈ 𝐽 (25) 

∑ [𝑡, 𝑡] . 𝑥𝑖[𝑡,𝑡] 

[𝐿𝐹𝑇𝑖,𝐿𝐹𝑇𝑖]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑖,𝐸𝐹𝑇𝑖]

≲ 

∑ ([𝑡, 𝑡] − [𝑑𝑗 , 𝑑𝑗]) . 𝑥𝑗[𝑡,𝑡] 

[𝐿𝐹𝑇𝑗 ,𝐿𝐹𝑇𝑗]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑗 ,𝐸𝐹𝑇𝑗]

   ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝑃𝑗  

(26) 

∑[𝑘𝑗𝑟 , 𝑘𝑗𝑟]

𝐽

𝑗

 . ∑ 𝑥𝑗[𝜏,𝜏]

[𝑡+𝑑𝑗−1,𝑡+𝑑𝑗−1]

[𝜏,𝜏]∈[𝑡,𝑡]

 ≲  [𝐾𝑟 , 𝐾𝑟]  

∀𝑟 ∈ 𝑅, ∀𝑡± = {[𝑡, 𝑡] | 𝑡 = 𝑡  ∈ 𝑇}  

(27) 

𝑥𝑗[𝑡,𝑡] ∈ {0,1}    ∀𝑗 ∈ 𝐽, ∀𝑡± = {[𝑡, 𝑡] | 𝑡 ≤ 𝑡  ∈ 𝑇} (28) 

4.1 The proposed transformation approach 

In this section, the proposed interval programming model given 
by Equations (24)-(28) is converted into the crisp equivalent 
form by considering the project manager’s attitude toward risk. 
The proposed transformation approach mainly depends on 
interval programming, interval ranking and interval arithmetic 
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operations. Furthermore, while performing the interval 
arithmetic operations, especially the subtraction operations, 
supplementary information obtained from the project manager 
is also taken into account by some additional constraints. The 
objective function of the transformed model is to minimize the 
summation of the midpoints of interval-valued completion 
times of all activities as formulated in Equation (29). 

𝑀𝑖𝑛 [𝑍, 𝑍 ] =∑ ∑  
(𝑡 + 𝑡)

2
⁄  .  𝑥𝑗[𝑡,𝑡]

[𝐿𝐹𝑇𝑗,𝐿𝐹𝑇𝑗]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑗,𝐸𝐹𝑇𝑗]

𝐽

𝑗

 (29) 

The constraint (25) can be converted into the crisp equivalent 
form as in Equation (30). This constraint guarantees that an 
activity can be completed within only one time interval that 
must be lie between its earliest/latest finishing time intervals. 

∑   ∑ 𝑥𝑗 𝑡 𝑡 = 1

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

  

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

    ∀𝑗 ∈ 𝐽 (30) 

One of the risky situation in project scheduling under 
uncertainty is that starting time interval of an activity may have 
a negative lower bound due to the standard interval subtraction 
operation. It was also mentioned by Atli and Kahraman [3] that 
fuzzy subtraction operation for computing fuzzy latest starting 
times may cause unreasonable negative values of times. For this 
reason, they recommended development of a project 
scheduling risk index to support the project planners for 
evaluating the project’s scheduling risks. In this paper, in order 
to overcome this problematic issue, interval subtraction 
operations are performed under an additional information 
obtained from the project manager. Indeed, this information 
reflects the project manager’s risk attitude. To do this, a 
requisite constraint in Equation (31) is incorporated into the 
proposed interval programming model.  

∑ [𝑡, 𝑡]. 𝑥𝑗[𝑡,𝑡] 

[𝐿𝐹𝑇𝑗 ,𝐿𝐹𝑇𝑗]

[𝑡,𝑡]∈[𝐸𝐹𝑇𝑗 ,𝐸𝐹𝑇𝑗]

≳ [𝑑𝑗 , 𝑑𝑗]     ∀𝑗 ∈ 𝐽 (31) 

Constraint (31) ensures that the completion time interval of an 
activity should be greater than its interval-valued duration. 
This also provides positive starting time intervals for the 
activities. In a risk-averse environment, lower bound of an 
activity’s completion time interval cannot be less than the 
upper bound of its duration. From the perspective of project 
manager’s risk attitude, constraint (31) can be converted into 
the crisp equivalent form as in Equations (32) and (33). In fact, 
these constraints are formulated based on the uncertain 
equality relations between base variables of interval numbers 
as previously mentioned in Remark 3.  

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 −

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

𝑑𝑗   ≥

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

 

−𝜃. √2

(

 

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 − 𝑡. 𝑥𝑗 𝑡 𝑡
𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡
  

𝐿𝐹𝑇𝑗
𝑡∈ 𝐸𝐹𝑇𝑗

2

)

   ∀𝑗 ∈ 𝐽 

(32) 

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 −

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

𝑑𝑗   ≥

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

 

𝜃. √2

(

 

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 − 𝑡. 𝑥𝑗 𝑡 𝑡
𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡
  

𝐿𝐹𝑇𝑗
𝑡∈ 𝐸𝐹𝑇𝑗

2

)

   ∀𝑗 ∈ 𝐽 

(33) 

When the risk parameter (𝜃) of the project manager is equal to 
“0”, risk-free solutions which always have positive starting time 
intervals can be provided. However, when the value of this risk 

parameter is set to √2, one can obtain risky solutions including 
negative starting time intervals. These additional constraints 
can be formulated as in Equations (34)-(35) for a risk-averse 
project manager. According to the values of this risk parameter 

0 ≤ 𝜃 ≤ √2, the proposed approach may produce various crisp 
or interval-valued solutions under consideration of different 
risk attitudes.  

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 −

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

𝑑𝑗   ≥

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

0     ∀𝑗 ∈ 𝐽 (34) 

∑   ∑ 𝑡. 𝑥𝑗 𝑡 𝑡 −

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

𝑑𝑗   ≥

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

0   ∀𝑗 ∈ 𝐽 (35) 

The precedence relations in Equation (26) can be transformed 
into the crisp equivalent form as in Equations (36)-(37). In 
these constraints, 𝛼 also denotes another risk parameter. In a 
risk-averse environment, completion time intervals of the 
successive activities never overlap with each other.  

∑   ∑ 𝑡. 𝑥𝑖 𝑡 𝑡

𝐿𝐹𝑇𝑖

𝑡∈𝐸𝐹𝑇𝑖 & 𝑡≥𝑡

𝐿𝐹𝑇𝑖

𝑡∈ 𝐸𝐹𝑇𝑖

≤ 

∑   ∑ [𝛼. (𝑡 − 𝑑𝑗) + (1 − 𝛼). (𝑡 − 𝑑𝑗  )]

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

.

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

𝑥𝑗 𝑡 𝑡 

∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝑃𝑗 

(36) 

∑   ∑ 𝑡. 𝑥𝑖 𝑡 𝑡

𝐿𝐹𝑇𝑖

𝑡∈𝐸𝐹𝑇𝑖 & 𝑡≥𝑡

𝐿𝐹𝑇𝑖

𝑡∈ 𝐸𝐹𝑇𝑖

≤ 

∑   ∑ [𝛼. (𝑡− 𝑑𝑗) + (1 − 𝛼). (𝑡 − 𝑑𝑗 )]

𝐿𝐹𝑇𝑗

𝑡∈𝐸𝐹𝑇𝑗 & 𝑡≥𝑡

.

𝐿𝐹𝑇𝑗

𝑡∈ 𝐸𝐹𝑇𝑗

𝑥𝑗 𝑡 𝑡 

∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝑃𝑗 

(37) 

Knyazeva et al. [38] also highlighted that fuzzy starting times 
may overlap with fuzzy finishing times of its predecessors and 
thus, preceding activities may not be fully completed because of 
the resource unavailability. This causes resource unavailability 
risk and the risk of not meeting the strict precedence relations. 
In this paper, for a risk-averse project manager, standard 
interval subtraction operations are performed in the 
precedence relations. This provides no intersection between 
the completion time intervals. In other words, lower bound of 
the completion time interval of the successor activity will be 
equal or greater than the upper bound of the completion time 
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interval of its preceding activity. This also guarantees no 
overlap between the completion time intervals. On the other 
hand, although there is a precedence relation between any two 
activities, their completion time intervals may intersect each 
other. However, despite of this intersection, completion time 
interval of an activity should be superior when compared to the 
completion time interval of its predecessors. To satisfy this 
condition, an interval ranking method can also be utilized. But, 
this makes the mathematical model of the stated problem 
highly non-linear as in the study of Yousefli [39]. When the risk 
parameter (𝛼) of the project manager is equal to “0”, risk-free 
solutions resulting from standard interval arithmetic can be 
yielded. Otherwise, risky solutions which contain overlaps of 
the interval numbers are produced when the risk parameter 
(𝛼) is equal to “1”. The resource availability constraint (27) can 
be transformed into the crisp equivalent form as in Equations 
(38)-(39). Similar to the Equations (32)-(33), the 
transformation of the resource availability constraint is carried 
out under uncertain equality relations between the base 
variables of interval numbers. In detail, there are two different 
risky situations related to this constraint. For that reason, two 
risk parameters 𝛽 and Δ are defined so as to reflect the project 
manager’s risk attitude. 

𝐾𝑟 −∑𝑘𝑗𝑟 .

(

 
 

∑   ∑ 𝑥𝑗 𝜏 𝜏

𝑇

𝜏∈𝑡

𝛽.(𝑡+𝑑𝑗−1)+(1−𝛽).(𝑡+𝑑𝑗−1)

𝜏∈𝑡

)

 
 

𝐽

𝑗

≥ 

−Δ√2. (
𝐾𝑟 − 𝐾𝑟

2
)  ∀𝑟 ∈ 𝑅, ∀𝑡 = 𝑡  ∈ 𝑇 

(38) 

𝐾𝑟 −∑𝑘𝑗𝑟 .

(

 
 

∑   ∑ 𝑥𝑗 𝜏 𝜏

𝑇

𝜏∈𝑡

𝛽.(𝑡+𝑑𝑗−1)+(1−𝛽).(𝑡+𝑑𝑗−1)

𝜏∈𝑡

)

 
 

𝐽

𝑗

≥ 

Δ√2. (
𝐾𝑟 − 𝐾𝑟

2
)  ∀𝑟 ∈ 𝑅, ∀𝑡 = 𝑡  ∈ 𝑇 

(39) 

In detail, Δ parameter is related to the risk of insufficient project 
resources. Because, remaining capacities of the resources may 
have a negative lower bound due to the standard interval 
subtraction operation. For this reason, interval subtraction 
operations are performed under the uncertain equality 
relations. When the value of Δ is equal to “0”, it is guaranteed 
that remaining capacity of each resource will be a positive 
interval number. On the contrary, negative remaining resource 

capacities are allowed in case of Δ = √2. It should be noted here 
that resource capacities should be sufficient for project 
execution and do not contain any negative element for a risk-
averse project manager. However, remaining resource 
capacities with a negative lower bound may be acceptable for a 
risk-seeking project manager because of a better project 
makespan. Other risky situation is also associated with 
resource availability instead of insufficient remaining resource 
capacity. Actually, there is a risk of exceeding the upper bounds 
of the resource capacities when the time interval is defined as 

[𝜏, 𝜏] ∈ [𝑡 + 𝑑𝑗 − 1, 𝑇] in constraints (38)-(39). This type of 

risk can be avoided by defining the time interval as [𝜏, 𝜏] ∈

[𝑡 + 𝑑𝑗 − 1, 𝑇]. Therefore, when the risk parameter 𝛽 is equal 

to “0”, the proposed approach will provide risk-free solutions 
for a risk-averse project manager. In the opposite case, risk of 
exceeding the upper bound of interval-valued resource capacity 
may be tolerated by a risk-seeking project manager. The risk 
embedded solutions are generated when this risk parameter 
(𝛽) is taken as “1”. In summary, constraints (38)-(39) can be 
reduced to the following Equations (40)-(41) for a risk-averse 
project manager. 

∑𝑘𝑗𝑟 . ∑   ∑𝑥𝑗 𝜏 𝜏

𝑇

𝜏∈𝑡

𝑡+𝑑𝑗−1

𝜏∈𝑡

𝐽

𝑗

≤ 𝐾𝑟      ∀𝑟 ∈ 𝑅, ∀𝑡 = 𝑡  ∈ 𝑇 (40) 

∑𝑘𝑗𝑟 . ∑   ∑𝑥𝑗 𝜏 𝜏

𝑇

𝜏∈𝑡

𝑡+𝑑𝑗−1

𝜏∈𝑡

𝐽

𝑗

≤ 𝐾𝑟      ∀𝑟 ∈ 𝑅, ∀𝑡 = 𝑡  ∈ 𝑇 (41) 

All of these risky situations mentioned here are also illustrated 
in the next sub-section through a basic numerical example. 

Briefly, the main advantages of the proposed transformation 
approach can be listed as follows. The proposed approach is 
able to handle fully uncertain RCPSP in which all of the project 
parameters as well as the project schedules are stated as 
uncertain parameters and variables. Instead of crisp schedules, 
interval-valued project schedules can be generated by the 
proposed approach under fully uncertain environments. By 
making use of the proposed approach, more applicable, 
realizable and information efficient project schedules can be 
obtained according to the project manager’s attitude toward 
risk (Risk-averse, risk-neutral, risk-seeker etc.). The proposed 
approach can take into account different risky situations in an 
uncertain RCPSP. In detail, four different types of risky 
situations are examined. (i) Starting time interval of an activity 
may have a negative lower bound. (ii) Lower bound of the 
completion time interval of a successive activity may be less 
than the upper bound of the completion time interval of its 
preceding activity (non-satisfaction of the precedence relations 
among the activities). (iii) The resource capacities may be 
inadequate while realizing the project activities and so 
resource demands of the activities may not be fully satisfied. 
(iv) Finally, total resource consumption of the activities may 
exceed the upper bound of the resource limit at any given time 
interval. It should be noted here that in contrast to the highly 
non-linear models in the literature, after applying the proposed 
transformation approach, a basic linear integer crisp-
equivalent model which can be easily solved by an optimization 
software is provided. 

4.2 An illustrative example for risky situations  

In order to illustrate the risky situations in project scheduling 
under resource constraints, a trivial numerical example 
consisting of five activities and two types of resources is 
presented. In Figure 1, AON network diagram of the project is 
given with interval-valued activity durations. Moreover, 
resource consumptions and the earliest-latest finishing time 
intervals of the activities are presented in Table 2. Actually, the 
earliest and latest finishing time intervals are calculated by 
making use of Equations (19)-(22) by considering the ranking 
of interval numbers. The starting time of the project is certain 

and can be expressed as 𝑡0
± = [0,0]. Capacities of two resources 

are assumed to be 𝐾1
± = [4,9] and 𝐾2

± = [5,10], respectively.  
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[2, 6] [1, 4]

[2, 5]

[1, 4]

[1, 5]

 

Figure 1: AON project network with uncertain durations. 

Table 2: Data on resource consumption & finish time intervals. 

Activity Resource consumption Finishing times 
Resource-1 Resource-2 Early Late 

1 [1,3] [2,4] [2,6] [20,23] 
2 [1,2] [1,2] [1,5] [20,23] 
3 [2,4] [3,5] [2,5] [20,23] 
4 [1,2] [1,2] [3,10] [24,24] 
5 [1,3] [2,4] [3,9] [24,24] 

When the interval-valued activity durations are summed, it is 
clear that latest start and finishing times of the dummy activity, 
D will be equal to 24. Thus, in the crisp equivalent model, this 
value is utilized as the total number of discrete-time periods.  

As mentioned previously, the first type of risk is that starting 
time interval of an activity may have a negative lower bound. In 
order to demonstrate this type of project risk, the crisp 

equivalent model is solved in case of risk parameter 𝜃 = √2. All 
of the other risk parameters, i.e., 𝛼, 𝛽, Δ are assumed to be zero. 
In this case, the completion time interval of activity-1 is 

obtained as [2,6]. When starting time (𝑆𝑇𝑗
±) interval of that 

activity is calculated, it is clearly seen from Equation (42) that 
it has a negative lower bound. However, activity starting time 

interval could not be less than [𝑡, 𝑡] = [0,0] for a risk-averse 

project manager. In order to prevent this type of risk, interval 
subtraction operations can be performed under the crisp 
inequality relation among the base variables of the interval 
numbers as mentioned in Remark 1-3 and Equations (34)-(35). 

𝑆𝑇𝑗
± = [𝑡, 𝑡]. 𝑥𝑗[𝑡,𝑡] − [𝑑𝑗 , 𝑑𝑗] = [2, 6] − [2, 6] = [−4, 4]     (42) 

The second type of risk is that lower bound of the completion 
time interval of a successive activity may be less than the upper 
bound of the completion time interval of its preceding activity. 
In this case, completion time intervals of the consecutive 
activities may overlap with each other. Actually, this cannot be 
seen as a strict precedence relation by a risk-averse person. In 
order to illustrate this type of project risk, the crisp equivalent 
model is solved under the following conditions: 𝛼 = 0, 𝛽 =

1, 𝜃 = Δ = √2 . In this case, completion time intervals are 
obtained as [3, 6] and [7, 7] for the consecutive activities 1 and 
4, respectively. The provided solutions are also presented in 
Table 3. It is clear that these completion time intervals do not 
intersect each other and satisfy a strict precedence relation 
which is desired by a risk-averse project manager. In the 
opposite case, completion time intervals are provided as [3,6] 
and [4,10] for the same activities. This overlap between the 
interval-valued completion times may be tolerated by a risk-
seeking project manager. The similar cases are also valid for the 
activities 2-3 and their successor activity-5. The precedence 

relation between the activities 1 and 4 can be summarized as in 
Equation (43). 

𝐹𝑜𝑟 𝛼 = 0 ⇒  [3, 6]  ≤ [7, 7];  𝛼 = 1 ⇒  [3, 6]  ≤ [4, 10] (43) 

The third type of risky situation is that the resource capacities 
may be inadequate while realizing the project. In detail, when 
resource requirements of the relevant activities are subtracted 
from the total available resource capacity at a certain time 
period, the remaining interval-valued resource capacity may 
have a negative lower bound. Thus, resource demands of the 
activities may not be fully satisfied. To exemplify this type of 
project risk, crisp equivalent model is solved under the 

following conditions: 𝛼 =  𝛽 =  𝜃 = 0, Δ = √2. In this case, 
crisp completion times are acquired as given in the second 
column of Table 3. The provided crisp solution is also depicted 
in Figure 2 for resource type-1. 

 

Figure 2: The resource profile with a risky situation. 

It is clear in Figure 2 that lower bound of the resource limit will 
be exceeded by the total resource requirements of the activities. 
When the remaining capacity of resource type-1 is computed 
for the time intervals [1,5],[5,6] and [6,10], it is recognized that 
there is a risk of insufficient resource capacity. The negative 

elements of the remaining resource capacity (𝑅𝐶𝑖
±) are 

presented in Equations (44)-(46) for these time intervals.  

𝑅𝐶1
± = [4, 9] − {[1, 3] + [1, 2]} = [−𝟏, 7] ⟹  [1, 5]  (44) 

𝑅𝐶1
± = [4, 9] − {[1, 3] + [2, 4]} = [−𝟑, 6] ⟹  [5, 6]  (45) 

𝑅𝐶1
± = [4, 9] − {[2, 4] + [1,2]} = [−𝟐, 6] ⟹  [6, 10]  (46) 

In order to generate a risk-free solution demanded by a risk-
averse project manager, the crisp equivalent model is resolved 
under the following condition: 𝛼 =  𝛽 =  𝜃 = Δ = 0. The 
provided results are depicted in Figure 3.  

 

Figure 3: The resource profile without a risky situation. 
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Table 3: Completion time intervals of the activities according to different risk attitudes of the project managers. 

Activity 𝜶 = 𝜷 = 𝜽 = 𝚫 = 𝟎 𝜶 = 𝜷 = 𝜽 = 𝟎 

𝚫 = √𝟐 

𝜶 = 𝜽 = 𝚫 = 𝟎 

𝜷 = 𝟏 

𝜶 = 𝜷 = 𝟎 

𝛉 = 𝚫 = √𝟐 

𝜶 = 𝟏, 𝜷 = 𝟎 

𝛉 = 𝚫 = √𝟐 

𝜶 = 𝟎, 𝜷 = 𝟏 

𝛉 = 𝚫 = √𝟐 

𝜶 = 𝜷 = 𝟏 

𝛉 = 𝚫 = √𝟐 

1 [6,6] [6,6] [8,8] [2,6] [2,6] [3,6] [3,6] 

2 [11,11] [5,5] [6,6] [1,5] [1,5] [1,5] [1,5] 

3 [16,16] [10,10] [5,5] [6,6] [7,7] [2,5] [2,5] 

4 [10,10] [10,10] [12,12] [6,7] [3,10] [7,7] [4,10] 

5 [20,20] [14,14] [10,10] [10,10] [8,11] [6,6] [3,9] 

 

Again, crisp solution is produced as presented in the first 
column of Table 3. But in this case, project makespan increases. 
According to Equation (47), remaining resource capacity 
should be a non-negative interval number. Moreover, total 
resource demands of the activities don’t exceed the lower 
bound of this resource limit. 

𝑅𝐶1
± = [4, 9] − {[1, 2] + [1,2]} = [𝟎, 7] ⟹  [6, 10]     (47) 

The last type of project risk is that total resource demands of 
the activities may exceed the upper bound of the resource limit 
at any given time interval. In order to illustrate this type of 
project risk, the risk parameter (𝛽) is set to “1” where all of the 
other risk parameters are assumed to be zero. When the crisp 
equivalent model is solved under this condition, the results are 
provided as in the third column of Table 3. The profile of the 
resource type-2 is also demonstrated in Figure 4. 

 

Figure 4: The resource profile with unavailability risk. 

According to Figure 4, although the project makespan is 
relatively shorter when compared to the previous cases (given 
in Figures 2, 3), the upper bound of resource type-2 will be 
exceeded within the time interval [2,5]. This also causes 
resource unavailability and cannot be accepted by a risk-averse 
project manager. In this situation, remaining capacity of the 
resource type-2 will also be a huge negative interval number as 
given by Equation (48).  

𝑅𝐶2
± = [5,10] − {[2,4] + [1,2] + [3,5]} = [−𝟔, 4]

⟹ [2, 5] 
(48) 

5 Application to a tank construction project 

In the scope of project management, project scheduling and 
selection problems have a wide range of applications from 
software engineering to monorail transport systems [63],[64]. 
In order to illustrate usefulness, validity and practicality of the 
proposed interval programming based transformation 
approach, a computational study is performed on a real-life 
case study in an LNG (liquefied natural gas) storage tank project 
which has been constructed for a petroleum refinery in Saudi 
Arabia [6],[65],[66]. Similar to the other construction projects, 
LNG tank construction is subject to considerable uncertainty. 
Because, considering the uniqueness of that project, it is 
common that activities are seldom or have never been executed 
before. Therefore, activities’ durations cannot be known 
precisely in advance. Moreover, as it was also emphasized by 
Subulan et al. [65] that activity durations in construction 
projects are generally affected by some external factors such as 
cultural differences among the workers, climate and safety 
condition of the project etc. Actually, construction projects can 
often be delayed by an unexpected weather or disruption of 
logistics [12]. Similarly, amounts of the available resources can 
be seen as the other uncertain inputs that may not be known 
before a construction project realization. 

Briefly, in this case study, the activity duration times, resource 
requirements (Manpower and machinery) and capacities are 
estimated by the project managers using interval numbers 
based on their expertise and knowledge. Because, as it was also 
emphasized by [3]-[5] that it may be impossible to derive the 
probability distributions of the activity durations and resource 
requirements explicitly. Because, similar comprehensive 
construction projects (such an LNG storage tank design) may 
have not been carried out previously. Therefore, project 
managers may have not sufficient data at the beginning of the 
project scheduling phase due to the uniqueness of the project. 
Moreover, such a human expertise on the project parameters 
generally involves ambiguous or vague information which 
cannot be modelled by using stochastic approaches. 

It should also be mentioned here that during the project 
execution, resource capacities, duration times and resource 
requirements of the activities are generally vague in most of the 
practical project scheduling cases. Additionally, vagueness of 
these project parameters may not be described by random 
variables in most of the cases due to the lack of statistical past 
data [3]-[5]. Manpower and machinery such as crane or 
equipment for earth moving, compaction and excavation are 
the main sources of a construction project. In this paper, the 
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manpower and machinery requirements are defined in terms 
of the number of workers and machine-hours, respectively. 
Based on these information, we concerned with a fully 
uncertain LNG tank construction project scheduling under 
limited resources. Some visual depictions are shown in  
Figures 5 and 6 for an LNG storage tank design and 
construction. 

The descriptions, durations and resource requirements of the 
activities in an LNG tank construction project are summarized 

in Table 4 with their immediate predecessors and early/late 
finishing time intervals. The precedence relations among these 
activities can also be seen from the AON project network shown 
in Figure 7. The results of the proposed approach with respect 
to the project managers’ risk attitudes are given in Table 5. 

While generating these results, LINGO 15.0 optimization 
software is used on an Intel Core i7 2.4 GHz IBM PC. Some 
optimization details are also presented in Table 6. 

 

 

 

 

Figure 5: Visualization of an LNG tank construction [67].  Figure 6: Depiction of an LNG storage tank design [68]. 
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Figure 7: AON network diagram of an LNG storage tank construction project. 

Table 4: Activity descriptions and project data in the case study. 

Activity Description Duration 
(Days) 

Manpower 
Req. 

Machinery  
Req. 

Immediate 
predecessors 

Early Finish 
Time (EFT) 

Latest Finish 
Time (LFT) 

Foundation Works 
1.1 Sub-base leveling [2, 5] [5, 8] [50, 60] - [2, 5] [30, 62] 

1.2 Lean concrete [1, 3] [2, 5] [30, 40] 1.1 [3, 8] [33, 63] 
1.3 Formwork to foundation [4, 7] [2, 4] [10, 15] 1.2 [7, 15] [51, 74] 

1.4 Rebar installation to foundation [8, 12] [18, 22] [20, 30] 1.2 [11, 20] [45, 71] 
1.5 Heating conduit & inclinometer installation [4, 8] [3, 5] [40, 50] 1.2 [7, 16] [45, 71] 

1.6 Anchor plates installation [3, 6] [3, 5] [10, 15] 1.4 & 1.5 [14, 26] [51, 74] 
1.7 Pouring concrete to foundation [1, 2] [17, 23] [60, 80] 1.3 & 1.6 [15, 28] [53, 75] 

1st Lift Works 
2.1 Rebar installation to wall [3, 6] [16, 20] [30, 40] 1.7 [18, 34] [59, 78] 
2.2 Formwork to inner tank [1, 3] [17, 19] [10, 15] 2.3 [21, 41] [80, 93] 
2.3 Embedment installation [2, 4] [5, 7] [40, 50] 2.1 [20, 38] [63, 80] 

2.4 Rebar installation of outer wall [1, 3] [16, 20] [20, 25] 1.7 [16, 31] [63, 80] 
2.5 Formwork to buttress & outer tank [9, 11] [6, 10] [15, 20] 2.6 [33, 35] [80, 93] 

2.6 Post-tensioning duct installation [4, 6] [2, 4] [35, 50] 2.3 & 2.4 [24, 44] [69, 84] 
2.7 Pouring concrete [1, 2] [10, 13] [50, 65] 2.2 & 2.5 [34, 57] [82, 94] 

2nd Lift Works 
3.1 Rebar installation to wall [2, 4] [16, 20] [25, 30] 2.7  [36, 61] [86, 96] 
3.2 Formwork to inner tank [1, 2] [13, 16] [10, 15] 3.3 [39, 68] [105, 106] 
3.3 Embedment installation [2, 5] [3, 5] [40, 50] 3.1 [38, 66] [91, 98] 

3.4 Rebar installation of outer wall [1, 2] [13, 17] [20, 30] 2.7 [35, 59] [91, 98] 
3.5 Formwork to buttress & outer tank [6, 10] [8, 11] [15, 20] 3.6 [46, 80] [105, 106] 

3.6 Post-tensioning duct installation & anchor [2, 4] [4, 6] [40, 50] 3.3 & 3.4 [40, 70] [95, 100] 
3.7 Pouring concrete [1, 2] [9, 14] [60, 80] 3.2 & 3.5 [47, 82] [107, 107] 
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Table 5: Computational results according to different risk attitudes of the project managers. 

Activity Risk-
averse 

Partially risk-averse Partially risk-seeker Risk-
seeker 𝛽 = 1 Δ = √2 ∆= 𝜃 = √2 𝛼 = 1, 𝛽 = 0, 

 Δ = 𝜃 = √2  

∆= 𝜃 = 0 ∆= √2 2⁄  𝜃 = 0 

1.1 [5, 5] [5, 5] [5, 5] [2, 5] [5, 5] [5, 5] [2, 5] [5, 5] [2, 5] 
1.2 [8, 8] [8, 8] [8, 8] [5, 6] [8, 8] [6, 8] [3, 8] [6, 8] [3, 8] 
1.3 [15, 15] [15, 15] [23, 23] [20, 20] [12, 15] [10, 15] [7, 15] [14, 15] [7, 15] 
1.4 [28, 28] [24, 24] [20, 20] [17, 17] [16, 20] [18, 20] [15, 20] [14, 20] [11, 20] 
1.5 [16, 16] [16, 16] [16, 16] [13, 13] [16, 16] [10, 16] [7, 16] [10, 16] [11, 16] 
1.6 [34, 34] [30, 30] [26, 26] [23, 23] [19, 26] [21, 26] [18, 26] [17, 26] [14, 26] 
1.7 [36, 36] [32, 32] [28, 28] [25, 25] [20, 28] [22, 28] [19, 28] [18, 28] [15, 28] 
2.1 [45, 45] [38, 38] [34, 34] [31, 31] [26, 34] [26, 34] [23, 34] [21, 34] [18, 34] 
2.2 [52, 52] [45, 45] [41, 41] [38, 38] [32, 41] [29, 41] [26, 41] [24, 41] [21, 41] 
2.3 [49, 49] [42, 42] [38, 38] [35, 35] [28, 38] [28, 38] [25, 38] [23, 38] [20, 38] 
2.4 [39, 39] [35, 35] [37, 37] [34, 34] [29, 31] [23, 31] [20, 31] [22, 31] [19, 31] 
2.5 [66, 66] [59, 59] [55, 55] [52, 52] [43, 55] [41, 55] [38, 55] [36, 55] [33, 55] 
2.6 [55, 55] [48, 48] [44, 44] [41, 41] [34, 44] [32, 44] [29, 44] [27, 44] [24, 44] 
2.7 [68, 68] [61, 61] [57, 57] [54, 54] [44, 57] [42, 57] [39, 57] [37, 57] [34, 57] 
3.1 [72, 72] [65, 65] [61, 61] [58, 58] [47, 61] [44, 61] [41, 61] [39, 61] [36, 61] 
3.2 [79, 79] [72, 72] [68, 68] [65, 65] [50, 68] [47, 68] [44, 68] [42, 68] [39, 68] 
3.3 [77, 77] [70, 70] [66, 66] [63, 63] [49, 66] [46, 66] [43, 66] [41, 66] [38, 66] 
3.4 [74, 74] [63, 63] [63, 63] [60, 60] [49, 59] [45, 59] [42, 59] [40, 59] [37, 59] 
3.5 [91, 91] [84, 84] [80, 80] [77, 77] [59 80] [54, 80] [51, 80] [49, 80] [46, 80] 
3.6 [81, 81] [74, 74] [70, 70] [67, 67] [53, 70] [48, 70] [45, 70] [43, 70] [40, 70] 
3.7 [93, 93] [86, 86] [82, 82] [79, 79] [60, 82] [55, 82] [52, 82] [50, 82] [47, 82] 

Table 6: Some details on optimization results. 

Optimization Results Deterministic Case Proposed Approach 
Risk-averse Risk-neutral Risk-seeker 

Total variables 
Total constraints 

Model class 
Objective value 

Extended solver steps 
Total solver iterations 

CPU time (Sec) 

310 
166 
PILP 
511 

- 
24 

0.12 

42128 
119635 

PILP 
1083 

83577 
28221310 

9255.31 

833 
30703 

31631020 
7153.18 

709.5 
- 

1765 
31.21 

 

A risk-averse project manager may not desire to obtain overly 
imprecise project schedules or high degree of uncertainty on 
the completion time intervals of the activities. Hence, a risk-
averse project manager can obtain crisp and risk-free project 
schedules as in Tables 3 and 5. In other words, when the 
project manager is a risk-averse or partially risk-averse 
person, the provided solutions are necessarily precise and 
crisp. However, project makepan or total project time will 
increase up to 93 days in this situation. When the values of all 
the risk parameters, i.e., 𝛼, 𝛽, 𝜃 and Δ are set to zero, the 
proposed approach may be more suitable for a risk-averse 
project manager. For this reason, risk attitude of the project 
manager should be specified before applying the proposed 
approach. If the project manager is not a risk-averse person, 
the degree of his/her risk tolerance should be determined 
carefully for each risky situation. When the risk tolerance of 
the project manager is increased (or larger values of the risk 

parameters, 𝛼 = 𝛽 = 1.0  and 𝜃 = Δ = √2), project makespan 
will decrease down to the ranges between 47 and 82 days but 
completion times of the activities will take more imprecise 
values as it is seen from Table 5.  

Unfortunately, risks for capacity unavailability of the 
resources and non-satisfaction of the precedence relations 
among the activities will also increase in these solutions. Since 
these solutions include high degree of uncertainty, a risk-
seeking project manager may choose one appropriate crisp 
schedule among these interval-valued schedules while 
realizing the project.  

In order to analyze the effects of the values of different risk 
parameters (𝛼, 𝛽, 𝜃 𝑎𝑛𝑑 Δ), on the project makespan and 
provide some managerial insights, a sensitivity analysis is 
conducted based on a full factorial experimental design. In 
Table 7, computational results of different factor level 
combinations on the project makespan are reported. Then, the 
main effects of different risk parameters on the average 
project makespan (midpoint of the interval valued project 
makespan) are obtained as in Figures 8 and 9 from the analysis 
of full factorial design in Minitab 14. According to Figure 8, 𝛼, 𝛽 
and Δ are the most influential risk parameters since they may 
have a significant impact on the variability of project 
makespan. In other words, project managers should be careful 
when dealing with these project risks related to the 
precedence relations of the activities, capacities and 
availabilities of the project resources. Furthermore, there may 
exist some interactions among these project risks as depicted 
in Figures 9 and 10. According to the interaction graph and 
normal probability plot of the interaction effects, the 
interaction among the project risks for the precedence 
relations and resource capacities may have a moderate impact 
on the average project makespan. Moreover, it is obviously 
seen from these figures that risks for resource capacities and 
availabilities may interact with each other. Therefore, the 
interaction among the project risks for resource capacities and 
availabilities should also be taken into account by the project 
managers carefully in construction industry.  
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Table 7: Full factorial experimental design matrix and computational results on the project makespan. 

Model Run Risk parameter 
for precedence 
relations (𝜶) 

Risk parameter for 
resource capacity 

(𝜷) 

Risk parameter 
for starting time 

(𝜽) 

Risk parameter for 
resource 

availability (∆) 

Interval Project 
Makespan 

CPU time (sec.) 

1 0 0 0 0 [93, 93] 9255.31 
2 1 0 0 0 [82, 82] 2401.31 
3 0 1 0 0 [86, 86] 3867.64 
4 1 1 0 0 [55, 82] 2476.29 
5 0 0 √2 0 [90, 90] 5193.21 

6 1 0 √2 0 [76, 82] 1826.35 

7 0 1 √2 0 [83, 83] 3665.51 

8 1 1 √2 0 [52, 82] 1918.81 

9 0 0 0 √2 [82, 82] 40.19 

10 1 0 0 √2 [66, 82] 118.24 

11 0 1 0 √2 [82, 82] 29.27 

12 1 1 0 √2 [50, 82] 37.40 

13 0 0 √2 √2 [79, 79] 41.28 

14 1 0 √2 √2 [60, 82] 112.57 

15 0 1 √2 √2 [79, 79] 31.16 

16 1 1 √2 √2 [47, 82] 31.21 

 

Figure 8: Main effects plots on the average project makespan. 

 

Figure 9: Normal probability plot of the main effects and 
interaction effects. 

 

Figure 10: Interaction graphs on average project makespan. 

In summary, the proposed approach is able to produce various 
crisp and interval-valued project schedules according to the 
project manager’s attitude toward risk. One of the most 
impressive managerial insight of the produced solutions is that 
the proposed approach presents not only risky solutions for 
risk-seekers but also relatively more precise and risk-free 
solutions can be generated for risk-averse project managers. 
Therefore, more reliable and realizable solutions can be 
derived through the proposed approach. In detail, relatively 
more precise project schedules with longer makespan are 
produced for risk-averse or partially risk-averse project 
managers in construction industry. On the other hand, 
relatively shorter project makespan but more imprecise 
completion time intervals (or project schedules with high 
degree of uncertainty) are obtained for risk-seeking project 
managers. For a risk neutral project manager, completion time 
intervals of the activities have relatively lower degree of 
uncertainty. In other words, lower and upper bounds of the 
completion time interval of an activity are close to each other. 

According to Table 6 and 7, computational complexity, CPU 
time and model size of the fully uncertain RCPSP increase 
dramatically when compared to the deterministic case. It is 
because of increases in the numbers of decision variables and 
constraints. Actually, this is mainly due to the fact that defining 
several time intervals as binary variables and additional 
constraints for handling risky situations. This may cause 
increases in the model dimension and CPU time of the solutions. 
Since the flexibility of risk parameters, optimal solution can be 
found easily within a reasonable computational time for a risk-
seeking project manager. When the values of different risk 
parameters are restricted, solution of the model will be more 
difficult and may take a longer CPU time for a risk-averse 
project manager as it is clearly seen in Table 7. For a risk-
neutral project manager, midpoint values of the risk 

parameters (𝛼 = 𝛽 = 0.5  and 𝜃 = Δ = √2 2⁄ ) are considered. 

6 Concluding remarks 

This paper presents a novel interval programming based 
transformation approach for solving a fully uncertain RCPSP. In 
a fully uncertain RCPSP, all of the project parameters including 
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activity durations, the earliest/latest finishing times, resource 
requirements of the activities and available resource capacities 
are considered as uncertain. Under such a fully uncertain 
environment, interval-valued project schedules can be 
comparatively better than the currently available deterministic 
project schedules. For that reason, classical discrete-time 
binary integer mathematical formulation of the RCPSP is 
handled and modified under interval uncertainty. In the 
mathematical formulation, all of the project parameters as well 
as the project schedules are considered as interval numbers. 
Then in the solution phase of the problem, interval arithmetic 
operations are conducted by means of additional information 
to transform the fully uncertain RCPSP model into a crisp 
equivalent form. Actually, this information reflects the project 
manager’s attitude toward risk. In the proposed transformation 
process, four different risky situations in project scheduling are 
taken into account and illustrated by a trivial numerical 
example. Then, the provided crisp equivalent model is solved 
by a classical optimization technique since it is reduced to an 
integer linear program. The applicability and practicality of the 
proposed approach are also tested on a real-life LNG storage 
tank construction project. According to the computational 
results, relatively more precise project schedules with larger 
makespan are produced for risk-averse and partially risk-
averse project managers. On the other hand, relatively shorter 
makespan but more imprecise completion time intervals with 
high level of uncertainty are provided for risk-seeking project 
managers. 

In this research paper, a transformation approach in which an 
interval program is first converted into its crisp equivalent 
form and then solved by a classical optimization technique is 
proposed. Such indirect solution approaches may cause loss of 
information during the transformation process of uncertainty 
[8]. Moreover, model dimension, i.e., number of constraints and 
decision variables, may generally increase due to the 
transformation operations. Additionally, due to the NP-hard 
nature of the fully uncertain RCPSP, complexity and 
computational time of the solution may increase dramatically. 
For all of these reasons, a direct solution approach without any 
interval to crisp transformation can be developed in the future 
based on a decoding algorithm within a metaheuristic 
application. Thus, the constrained interval arithmetic and 
ranking operations can also be performed within this decoding 
procedure. Such a metaheuristic based direct solution 
approach can also be used to solve large-sized realistic fully 
uncertain RCPSP instances within a reasonable computational 
time. Moreover, the proposed approach can be used just for a 
single mode RCPSP with interval-valued project parameters 
and variables. In the future, it can be extended to solve multi-
mode RCPSP including fuzzy-stochastic parameters and 
variables since the real-life applications may involve different 
types of uncertainties simultaneously.  
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