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Abstract 

In this work, a model for the dynamical four-point bending test is present, with particular emphasis 

on application to an asphalt concrete (AC) composite, a viscoelastic material, based on the Euler-

Bernoulli theory, which approaches an equation where the Young modulus E can be substituted 

by the operator (E + γ∂/∂t), where γ is an internal damping parameter associated to the binder 

viscoelasticity and t is the time. As course aggregate in the composition of the AC mixture, the 

sintered aggregate of calcined clay was used, interesting to be employed as an alternative to the 

lack of natural course aggregate in some regions of the planet, where the presence of sedimentary 

rocks prevails. The results indicated that γ decreases with the temperature and loading frequency 

and the apparent noise in the stiffness versus strain curve is resulted from the natural vibration 

mode of the beam. 
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1. Introduction 

 

The four-point bending test has been exhaustively used to study the complex stiffness modulus of 

viscoelastic materials, such as concrete asphalt (CA) composite [1-5], as well as the fatigue 

processes that take place in these materials [6-12]. Both are very important inputs to develop 

pavement designs [13,14]. The results of this test is interpreted using the Euler-Bernoulli equation 

[15, 16], which originally was proposed to study elastic beams with the cross dimensions much 

smaller than the longitudinal dimension. In the dynamical four-point bending, two equal sinusoidal 

loads are applied to one-third of the beam extremities, at whose center the stiffness and the strain 

are measured. For a linear viscoelastic material, at each time, the complex stiffness modulus is 

related to the strains via the loading frequency and the phase angle. This represent the lag time φ 

between stress and strain by the relation E* = (σ*(t) / ε*(t)), where the stress σ*(t) = σo exp(iωt), 
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the strain ε*(t) = εo exp (iωt – φ) (σo and εo are the maximum stress and strain, respectively), and 

the angular frequency ω is related to the load frequency f by ω = 2πf. As a complex number, E* 

can be written as E* = E1 + iE2 and φ = arctan (E1 / E2) [17]. Physically, the real component E1 

represents the elastic propriety of the material, and the imaginary part E2 its viscous behavior. 

Therefore, E1 is associated with the capability of the material to storage energy and E2 with its 

capability to dissipate energy. For this reason, E1 and E2 are also known as storage and dissipation 

modulus, respectively. 

 

In the usual Euler-Bernoulli model for the four-point bending test, the viscosity behavior of the 

material in general is not take into account. The present work aims to introduce the viscous 

properties in this model as an internal damping parameter, using the simple Kelvin-Voigt model 

[18], to develop an expression for the displacement at the center of the beam of the four-point 

bending test in the steady state regime. In particular, it is important to emphasize that this approach 

is meaningful to represent this displacement by only the first term of the expansion on the natural 

vibration modes of the beam. Moreover, the model was applied to a concrete asphalt composite, 

whose course granular material is constituted by sintered aggregate of calcined clay, as an 

alternative to the lack of course aggregate natural material in the word regions where the presence 

of sedimentary rocks prevails. It has been observed that for concrete asphalt composite the 

damping parameter of the material decreases with temperature and loading frequency. The 

apparent noise that appears in the stress-strain curve is really a consequence of the natural mode 

vibration of the beam. For high temperature, the frequency of this vibration is approximately equal 

to the frequency of the vibration mode. 

 

2. Theory of The Four-Point Bending Dynamic Bending Test for Viscoelastic Material 

 

The four point bending test apparatus consists of a prismatic beam with four support points. Two 

of them are located at one third of the ends, which are used to the loading. The other two are at the 

ends, of the articulated type, which can rotate without promote any displacement in the direction 

of the applied load, as shown in Fig. 1. In this structural form, the central span of the beam is under 

pure bending.  

 

 
Figure 1: Four-point bending apparatus used in this research with equipment mechanisms 

detailed. 
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The loading produces a uniform tension state and a constant bending moment along the central 

part of the beam. Thus, in this region, there are no shear stresses, only pure bending. This condition 

approximates the experimental arrangement to the general hypotheses adopted by Euler-Bernoulli 

to calculate the deformations in a beam. In addition, deformations in the center of the prismatic 

specimen are free of effects arising from points of stress concentration, since the loads are 

concentrated on a third of the ends. In short, this four-point experimental arrangement decreases 

the uncertainties and propagation of errors and reduces the results dispersion. 

 

Given this concerns, let us consider an uniform elastic beam with length L, cross section A and 

mass density ρ, over which is applied a vertical load q(x,t), as a function of the coordinate x, along 

of the beam axis, and of the time t. In the four-point dynamic bending test, a sinusoidal load is 

applied to one-third of both extremities of the beam, as shown in Fig. 2. This load is represented 

as the sum of two Dirac delta functions centered at x = L/3 and x = 2L/3, as follows: 

 

              (1) 

 

 
Figure 2: Pictorial representation of the four points bending test. A sinusoidal load qo sin(ωt) / 2 

is applied to a beam of length L and cross section A, with width b and height h, at x=L/3 and 

x=2L/3. 

 

The Euler-Bernoulli Eq. [8] for an elastic beam is written in the form of Eq. (2): 

 

              (2) 

 

Where y (x, t) is the transverse displacement at coordinate x and time t, E is the Young modulus 

and I is the known inertia moment of the cross section area, with b and h the width and the height 

of the beam, respectively. Using the variable separation method, taking y(x,t) = Y(x)T(t), the 

natural vibration modes are obtained for q(x,t)=0 under the boundary conditions: 

 

Y (0) =Y(L)=0; 

∂²Y (0) / ∂²x = ∂²Y(L) / ∂²x = 0, which  are  given  by Yn(x) = sin(βn x), em que βn = nπ / L, com 

n=1,2,…) associated to the angular frequency: 

 

                 (3) 
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The general solution of Eq. (2) for q(x,t) = 0 can be obtained in terms of those natural modes of 

vibration. In order to introduce the viscosity in the model given by Eq. (2), we can use the simplest 

viscoelastic model of Kelvin-Voigt [10], for which the relation between the tension and 

deformation is given by: 

 

                 (4) 

 

Where γ is an internal dumping parameter of the material due to its viscosity. Substituting E for E 

+ γ∂/∂t into Eq. (2), we obtain the Euler Bernoulli equation for a viscoelastic uniform beam 

represented by: 

 

            (5) 

 

whose solution can be written in terms of the natural vibration modes Yn(x) as: 

 

                (6) 

 

where cn(t) is a time dependent coefficient to be determined. 

 

Substituting Eq. (6) into Eq. (5), and using the orthogonality properties of the natural vibration 

modes (δm,n is the delta of Kronecker), the coefficients cn(t) are obtained from the solution of the 

differential equation: 

 

              (7) 

 

with the following definitions: 

 

                  (8) 

 

                (9) 

 

Using the Laplace transform and the convolution theorem [19], we find that: 

 

        (10) 
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Inside the integrand in the spatial coordinate x of Eq. (10), there is the Dirac delta function, which 

appears in the load q(x,t) given by Eq. (1). Substituting Eq. (1) into Eq. (10) and using the delta 

function property ∫𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑓( 𝑥0),  we find: 

 

      (11) 

Where 

 

               (12) 

 

              (13) 

 

The first and the second terms inside the bracket, in Eq. (11), represent the steady and the transient 

states, respectively. The steady state regime occurs in the limit  for which the 

transient term disappear. In this limit, cn(t) becomes: 

 

          (14) 

 

From Eq. (6) and Eq. (14), the displacement at the center of the beam (x = L/2) is written as: 

 

            (15) 

 

where 

 

         (16) 

 
The peculiar characteristic of the loading positions in the four point bending test, which are equally 

distributed at x = L/3 and x = 2L/3, produces interesting values for κn. It is √3 for n = 1 and is 

equal to zero for the next three values of n (n = 2, 3, 4). This means that for the first four modes 

of natural vibration of the beam, only the first mode is excited. The next vibration modes to be 

excited are the fifth and the seventh, with 𝜅𝑛 = −√3 , since the sixth mode is also not excited. 
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            (17) 

 

In other words, the terms of the series given by Eq. (15) are different of zero if n = 1 or if n is a 

prime number or multiple of prime numbers greater than 3 (n = 6m±1 > 3, with m ϵ N), where N= 

{1, 2, 3, 4, 5, 6…} represents the set of natural numbers. 

 

From the above considerations, it was verified that, for the usual frequency used in the four-point 

bending test, which varies from 1 to 20 Hz, a good approximation to the displacement at the center 

of the beam is achieved, only take into account the first term of the series given by Eq. (15). In this 

approach, Eq. (15) becomes: 

 

            (18) 

 

In order to corroborate with that statement, Fig. 2 illustrates the displacements at the center of the 

beam as a function of time y(L/2,t), that were obtained using Eq. (15) (black solid line) and Eq. 

(18) (red solid circle). For sake of numerical calculation, the same parameters were used in the 

experimental four-point bending tests, which will be presented in the next section. The results 

obtained from Eq. (18), where we take only the first term of the series given by Eq. (15), are in 

good agreement with the results obtained from this complete series. 

 

3. Materials and Methods  

 

The beams used in the four-point bending tests were made of asphalt concrete composite, a 

viscoelastic material, as shown in Fig. 3, which contains the sintered aggregate of calcined clay 

(SACC) as a coarse aggregate, sand (fine aggregate), Portland cement (filler) and asphalt binder 

AC 50/70. The use of SACC as coarse aggregate is due to its potential for employment in 

construction of roads located in regions of the planet where shortage of stony material and 

abundance of clay material. The physical characteristics of the composite participating materials 

respected ASTM and AASHTO protocols. 

 

 
Figure 2: Displacement as a function of time given by Eq. (15) (black line) and Eq. (18) (red 

circle), which presented very good agreement. 
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Figure 3: Prismatic specimens (beams) tested in this study. 

 

The mechanical characteristics of the CA composite were performed with the four-point bending 

test, which eighteen prismatic beams were experimented, with the following average dimensions:  

length L = 400.00 mm, width b = 65.40 mm and height h =51.64 mm. The values of the stiffness 

E* and phase angle φ were conducted under four different applied loading frequencies 1, 3, 10 and 

20 Hz, and seven different temperatures, varying from 25 to 55 °C, with increments of 5 °C, using 

strain controlled mode at a deformation ratio of 50 μm/m . The experimental program followed EN 

12697-26 protocols [5]. 

 

4. Results and Discussions 

 

4.1. Materials and Mineral Dosage Characteristics 

 

The physical characteristics of the aggregates employed on concrete asphalt (CA) composite are 

presented in Table 1 (coarse aggregate), Table 2 (fine aggregate) and Table 3 (volumetric 

parameters). According to Superpave methodology, the mineral dosage is detailed on Table 4. 

 

Table 1: Coarse aggregate characterization. 

Tests Component Standard 

SACC 

Bulk specific gravity, Gsb (g/cm³) 1.855 ASTM C 127 

Bulk specific gravity in the saturated surface dry condition, 

Gsbssd (g/cm³) 

2.133 

Apparent Specific Gravity, Gsa (g/cm³) 2.571 

Absorption (%) 15.0 

Loose Unit Weight, Wul (kg/m³) 1062.0 AASHTO T 19 

Rodded Unit Weight, Wur (kg/m³) 1126.4 

Adhesion Satisfactory ASTM D 5100 
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Table 2: Fine aggregate characterization. 

Tests Component Standard 

Sand 

Bulk specific gravity, Gsb (g/cm³) 2.632 ASTM C 128 

Bulk specific gravity in the saturated surface dry 

condition, Gsbssd (g/cm³) 

2.692 

Absorption (%) 0 

Rodded Unit Weight, Wur (kg/m³) 1675.9 

Adhesion Satisfactory AASHTO T 19 

 

Table 3: Volumetric parameters. 

Parameters Unit Material Standards 

SCCA mixture 

Binder content % 10.9 ASTM D 1188 

Air voids, Va 4.0 

Voids in mineral aggregates, VMA 16.6 ASTM D 2041 

Voids filled with asphalt, VFA 75.0 

 

Table 4: AC mixture composition with SCCA. 

Components Percentage content (%) Standard 

SCCA 

Sand 

Portland 

cement 

AC 50/70 

62.0 

34.0 

4.0 

10.9 

Superpave guidelines: Strategic Highway 

Research Program (SHRP)  

 

4.2. Mechanical Characterization 

 

The mechanical parameters of the CA composite were performed with the four-point bending test 

equipment. The eighteen samples were tested. However, in order to respect the EN 12697-26 [5] 

guidelines, those samples that presented variation of up to 3% when repeating the first 1 Hz 

frequency, were discarded. Table 5 shows the results of the stiffness E*, in MPa, and the phase 

angle φ, in degrees. 

 

Table 5: Stiffness parameters as a function of the load frequency f (Hz) and temperature T (°C). 

T [°C] f [Hz] 

1 3 10 20  
E* (MPa)  φ (°) E* (MPa) φ (°) E* (MPa) φ (°) E* (MPa) φ (°) 

25 1302.0 22.4 1608.0 22.0 1953.4 16.4 1998.2 14.4 

30 1048.6 24.5 1312.6 22.7 1649.8 23.0 1776.6 20.0 

35 712.6 30.1 940.4 30.1 1211.6 31.7 1268.2 31.7 

40 399.6 37.0 555.4 42.9 751.8 33.5 763.4 38.7 

45 235.4 40.3 331.4 42.1 457.4 40.2 534.0 56.9 

50 173.6 40.5 241.8 42.3 328.6 47.7 384.6 73.2 

55 107.0 39.6 150.2 42.3 202.0 50.0 351.6 83.5 
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From this table, results indicated that, for fixed frequency, the stiffness decreases with the 

temperature, and for fixed temperature, the stiffness increases with frequency. On other hand, for 

fixed frequency, the phase angle increases with temperature. Similar behavior was evidenced by 

Melo, 2014 [20]. The author obtained the same stiffness parameters for a hot-mix asphalt mixture 

also under four-point bending tests. However, in despite of the resembling employed methodology, 

different mixture components were used, which were crushed stone and gravel as coarse aggregate, 

stone dust as fine aggregate and hydrated lime as filler. For comparative reasons, Fig. 4 illustrates 

the found patterns (E*, Fig. 4(a) and φ, Fig. 4(b)), considering the temperatures that coincided with 

those approached in this study (25 and 30 °C). 

 

 
Figure 4: a) Comparison between the dynamic modulus E* (MPa) and phase angle φ (°) obtained 

under different loading frequencies, at 25 and 30 °C, for this study and Melo (2014). 

 

4.3. Determination of Viscosity Coefficient 

 

In this section, using the data shown in Table 5, the calculation of the viscosity coefficient γ 

introduced in the Euler-Bernoulli model in Eq. (5) is presented, as a way to represent the internal 

viscosity of the CA composite in the four-point bending test. From Eq. (18), the phase φ can be 

approximated of the displacement in relation to the force, which is described together with the 

stiffness E* in Table 5, by φ = φ1 corresponding to the first vibration mode of the beam. Using 

Eqs. (3), (8) and (12), the viscosity coefficient γ is given by: 

 

             (19) 

 

Fig. 5(a) shows the viscosity coefficient γ (MPa.s) as a function of temperature, for load frequency 

of 1 (black), 3 (red), 10 (blue) and 20 Hz (green). A visual analysis conduct us to conclude that the 

parameter γ decreases with the temperature. This is in accordance with what is expected of a 

composite material having as one of its components a polymeric material, such as the AC 50/70 

binder, which for higher temperatures becomes less viscous. In addition, this decreasing is more 

accentuate for lower frequency. In the other hand, Fig. 5(b) presents the viscosity coefficient γ as 

a function of frequency for three different temperatures of 25 (black), 35 (red) and 45 °C (blue). 

The graph also illustrates a decreasing with the amount of frequency for all temperatures. Hence, 
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it is consistent with the observation that the storage modulus increases and the dissipation modulus, 

which is associated with the viscosity of the material, decreases with frequency. 

 

Furthermore, it was observed that the spectra of the load as a function of time presents apparent 

noise. This phenomenon can be explained as a correlation to the natural vibration modes of the 

beam [16]. As long as a pulse of load is applied to the beam, before a knew pulse be applied, it 

vibrates with its natural vibration mode, so that, the measured spectra is a composition of the both 

effect, the forced motion, due to the external applied load, and the beam natural vibration. This 

effect is more pronounced at higher temperatures. In Fig. 6, the sinusoidal spectra of the load is 

shown, as a function of time for two different frequencies of 1 and 3 Hz, at temperature of 50 °C. 

At the left column of this figure, three spectra of the sinusoidal charge (a and c) are registered, and 

at the right column, its corresponding excerpt (b and d), which represent the details inside the red 

rectangles in the left side column. The excerpts shows periodic behavior of the apparent noise, 

with an approximated period of T1 ≈ 0.0171s, which correspond to a frequency f1 = 58.5 Hz. This 

oscillation around the mean value of the spectrum is an indication of the flexural wave propagation 

inside the beam, i.e., it is not a signal error. 

 

 
Figure 5: a) Viscosity coefficient (MPa.s) as a function of temperature (°C) for frequency of 1, 3, 

10 and 20 Hz. b) Viscosity coefficient (MPa.s) as a function of frequency for different 

temperatures of 25, 35 and 45 °C. 

 

 
Figure 6: Spectra of force as a function of time. The excerpts at the right column show the 

apparent noise due to the natural vibration modes of the beam. 

http://www.granthaalayah.com/


[Spínola et. al., Vol.7 (Iss.9): September 2019]                                       ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

                                                                                                                                        DOI: 10.5281/zenodo.3484076 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [425] 

 

5. Conclusions 

 

In conclusion, the dynamical four-point bending test in the light of the Euler-Bernoulli theory was 

studied, taking into account the viscosity of the material via the Kelvin-Voigt model. This model 

was introduced in Euler-Bernoulli equation, substituting the Young modulus E by the operator (E 

+ γ∂/∂t), where γ is an internal damping parameter. Beams were made with concrete asphalt, 

manufactured with sintered aggregate of calcined clay as the coarse aggregate, promising 

alternative to the lack of crushed stone in determined regions of the world, especially Amazon 

region, in northern Brazil. In these terms, the following conclusions can be drawn: 

• From the stiffness and the phase angle measured with the four-point bending test, results 

indicated that, for fixed frequency, the stiffness decreases with the temperature, and for 

fixed temperature, the stiffness increases with frequency. According to the specialized 

literature, this behavior is quite acceptable; 

• In addition, the viscoelastic coefficient could be calculated from the stiffness parameters 

and the developed equations. The internal damping parameter decreases with temperature 

and loading frequency; 

• The apparent noise in the spectra of the force versus time is an indication of the flexural 

wave propagation inside the beam due its natural vibration modes produced by the load 

impact. Thus, the measured spectra is a composition of forced motion, due to the external 

applied load, and the beam natural vibration; 

• The excerpts shows periodic behavior of the apparent noise, with an approximated period 

of T1 ≈ 0.0171s, which correspond to a frequency f1 = 58.5 Hz. This oscillation around the 

mean value of the spectrum is an indication of the flexural wave propagation inside the 

beam. 
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