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2  which are analytic in the open unit disk  1:C  zzU . We introduce 

several inclusion properties of the new k-uniformly classes   ;;kUS ,   ;;kUC ,  

  ,;;kUK   and    ,;;kUK   of analytic functions defined by using the Wright function 

with the operator  

 ,W   and the main object of this paper is to investigate various inclusion 

relationships for these classes. In addition, we proved that a special property is preserved by some 

integral operators. 
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1. Introduction 

 

Let  A  denote the class of functions of the form 

                                     n

n

n

zazzf 





2

                                                                                    (1.1) 

Which are analytic in the open unit disk   1:C  zzU  . If  f   and  g  are analytic in  U  , 

we say that  f   is subordinate to  g  , written  gf    or  )()( zgzf   , if there exists a Schwarz 
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function    , analytic in  U   with    00    and    1z    )( Uz  , such that  ))(()( zgzf     

)( Uz  . In particular, if the function  g   is univalent in  U  , the above subordination is equivalent 

to )0()0( gf    and )()( UU gf    [10]  and  [9] see . 

            

For functions  ,)( Azf   given by  )1.1(  , and  A)(zg   defined by  
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then the Hadamard product (or convolution) of  )(zf   and  )(zg   is given by  
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For  1,0    , we denote by        ,,, KCS 
  and    ,K   the subclasses of  A   

consisting of all analytic functions which are, respectively, starlike of order   , convex of order  

 , close-to-convex of order    , and type     and quasi-convex of order   , and type     in  U . 

         

Now, we introduce the subclasses   ;kUS ,   ;kUC ,    ,;kUK   and    ,;kUK   of the 

class  A   for  1,0    , and  0k  , which are defined by 

 

                          
   

,1
)()(

:;
























zf

zfz
k

zf

zfz
fkUS  A                                         (1.2) 

 

                   
   

,
)()(

1:;


























 

zf

zfz
k

zf

zfz
fkUC A                                          (1.3) 

 

         
   

,1
)()(

..;:,;






















 

zg

zfz
k

zg

zfz
tskUSgfkUK  A                             (1.4) 

 

     
 

 
 

 
.1

)()(
..;:,;












































zg

zfz
k

zg

zfz
tskUCgfkUK  A                       (1.5) 

We note that 
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Corresponding to a conic domain  ,k   defined by 

 

                              ,1: 22

,   vukuivuk                                                         (1.6) 

 

we define the function   zqk ,   which maps  U   onto the conic domain  ,k   such that  1 ,k   

as the following: 
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Where   
zk

kz
zu






1
  and   k   is such that  
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   By virtue of the properties of 

the conic domain  ,,k   we have 
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Making use of the principal of subordination and the definition of   zqk ,  , we may rewrite the 

subclasses   ;kUS  ,   ;kUC  ,    ,;kUK   and    ,;kUK   as the following: 
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We consider the following normalized form 
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where  .,Z\C,1 0 Uz    Note that the normalized wright function   ,W   was studied 

recently in [13]. 

 

Now, we define an operator   ,W   as follows: 
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where Uz  ,Z\C,1 0   . Note that, if  
)1(

)(
z

zzf


   then the operator  )(, zfW   reduces 
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Note that the function  )(,, zcb   was studied recently in [1, 2, 11] and  )(zg   was investigated in 

[3, 12, 14 ]. 

 

Corresponding to the function  )(, zW   defined by (1.13), we introduce a function  )(, z
W   given 

by 
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We now define an operator  AAW :)(, zf
   by 
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If  )(zf   is given by  )1.1(  , then from  )17.1(  , we deduce that 
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It is easily to deduce from (1.18) that. 
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Next, by using the operator  

 ,W  , we introduce the following classes of analytic functions for  

,0,Z\C,1 0       0k   and  1,0    : 
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We also note that 

 

       ,;;;;  kUCzfzkUSzf    

 
and 

                                       .,;;,;;  kUKzfzkUKzf                                         (1.24) 

 

In this paper, we investigate several inclusion properties of the classes    ;;kUS  ,    ;;kUC  

,    ,;;kUK   and    ,;;kUK   associated with the operator  

 ,W   Some applications 

involving integral operators are also considered. 

 

2. Inclusion Properties Involving the Operator 

 ,W   

 

In order to prove the main results, we shall need the following lemmas. 

 

Lemma 1 [5]. Let   zh   be convex univalent in  U   with    10 h   and     0  zh    

 C,   . If   zp   is analytic in  U   with    10 p  , then 
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Lemma 2 [8]. Let   zh   be convex univalent in  U   and let  w   be analytic in  U   with  

   .0 zw   If   zp   is analytic in  U   and     00 hp   , then 
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where   zp   is analytic in  U   with    10 p  . From (1.19) and (2.5), we have 
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Differentiating (2.6) with respect to  z   and multiplying the result equation by  ,z   we obtain 
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From this and the argument given in Section 1, we may write 
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                                     .0)1(, U zzqk                                                                   (2.9) 

 

Applying Lemma 1 to (2.8), it follows that     zqzp k ,  , that is,    ;;kUSf   . 

 

Theorem 2.     .;;;;1  kUCkUC    

Proof. Applying (1.24) and Theorem 1, we observe that 
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which evidently proves Theorem 2. 

       

Theorem 3.     .,;;,;;1  kUKkUK    

Proof. Let    ,;;1 kUKf   . Then, from the definition of    ,;;1 kUK   , there exists a 

function     ;kUSzr    such that 
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where   zp   is analytic in  U   with    10 p  . Since    ;;1 kUSg    , by Theorem 1, we 

know that  g      ;;kUS   . Let 
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Differentiating both sides of (2.14) with respect to  z   and multiplying the result equation by  z , 

we obtain 
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Now using the identity (1.19) and (2.15), we obtain 
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Since  0)1(    and    
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 , we see that 
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Hence, applying Lemma 2, we can show that     zqzp k ,   so that    ,;;kUKf   . This 

completes the proof of Theorem 3. 

         

Theorem 4.     .,;;,;;1  kUKkUK     

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the equivalence 

(1.24), we can also prove Theorem 4 by using Theorem 3 and the equivalence (1.25). 

 

3. Inclusion Properties Involving the Integral Operator  Fc   

 

In this section, we consider the generalized Libera integral operator   ] 7 6, [4, seecF   defined by 
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where  zp  is analytic in U  with    10 p  . From (3.2), we have 
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Taking the logarithmic differentiation on both sides of (3.4) and multiplying by  z  , we have 
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which proves Theorem 6. 
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Theorem 7. Let  
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 . If    ,;;kUKf   , then      ,;;kUKfFc   . 

Proof. Let    ,;;kUKf   . Then, in view of the definition of the class    ,;;kUK  , there 

exists a function    ;;kUSg    such that 
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Now using the identity (3.3) and (3.11), we obtain 
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Applying Lemma 2 to (3.12), it follows that     ,, zqzp k    that is     ,;;kUKfFc   . 

            

Theorem 8. Let  
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 . If    ,;;kUKf   , then      ,;;kUKfFc

  . 

 
Proof. Just as we derived Theorem 6 as consequence of Theorem 5 and (1.24), we easily deduce 

the integral-preserving property asserted by Theorem 8 by using Theorem 7 and (1.25). 

 

Reference 

 
[1] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen. 73 (2008), 

155-178. 

[2] A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral 

Transforms Spec. Funct. 21(2010), no. 9, 641-653. 

[3] A. Baricz, P. A. Kup an and R. Sz asz, The radius of starlikeness of normalized Bessel functions 

of the rst kind, Proc. Amer. Math. Soc. 142(2014), no. 6, 2019-2025. 

[4] S. D. Bernardi, Convex and univalent functions, Trans. Amer. Math. Soc., 135(1996), 429-446. 

[5] P. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differential 

subordination, in General Inequalities, 3 (Oberwolfach, 1981), vol. 64 of Internationale 

Schriftenreihe zur Numerischen Mathematik, pp. 339--348, Birkhäuser, Basel, Switzerland, 1983. 

[6] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755--

658. 

[7] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 

17 (1966), 352-357. 

http://www.granthaalayah.com/


[Ali *, Vol.7 (Iss.9): September 2019]                                                      ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

                                                                                                                                        DOI: 10.5281/zenodo.3473005 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [229] 

 

[8] S. S.Miller and P. T.Mocanu, Differential subordinations and univalent functions, Michigan Math. 

J., 28(1981), no. 2, 157--172. 

[9] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on 

Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New 

York and Basel, 2000. 

[10] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables 

Theory Appl., 48(2003), no.10, 815--826. 

[11] S. R. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions,Bull. 

Malays. Math. Soc. (2) 35(2012), no. 1, 179-194. 

[12] J. K. Prajapat, Certain geometric properties of normalized Bessel functions, Appl. Math.Lett. 

24(2011), no. 12, 2133-2139. 

[13] J. K. Prajapat, Certain geometric properties of the Wright functions, Integral Transforms Spec. 

Funct. 26(2015), no. 3, 203-212. 

[14] R. Szasz and P. A. Kupan, About the univalence of the Bessel functions, Stud. Univ. Babes-Bolyai 

Math. 54(2009), no. 1, 127-132. 

 
 
 

*Corresponding author. 

E-mail address: ekram_008eg@ yahoo.com 

http://www.granthaalayah.com/

