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Abstract 

The detection of moving particles and the ability of processing the captured images using high-

speed cameras can be an effective means of monitoring the sliding, and rolling movement of bed-

load sediment along river beds. In this study, two different types of synthetic Plexiglas Beads of 

size 7mm and 10mm with porosity 0.7125 and 0.8522 respectively were used for the evaluation of 

the velocity profiles in a flume bath. Potassium permanganate (KMnO4) crystal of molecular 

weight 158.03 and density 1450 kg/m3 was used as a passive dye-tracer. The cavity region of the 

flat plate was attached to the oscillatory mechanism in the flume bath where plume activities were 

monitored. When there is oscillatory flow, the crest of roughness elements induce elevation zones 

to force (advection) the flow upwards and pull it down at the trough phases as the tracer plume 

scales over the obstacles, establishing low and high pressure zones in the flow. The enhanced 

particles in the process mix and dissolve or decay faster with increasing oscillatory frequency, 

resulting into inter-particle collisions which initiate the conditions of advection and shear 

dispersion. This phenomenon could be a combination or coupling of the processes of gradient 

fluctuations enhanced through dispersion due to pressure in the macroscopic pore-fluid field 

caused by the oscillatory motion. The lightening as the dye-particles cascade in the porous medium 

is associated with mixing-gain due to the enhanced oscillatory motion. It was observed that the 

depth of the tracer-blob entrapment is inversely proportional to the friction velocity. 
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1. Introduction 

 
The motion of dye plumes as bed load particles is investigated under steady and spatially uniform 

turbulent flow into and above two flat porous beds with uniform Plexiglas balls of sizes 7mm and 

10mm. The experiments were designed to mimic and explore the sediment bed of the coastal zone 

which exhibits a large variation of sediment sizes. Migration of bed load particles and their 

respective classification over rough permeable layers on flat beds can be found in Nikora et al 

(2007b). Several research papers have interpreted the behavior of the cascading particles and 

transfer mechanisms as having fundamental importance in river morphodynamics, such as 

resulting from variations of bed materials, particles rolling, and migrating low jump successions 

(saltations) along the bed of open channels. For instance, Keramaris (2015, 2017) compared flow 

experiments in impermeable and permeable beds and found significant changes in the velocity 

distribution and turbulent characteristics due to porosity differences. Nielson et al (2001) used 

sand-roughened beds to show the effects of infiltration while studying sediment migration. There 

is also the contentious claim that hydraulic roughness depends strongly on the velocity profile of 

the logarithmic region than on bed grain size. However, turbulence measurements of some rivers 

by Smart (1999) supported those of Nezu and Nakagawa (1993) which show that turbulence 

intensity is highest near the channel bed but decreases on approaching the water surface. Choi and 

Waller (1997) observed that turbulence intensity into the depth of porous medium is dependent on 

the Darcy number of the elements and not related to the Reynolds number (speed) and shape of 

the velocity profile in the region.  Prinos et al (2003) also confirmed that the fluid’s kinetic energy 

penetrating the porous medium increases with the Darcy number which is dependent on the 

structural geometry of the roughness elements (the pore size of the cavities or gaps between the 

elements).  

 
Svenson and Rahm (1991) used the benthic sub-layer to study water quality and mass transfer 

problems due to dispersion mechanisms over thin vertical interfacial layers. Shams et al (2003) 

investigated the near-edge flow domain of a porous medium by introducing shear-flow across 

arrays of rods to obtain the flow pattern within, using a PIV. Their work affirms that a secondary 

motion arises during the shear flow in the square array of rods which is capable of heat and mass 

transfer between the first and second rows except contaminant is trapped during the flow. 

Infiltration, according to some researchers (Nielson et al., 2001, Suga and Kuwata, 2014; Suga, 

2016), has no main effect on the migration direction of bed-sand except to reduce their effective 

transport. 

 
Stansby (2003) observed that in a turbulence based two layer mixing-length model, the horizontal 

diffusion scale (length scale) is a multiple of the vertical mixing length scale, implying that 

horizontal and vertical mixings due to applied pressure gradients are responsible for the eddy 

viscosity. A study involving oscillatory-grid aided turbulence by An and Chen (2004) has also 

shown the phenomenon of turbulence-driven diffusion. Some researchers (Davis and James, 2003; 

Shim and Duan, 2017) investigated the role of the interior rows of the porous medium in 

dissipating energy where it was shown that the slip velocity is dependent on the hydrodynamic 

resistance of the surface elements and not the inner layers. Pechlivanidis et al. (2012) reported 

from an open-channel flow experiments using Particle Image Velocimetry, that the velocity is a 

function of the roughness height and the total flow depth.  
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This study relates to the motion of the fluctuating parcels of dye tracer just above the roughness 

boundary layer that has been likened to a logarithmic scale, in the interfacial and subsurface sub-

layers.  

 
2. Experimental Set-Up with Procedure  

 
Potassium permanganate (KMnO4) crystals of molecular weight 158.03, and density 1450kg/m3 

was used a passive dye-tracer. Some 0.05 g of dry KMnO4 was scooped using a spatula to a flat 9 

mm2 shape of cotton-wool and wrapped into a small ball with a finger tube-grip material (ball 

diameter < 5mm). The ball is trapped into the porous cavity on a flat plate and the trap position 

was varied from the top to the near bed as the oscillatory speed is regulated.  

 
Tap water is introduced into the tank and allowed to stabilize and subsequently varied from 20.0cm 

to 40.0cm. The crystal particles in the tube-grip dissolve and settle onto the bed being denser, prior 

to inception of the oscillatory movement. The air pressure valve is released, and the speed regulator 

is set and varied from 0.5m/s start-mark. The oscillatory rig responds at 0.22m stroke length. The 

two black stripe marks on the external wall of the flat plate (which holds the porous elements) 

enable the determination of the center of oscillation. 

 
At the 3x7mm plexi-ball stacks, the tracer blob position within the cavity region was variably 

trapped at distances 0.021m, 0.014m, 0.007m away from the impermeable bed and 0.000 m (i.e., 

at the bottom). For the 2x10mm stacks, the position was varied by 0.02m, 0.01m and at flume bed 

(0.000 m), such that the earlier arrangement is 0.001m higher. The porosity of the 7 mm 

arrangement estimates to 0.7125 and that of 10 mm 0.8522. The Measurements were taken 

vertically away from the roughness bed region, aided by millimeter-squared graphic 

transparencies. The flow distances were measured across the longitude of flume cross-section 

within the cavity area. The velocity record obtained was varied at every oscillatory time interval 

of 0.5 m/s up to 4.0 m/s. The oscillatory events were also monitored with a stop-clock and 

recorded. The still water level in the tank was stabilized at a maximum height of 0.40 m. 

 
The Plexiglass frame of the tank opposite the test-window was curtained and the overhead light 

source dimmed to reduce lighting source that may have direct effect on the CCDC lens by 

reflection, to account for more contrast of the glass beads. The tube-grip KMnO4 ball was installed 

initially at the top of the cavity formed with the glass beads and then relocated further vertically 

down the bed at the completion of each group of experiments. A total of about seventy (70) 

averaged results were analyzed. 

 
The distribution of the plume particles due the velocity describes the boundary layer thickness. 

The motion of the plumes tending towards the vertical direction may be considered more rapid 

compared to those lateral along the bed.  

 
Parameter evaluation and scaling of CCDC plume events 

The wavy plume parcels visualized in the free-fluid phase above the roughness elements in the 

mean direction of oscillatory flow were assumed to represent floating particles of the passive test 

substance. These images were transferred from the VCR analogue tapes into a Sony DV 

Camcorder DCR-PC55E and later digitized by copying into computer using i•LINK (IEEE1394) 
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cable connector. The images of the plume parcels were then digitally enhanced and tracked from 

pre-, and through post-flow initiation stages. The Arc Soft Showbiz 2 software, a professional 

video image sequencing application, was used to digitally process the CCDC video clips. The 

motions of the plume parcels were tracked along the vertical flow fields and measured just above 

the water-porous elements interface aided by millimetre markers on the Plexiglass test-window 

pane relative to their respective trap-posts. The visual area of interest here is the plume parcel 

displacement from the trap-posts to and above the interfacial layer. Plume parcels were therefore 

followed from the trap-posts per complete cycle of oscillation and with increasing flow rates. 

 
3. Mathematical Analysis 

 

 The flume medium has the fluid phase and the porous material-in-fluid region, where 1h = height 

of the water only column, 2h = porous preform (roughness)-in-fluid region medium. The governing 

equation related to the influx in the roughness medium at steady state may take the Darcy velocity 

form:  

 

( ) ( )z = −  +q K                                                                                        1 

 

Where h= − q K  for x - z heterogeneous plane of the porous elements, p g = = pressure head, 

( h z= ) = elevation head. Assuming isotropy, K (hydraulic conductivity) is defined as a function 

of the pressure head ( )K . Such that the boundary conditions in this case relates to a well 

distributed instantaneous tracer source bounded by 
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The flume medium has the fluid phase and the porous material-in-fluid region. The steady and 

progressive transfer of mass at the porous-fluid interface may be described by the condition 
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For the initial conditions the mass concentration fields in relation to both regions may be described 

by their respective compressibility constants as 
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The compressibility constants are assumed equal if tracer mass are found in both mediums (i.e.,

1 = = ), but 0 or 1 respectively depending on the region tracer mass is present. 
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The velocity describing the mass distribution in first region may be related to the form: 
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The assumed uniform flow profile from the interface to the porous medium takes the form (as in 

Engelund, 1970): 
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4. Fitted Flow Parameters 

 
The cavity region is the visual monitoring area of interest, such that the displacement of the plume 

parcels along the vertical away from the TP was tracked with time using Arcsoft Showbiz 2. For 

porosity determination, the flat plate used was partitioned into two panels. Total volume of plate 

is 1320 m3, and for the 7 mm arrangement as example, the width = 98 mm, length = 59 mm, depth 

= 21mm. So the volume occupied by the Plexiglass balls (pore volume) divided by total volume 

estimates the porosity to 0.7130. 

 
The measured variables were the variable vertical plume heights, hplm, the maximum velocity, um 

applied, and time, (T=2t) records. At least five (5) tests were performed on each case and 

measurements averaged.  

 
5. Analysis and Discussions 

 
Comparisons of the Test Cases at the 7mm and 10mm walls 

The estimated porosity for the 7mm category is 0.7125 and that of 10 mm category is 0.8522. 

Estimates from the governing parameters from the experiments using CCDC shows that as the 

position of the tracer blob is shifted through the porous preforms from the top towards the bottom 

the friction velocity increases with the oscillatory velocity.  

 
Tracer blob trapped at 0.021m above bed level of the 7mm arrangement 

The averaged relative heights of the plume, plm wh H  (dimensionless) varied from 0.013 to 0.025 

during the period of oscillation, as the velocity was regulated from 4 m/s to 0.3 m/s respectively. 

The curve in Figure 1a illustrates that the flow near the bed may be controlled by quasi-

equilibrium in turbulent kinetic energy (TKE) which balances the dissipation in the rough cavity. 

This implies that TKE rises to a maximum as the velocity becomes higher being sustained by 

diffusion.  This behavior increases the length scale with distance away from the near-wall region. 

The averaged maximum velocity within the confidence interval estimates to 2.033±0.439m/s. The 

fitted parameters in this category include  = 0.41,
30

sk
= 0.2613, *u =0.0101m/s and roughness 

height, plmRh z= = 0.0177 (m). 
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(a)                                                                                                (b) 

Figure 1: Velocity Profile of Plume from Tracer Blob Trapped At 0.021m and 0.02m of the 7mm 

and 10mm Stacks Respectively Above Bed 

 
The estimated amplitude Reynolds number in this case was 2.367 x 103 with a mean value within 

the confidence interval estimate (WCIE) as 3961.1±652.30. The Froude, number, Fr, is 5.7783 x 

10-3 with a mean varying WCIE as 0.0024±0.0008, obtained from the experiments. The mean 

velocity input also from experimentation was 0.076 m/s. The ratio of the roughness height to the 

friction length, k+ is shown in Figure 1a, indicating fully rough flow, with Darcy permeability 

WCIE as 0.00023±2.5x10-5m/s. 

 
The profile of the curve shows the influence of the effect of rough bed material region as it moves 

away towards the outer regions. At the bed region the curve seem to deviate from the logarithmic 

behaviour. A repeat of this characteristic behaviour is also likely as the plume approaches 

reasonable heights above the roughness elements unto the near surface regions. Figure 1a also 

shows this influence of the rough elements as the time averaged velocity profiles increase with 

distance along the vertical cross-section of the rough cavity domain, that is, away from the surface 

of the rough elements. The reality of this situation is seen from the fitted curve as it intersects the 

plume axis at some finite value ( plm wh H = 0.26) close to the roughness surface where the velocity 

profile loses its direct proportionality character with the vertical plume-axis. The reduced 

magnitude of velocity profiles at the near-surface region is an indication of turbulent shear stress 

penetration affecting the porous medium which becomes weaker as Darcy permeability also 

decreases (3.175x10-4 to 9.75x10-5). 

 
The reduction in the Darcy accounts that plume permeability was affected by the oscillatory 

velocity profile. At the porous interface the flow is generally assumed to show some semblance of 

mixing layer type than that of boundary layer, according to Prinos et al (2003). 

 
At some point along the roughness surface the velocity profile shifts away from the interfacial 

curve to a position where momentum or the velocity deviates from the logarithmic law (Raupach 

et al 1991, Prinos et al, 2003). This shifting in the mean position of the velocity relative to the 

vertical axis has been referred to as the beginning of the logarithmic layer which portrays the 

dampening effects of the roughness elements on the horizontal oscillatory shear flow (Prinos et 

al, 2003). 
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Figure 2a portrays a non-dimensional version of the near-bed flow structure described in Equation 

(3). The mean velocity was normalized with the friction velocity and plotted against the normalized 

plume heights. The logarithmic law fit compares favorably with the mean velocity plot in Figure 

1a both of which has R2 values of 0.98 and 0.91 respectively. The curve describes how turbulence 

evolves with the mean oscillatory velocities near the bed and continues across the developing 

boundary layer from the roughness surface. At some critical point near to flow reversal, the 

energetic/turbulent plume in the free stream approach a uniformly distributed flow stream. This 

observation has also been accounted by Jensen et al (1989) and attributed to an inner-flow 

characteristic behaviour. 

 

 
                               (a)                                                                                 (b) 

Figure 5: Semi-log Plot of None Dimensional Velocity Profile in Wall Units At 0.021m and 

0.02m of the 7mm and 10mm Stacks Respectively Above Bed 

 
Tracer blob at trough position 0.02m of the 10mm bed 

Plume heights plm wh H  in this arrangement varied between the ranges 0.018 to 0.038. The 

maximum mean stream oscillatory velocity here was also regulated from 4.0m/s to 0.3m/s 

accordingly. A clear decrease in the velocity profiles can be identified as the characteristic curve 

deviate from linearity towards the near-wall region Figure 1b.  

 
The shift in the mean position of the velocity relative to the vertical axis shows the onset of 

dampening effects of the roughness elements on the horizontal oscillatory shear flow. The  = 

0.41, 
30

sk
= 0.3519, u

*
 = 0.03001m/s and z =0.0277 were fitted to the log-law.  

 
The Froude number increased WCIE to 0.0012±0.0004 with the amplitude Reynolds number 

varying by 6056.8±918.2. In comparison to the case with the 0.021m roughness height of 0.007m 

diameter spheres, the Reynolds and Froude numbers were seen to increase, which may be due to 

pore-size differences.  The mean velocity from the distance-time graph was 0.134m/s. 

 
We consider Figure 2b in comparison to Figure 1b which shows the shapes of the curves to be in 

good agreement with each other. Figure 2b portrays a non-dimensional version of the near-bed 

flow structure in a semi-log plot. The mean velocity was normalized with the friction velocity and 

plotted against the records of normalized plume heights. The viscous sub-layer and the developing 

 

http://www.granthaalayah.com/


[Itugha et. al., Vol.7 (Iss.4): April 2019]                                                  ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

                                                                                                                                        DOI: 10.5281/zenodo.2653809 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [154] 

 

constant stress region are clearly seen in the limit of increasing velocity record in the free stream. 

In Figure 2b, the
*

u

u
is an order of magnitude greater than the mean velocity record plot in Figure 

1b. The curve describes how turbulence evolves with the mean oscillatory velocities near the bed 

and continues across the developing boundary layer from the roughness surface. At some critical 

point near to flow reversal, the energetic/turbulent plume in the free stream approach a uniformly 

distributed flow stream.  

 
Tracer blob trapped at trough position 0.014m of the 7mm bed 

The velocity profiles show identical characteristic curve shapes compared with the former. The 

fluctuating velocity profiles of the plume parcels tracked relative to the vertical axis due to the 

oscillatory plate is shown in Figure 3a. The variation of plume heights, plm wh H  here was from 

0.021 to 0.038 as the maximum mean stream oscillatory velocity was regulated from 4 m/s to 0.3 

m/s respectively. The fitted parameters in this category include  = 0.41,
30

sk
= 0.0752, u

*
 = 0.0092 

m/s and z =0.0304. The amplitude Reynolds number WCIE is 7144.33±1266.81while the Froude 

number is 0.0008±0.0003. The mean velocity fit was 0.085 m/s. The shear stress,  decreased 

(0.800 to 0.058) as with Darcy permeability 0.0004±4.8*10-5m/s as the flow into the porous 

medium weakens. The present case of k+ (Figure 3a), also indicates fully rough flow but the 

roughness parameter k+ slumped to show the effect of the difference in the roughness height in 

comparison to the case in Figure 1a. In comparison with Figure 2a, the graph shown in Figure 

4a seems to demonstrate late appearance of the developing logarithmic boundary layer which 

subsequently describes the approach to flow reversal following the uniformly distributed plume in 

the fluid stream. The increase in the velocity below the interface is described by the Reynolds 

value and may be attributed to the developing constant stress across the free-stream. 

 

 
                                     (a)                                                                 (b) 

Figure 3: Velocity profile of plume trapped at 0.014m and 0.01m of the 7mm and 10mm stacks 

respectively above bed 
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Tracer blob at trough position 0.01m of the 10mm bed 

The profile of the velocity was identical to the previous cases where the characteristic curve 

deviates from linearity on approach to the near-wall region (Figure 6b). The shift in the mean 

position of the velocity relative to the vertical axis shows the dampening effects of the roughness 

elements on the horizontal oscillatory shear flow. The depth to source is accounted such that the 

depth averaged plume heights plm wh H  range from 0.038 - 0.058 with the maximum mean stream 

oscillatory velocity regulated between 4m/s to 0.3m/s respectively.  

 

The parameters imputed in this case relate to  = 0.41, 
30

sk
= 0.0338, u

*
 = 0.0115m/s and z =0.0499. 

The The Froude number WCIE increased to 0.00026±8.3E-5 as the position of plume crest moved 

further away from the surface elements with the amplitude Reynolds number varying between the 

confidence interval limits of 11906.6±2139.4. The mean flow rate evaluated from the plotted 

instance in this case was 0.114m/s respectively. In comparison to Figure 4b, Figure 3b seems to 

show the viscous sub-layer with the developing logarithmic layer as mean velocity increases 

towards the free stream. In Figure 4b however, the logarithmic boundary layer seems to develop 

at the later stages as the flow approach reversal with the uniformly distributed plume in the fluid 

stream. 

 

 
                                                  (a)                                                                                       (b) 

Figure 4: None Dimensional Velocity Profile in Wall Units at 0.014m and 0.01m above Bed in 

Semi-log Plot 

 
Tracer blob trapped at trough position 0.007m of the 7mm bed 

A clear decrease in the velocity profiles can be identical as the characteristic curve deviate from 

linearity from the mainstream flow to the near-wall region (Figure 5). The shift in the mean 

position of the velocity relative to the vertical axis shows the dampening effects of the roughness 

elements on the horizontal oscillatory shear flow. The depth to source is accounted such that the 

depth averaged plume heights plm wh H  range from 0.039 to 0.053 as the maximum mean stream 

oscillatory velocity was regulated from 4 m/s to 0.3 m/s respectively. The parameters imputed in 

this case relate to  = 0.41, 
30

sk
= 0.0235, u

*
 = 0.0082m/s and z = 0.0436. 
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Figure 5: Velocity Profile of Plume Trapped at Roughness Height 0.007m above Wall in 7mm 

Arrangement 

 
The amplitude Reynolds number WCIE is 10612±2073.3 and the Froude number, 0.0003±8.2*10-

5. A mean velocity fit of 0.096 m/s was inputted. The plot of the wall units show the development 

of the constant stress boundary layer, as in Figure 6, that compares reasonably well with the mean 

velocity profile plot in Figure 8. The behaviour of the plume in this case may be due to the position 

of the blob further away from the interface where the velocity within the porous spheres increases. 

 

 
Figure 6: None dimensional velocity profile in wall units at 0.007m above bed in semi-log plot 

 

Tracer blob trapped at bed level (zero height) of 7mm preform 

The relative plume heights plm wh H  varied between the ranges 0.04 to 0.06 with the maximum 

mean stream oscillatory velocity regulated from 4 m/s to 0.3 m/s respectively. A clear decrease in 

the velocity profiles can be identified as the characteristic curve deviate from linearity in the 

mainstream flow to the near-wall region (Figure 7a). The shift in the mean position of the velocity 

relative to the vertical axis shows the dampening effects of the roughness elements on the 

horizontal oscillatory shear flow. The  = 0.41, 
30

sk
= 0.0482, u

*
 = 0.0139m/s and z =0.0508 were 

fitted to the log-law. The amplitude Reynolds and the Froude numbers WCIE are 12094±2200.6 

and 0.00025±7.5*10-5 respectively. The profile in Figure 8a also depicts the increase in the 
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velocity at close to the permeable region, almost a roughness height away from the roughness 

surface. The constant stress layer compares well with the previous cases. 

 
Figure 9a describes the normalized velocity distribution and plume height in wall units for the 

positions 0.021, 0.014 and 0.007m of the entrapment tracer blob. The curves show that the velocity 

distribution curve approach constant stress at increasing wall-coordinate heights. This observation 

agrees comfortably with Fredsoe (1984), Jensen et al (1989) and those of Prinos et al (2003) 

who also described these relations in rough wall conditions. The lines on the curves are associated 

to the development of the constant stress describing the onset of the logarithmic layer across the 

free stream. 

 

 
                                   (a)                                                               (b)               

Figure 7: Velocity profile of plume trapped at flume base (0.00m) of the 7mm and 10mm 

roughened plate respectively 

 

 
                                   (a)                                                               (b) 

Figure 8: None Dimensional Velocity Profile in Wall Units at The Bottom of the 7 mm And10 

mm Cases Respectively. 

 
The friction factor at the roughness bed region was also plotted against the ratio of the particle 

amplitude in the oscillatory flow and the roughness size as shown in Figure 10a. The figure 

describes the behaviour of the friction factor at the four positions of the 0.007m bed element 
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arrangement. The curves show that the friction factor reduces as the amplitude factor increases. 

The sudden drop in the friction factor at about
s

a

k
=108 as traced by the dotted curve appears in all 

the curves and indicates the transition from the laminar boundary layer into turbulent boundary. A 

similar phenomenon occurred in the region of the boundary layer thickness at Reynolds numbers 

above 5.0x103 as seen in Figure 11a when the development of boundary layer depth, , started 

into the free stream. 

 

 
                                   (a)                                                                           (b) 

Figure 9: Comparisons of Velocity Profile in Wall Coordinates at Varying Depths for the 7mm 

and 10mm Cases Respectively 

 

 
                                 (a)                                                                      (b)      

Figure 10: Friction Factor Relation with A/Ks At Various Tracer Source Depths for the 7mm and 

10mm Porous Preform Respectively 

 
Tracer blob at bed level (zero height) of the 10mm bed 

The heights of the plume regime relative to the water depth here varied between 0.046 to 0.075 in 

response to the regulated oscillatory velocity (4m/s to 0.3m/s) respectively. Figure 7b illustrates 

the oscillatory flow stream as depicted by the tracer plume waves across the rough cavity flume 

domain. The fitted parameters to the analytical log law in this category include  = 0.41,
 30

sk
= 

0.1159, *u =0.0236m/s and plmRh z= = 0.0609. 
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The profiles in Figures 8b depict reasonably corresponding distribution of the velocity profiles. 

The early appearance of the viscous sub-layer from the surface of the roughness elements and the 

developing constant stress region are clearly represented as described by the curves. In both cases 

the curves describe how turbulence evolves with the mean oscillatory velocities near the bed and 

continues across the developing boundary layer from the roughness surface. At some point near to 

flow reversal however, the plumes in the free stream approach a uniformly distributed flow stream. 

Figure 7b describes the normalized velocity distribution and plume height in wall units for the 

positions 0.02 and 0.01m of the entrapment tracer blob. The curves show that the velocity 

distribution curves approach constant stress at increasing wall-coordinate heights. The heights in 

wall unit are about an order of magnitude more than the distributions described in Figure 0a. This 

development may be attributable to the porosity differences due to roughness material sizes of the 

respective beds. The paths of the curves narrate the history of the developing logarithmic regions 

above the viscous sub-layer of the roughness surfaces up to the free stream. The trend of the friction 

factor at the roughness bed region for the 10.0mm case follow identical pattern compared to the 

7.0mm bed. The friction factor decreased progressively with increasing 
s

a

k
as shown in Figure 

10b  

 
The friction factor or wall friction as it may be referred is calculated from the maximum value of

*u  so that

2

*2w

m

u
f

u

 
=  

 
. The sudden drop in the friction factor at about

s

a

k
=115 as seen in Figure 

10b marks the end of the transitional flow from the laminar into turbulence. A similar phenomenon 

occurred in the region of the boundary layer thickness at Reynolds numbers upwards of 1.0x104 

as seen in Figure 11b when the development of boundary layer depth, , started to occur in the 

free stream. The boundary layer depth, , reduces with increasing flow described in the amplitude 

Reynolds number. 

 

 
(a)                                      (b) 

Figure 11: BL Thickness Response with Ra Flow at Varied Source Levels Below Porous Surface 

for the 7mm and 10mm Cases Respectively 

 
6. Conclusion 

 
Two types of porous bed setting with synthetic spherical beads (7mm and 10mm) were 

investigated in a flume bath. The dye tracer plume just above the roughness boundary layer and 
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the cavity region (interfacial and subsurface sub-layers) of the flat plate attached to the oscillatory 

mechanism in the flume bath was monitored during the experiments. During the oscillatory flow, 

the crest of roughness elements induce elevation zones to force (advection) the flow upwards and 

pull it down at the trough phases as the tracer plume scales over the obstacles, establishing low 

and high pressure zones in the flow. The enhanced particles in the process mix and dissolve or 

decay faster with increasing oscillatory frequency, resulting into inter-particle collisions which 

initiate the conditions of advection and shear dispersion. Several authors (Smart, 1999; Nezu and 

Nakagawa, 1993; Choi and Waller, 1997; Prinos et al, 2003) have shown their findings with regard 

to the build-up of pressure relative to the behavior of the tracer plume as a consequence of the 

oscillatory mechanism. However, in the 10mm preform the velocities relatively reduced inside the 

roughness which may be attributed to the larger pore size of the troughs and lower roughness 

height. In a study Prinos et al (2003) affirmed that the fluid’s kinetic energy penetrating the porous 

medium increases with the Darcy number which is dependent on the structural geometry of the 

roughness elements (the pore size of the cavities or gaps between the elements).  

 
The study viewed the phenomenon as a combination or coupling of the processes of gradient 

fluctuation enhanced through dispersion due to pressure forcing in and out of the macroscopic 

pore-fluid field caused by the oscillatory motions. The lightening as the dye-particles cascade in 

the porous medium can be associated to mixing-gain due to the enhanced oscillatory motion. 

Hydraulic conductivity was considered to increase with increasing pore-size and rates of tracer 

particle interactions within the cavities (Itugha, 2008). 

 
The difference in the porosity between the 10mm and 7mm beds changes the velocity distribution 

and the turbulent characteristics of the flow. For instance, the velocities over the 10mm bed had 

greater penetration of flow, hence were relatively higher in comparison with the flow over the 

7mm preform. The velocities of the different porous beds increased due to the high turbulence 

inside the roughness trough in comparison to the roughness height region (which is the distance 

from the roughness tops to roughness trough). Hydraulic conductivity was considered to increase 

with rates of tracer particle interactions within the cavities at the 10mm pore-size.  
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