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Abstract
Objective: This study aimed to evaluate the specific roles of polyinosinic:polycytidylic acid (polyI:C) in macrophage 
chemotaxis and reveal the potential regulatory mechanisms related to chemokine receptor 5 (CCR5).

Materials and Methods: In this experimental study, THP-1-derived macrophages (THP1-Mφs) induced from THP-
1 monocytes were treated with 25 μg/mL polyI:C. Toll-like receptor 3 (TLR3), Jumonji domain-containing protein 
(JMJD)1A, and JMJD1C small interfering RNA (siRNAs) were transfected into THP1-Mφs. Quantitative real-time 
reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect the expression levels of TLR3, CCR5, 
23 Jumonji C domain-containing histone demethylase family members, JMJD1A, and JMJD1C in THP1-Mφs with 
different siRNAs transfections. Western blot was performed to detect JMJD1A, JMJD1C, H3K9me2, and H3K9me3 
expressions. A transwell migration assay was conducted to detect THP1-Mφ chemotaxis toward chemokine ligand 3 
(CCL3). A chromatin immunoprecipitation (ChIP) assay was performed to detect H3K9me2-CCR5 complexes in THP1-
Mφs.

Results: PolyI:C significantly upregulated CCR5 in THP1-Mφs and promoted chemotaxis toward CCL3 (P<0.05); 
these effects were significantly inhibited by TLR3 siRNA (P<0.01). JMJD1A and JMJD1C expression was significantly 
upregulated in polyI:C-stimulated THP1-Mφs, while only JMJD1A siRNA decreased CCR5 expression (P<0.05). 
JMJD1A siRNA significantly increased H3K9me2 expression in THP1-Mφs but not in polyI:C-stimulated THP1-Mφs. 
The ChIP result revealed that polyI:C significantly downregulated H3K9me2 in the promoter region of CCR5 in THP1-
Mφs.

Conclusion: PolyI:C can enhance THP1-Mφ chemotaxis toward CCL3 regulated by TLR3/JMJD1A signalling and 
activate CCR5 expression by reducing H3K9me2 in the promoter region of CCR5.
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Introduction
Acute lung injury (ALI) is an inflammation characterized 

by the breakdown of the endothelial and epithelial lung 
barrier (1). Monocyte-derived macrophages are important in 
the pathogenesis of ALI. Under the pathological conditions 
of ALI, activated circulating monocytes infiltrate the alveolar 
space to form alveolar macrophages. Subsequently, alveolar 
macrophages may secrete several inflammatory mediators, 
such as cytokines and chemokines, to induce the migration of 
mature neutrophils and CD4+T cells into the alveolar space, 
thereby prompting an inflammation response that may kill 
pathogenic microbes (2, 3). A previous study showed that the 
depletion of circulating monocytes and subsequently recruited 
alveolar macrophages significantly suppressed ALI in mice 
(4). Therefore, the function and activity of macrophages are 
extremely important in the development and prognosis of 
ALI. 

Toll-like receptors (TLRs) are categorized as innate 
immune sensors, which play an important role in the 
process of antigen recognition for innate immune cells 
such as macrophages (5). It has been reported that TLR3 

is upregulated in alveolar macrophages throughout the 
ALI pathogenesis (6). Chemokines comprise a class of 
cytokines that act as signalling molecules in the regulation 
of inflammatory response (7). Chemokine receptors (CCRs) 
are specific receptors for chemokines that are integral to the 
recruitment of alveolar macrophages (8). TLR3 and CCRs 
participate in ALI-induced inflammatory response through 
the recognition of pathogen-related molecular processes or 
the recruitment of macrophages; however, whether a direct 
regulating mechanism between CCRs and TLR3 exists in 
macrophages has not been thoroughly researched. 

Histone demethylation is an important form of epigenetic 
modification that is regulated by Jumonji C domain-
containing histone demethylases (JHDMs) (9). Histone 
demethylation is involved in the transcriptional repression 
and activation of target genes, and is closely associated 
with the inflammatory response of macrophages. It has 
been reported that Jumonji domain-containing protein 3 
(JMJD3) influences transcriptional gene expression in 
lipopolysaccharide (LPS)-activated macrophages, and 
the regulatory role of JMJD3 is dependent upon H3K4me3 
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(10). An H3K27me3 inhibitor reduces LPS-induced 
proinflammatory cytokine production by macrophages, and 
this process is regulated by UTX and JMJD3 (11). Moreover, a 
pervious study reported that high glucose upregulates diverse 
inflammatory cytokines in macrophages, including IL-6, IL-
12p40, and MIP-1α/β; this process is closely associated with 
H3K9 methylation (12). However, the specific role of H3K9 
methylation in TLR3 signalling for macrophage-involved 
inflammatory responses remains unknown. 

Polyinosinic:polycytidylic acid (PolyI:C) is a viral 
mimetic that mimics inflammatory responses to systemic 
viral infection (13). In this study, the effects of polyI:C 
on THP-1-derived macrophage (THP1-Mφ) chemotaxis, 
as well as potential regulatory mechanisms related to 
TLR3 and CCRs, are explored. The aim of this study is 
to provide new insight into the underlying regulatory 
mechanisms for macrophage participation in ALI.

Materials and Methods
Cell culture and induction of THP-1-derived 
macrophages (THP1-Mφs)

 In this experimental study, human THP-1 monocytes 
were purchased from the American Type Culture 
Collection (Manassas, VA, USA) and cultured in RPMI-
1640 medium that contained 10% heat-inactivated 
foetal bovine serum (FBS, Gibco, USA) and 100 U/
mL penicillin-streptomycin. Cells were maintained 
in an atmosphere of 5% CO2 at 37˚C. Exponential-phase 
cells were used in the following assays. 

THP-1 monocytes were induced to differentiate into 
macrophages in vitro. Simply, THP-1 monocytes suspended 
in RPMI-1640 medium were seeded in 6-well plates at a 
density of 2×105 cells/mL. Then, 100 ng/mL phorbol-12-
myristate acetate (PMA) (Sigma, St. Louis, MO, USA) was 
added to the THP-1 monocytes. After a 48-hour incubation 
period, the adherent macrophages were used in the following 
assays (THP1-Mφs). For polyI:C treatment, THP-1 
monocytes were incubated with 100 ng/mL PMA for 6 hours, 
and then treated with 25 μg/mL polyI:C (R&D Systems, 
Minneapolis, MN, USA). After 42 hours of incubation, the 
adherent macrophages were used in the following assays 
(polyI:C-stimulated THP1-Mφs). 

Quantitative real-time reverse transcriptase 
polymerase chain reaction 

Total RNA was extracted from cells of different groups 
using TRIzol (Fermentas, Burlington, Ontario, Canada) 
and reverse-transcribed by RevertAid M-MuLV Reverse 
Transcriptase (Fermentas, Canada) in accordance with 
the manufacturer’s instructions. Quantitative real-time 
reverse transcriptase polymerase chain reaction (qRT-PCR) 
was performed on a LightCycler 2.0 Instrument (Roche, 
Germany) using the SYBR Green PCR Kit (TaKaRa, Japan). 
The relative expression levels of target genes were calculated 
by 2-ΔΔCt, using GAPDH as an internal control. The primer 
sequences are shown in Table 1.

Flow cytometry
Flow cytometry was performed to detect chemokine 

receptor 5 (CCR5) expression in THP1-Mφs. Simply, 
cells were suspended in fresh RPMI-1640 medium and 
incubated with CCR5-PE antibody (R&D Systems, USA) 
in the dark for 30 minutes at room temperature. Data 
were collected using the FACSCalibur flow cytometer 
(BD Biosciences, San Jose, CA, USA) and analysed with 
CellQuest software (BD Biosciences). 

siRNA transfection 
siRNAs targeting TLR3, Jumonji domain-containing protein 

1A (JMJD1A), and JMJD1C were obtained from Shanghai 
GeneChem Company (Shanghai, China), as follows: 
TLR3 siRNA: 
5ˊ-CCUGAGCUGUCAAGCCACUACCUUU-3ʹ
JMJD1A siRNA: 
5ʹ-GCAAUUGGCUUGUGGUUACUU-3ʹ
JMJD1C siRNA: 
5ʹ-GCAAUUGGCUUGUGGUUACUU-3ʹ. 

After 6 hours of incubation with 100 ng/mL PMA, 
THP1-Mφs were incubated with specific siRNAs and 
Lipofectamine 2000 reagent (ThermoFisher, Waltham, MA, 
USA) for 6 hours. Transfected cells were treated with 25 μg/
mL polyI:C for an additional 42 hours. The efficacy of the 
TLR3 transfection was detected using qRT-PCR and flow 
cytometry as described above, while the efficacy of JMJD1A 
and JMJD1C siRNA-mediated gene silencing was monitored 
using Western blotting.

Transwell migration assay 
THP1-Mφ chemotaxis toward chemokine ligand 3 (CCL3) 

was detected using transwell inserts. Transwell inserts with a 
pore size of 8 μm were placed into 24-well plates. Cells were 
suspended in serum-free RPMI-1640 medium and inoculated 
into the upper chamber at a density of 1×105 cells/mL. RPMI-
1640 medium that contained 100 ng/mL recombinant human 
CC chemokine ligand 3 (rhCCL3;#270-LD, R&D Systems, 
USA) and 10% FBS was added into the lower chamber. 
Following 12 hours of incubation at 37˚C, the non-migrated 
cells were removed from the upper chamber, and migrated 
cells in the lower chamber were fixed with methanol and 
stained with eosin. Five random fields of each well were 
observed using light microscopy, and the number of migrated 
cells was counted. 

Chromatin immunoprecipitation assay
The chromatin immunoprecipitation (ChIP) assay was 

performed to detect H3K9 methylation in THP1-Mφs. After 
being fixed in 1% formaldehyde, the chromatin was extracted 
from THP1-Mφs using sonication. Then, the chromatin was 
immunoprecipitated with H3K9me2 (Abcam, Cambridge, 
MA, USA) or H3K9me3 antibody (Abcam, USA) pre-bound 
Protein G-plus Agarose beads, overnight at 4˚C. Precipitated 
protein-DNA complexes were eluted in Tris-EDTA buffer 
that contained 2% sodium dodecyl sulfonate (SDS), and the 
crosslink was reversed through a 16 hour incubation period 
at 65˚C. The precipitated DNA fragments were analysed 
by qRT-PCR as described above. The primer sequences of 
CCR5-ChIP are shown in Table 1. qRT-PCR was performed 
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on a LightCycler 2.0 Instrument (Roche, Germany) using TB 
Green Fast qPCR Mix (Code No. RR430S/A/B, TaKaRa, 
Japan).

Table 1: Sequences of specific primers used in quantitative real-time 
reverse transcriptase polymerase chain reaction (qRT-PCR)

Gene  Primer sequence (5ˊ-3ˊ)

CCR1 F: CGAAAGCCTACGAGAGTGGAA
R: CGGACAGCTTTGGATTTCTTCT

CCR2 F: GAGCCATACCTGTAAATGCC
R: GAGCCCAGAATGGTAATGTG

CCR4 F: CATGAACCCCACGGATATAGCA
R: CTACTCCCCAAATGCCTTGATG

CCR5 F: TGTCCCCTTCTGGGCTCACTAT
R: TGGACGACAGCCAGGTACCTA

CCR6 F: TCGCCATTGTACAGGCGACTA
R: CGCTGCCTTGGGTGTTGTAT

CCR7 F: CCTGGGGAAACCAATGAAAAGC
R: GAGCATGCCCACTGAAGAAGC

CXCR4 F: TTCCTGCCCACCATGTAGTC
R: TCGATGCTGATCCCAATGTA

FBXL10 F: CAGTGGGTGGAGGGACTAAA
R: ACTGAGGTGGAGCTTGGAGA

FBXL11 F: ATAACCAACCGTTCCCACCT
R: TGCCCAGTCCATCATAATCC

JMJD1A F: ATGCCCACACAGATCATTCC
R: CTGCACCAAGAGTCGATTTT

JMJD1B F: AACTTCCTCAAACCCCCTTG
R: CCCATCACCATCTCCTTCAC

JMJD1C F: TCCAGAATCCCAGTCACCAC
R: CAGCAAATCCCGTAAGGTTG

JMJD2A F: CAGAGGACCAAGCCATTGAT
R: ATTGGCTGAACACCGAGAAC

JMJD2B F: GGGGAGGAAGATGTGAGTGA
R: CTATGGGTGCCTCCTTCTCA

JMJD2C F: TGCCTGAGGTTCTGTCCATT
R: GCTGCTATCTGGCTTGTGGT

JMJD2D F: AAATATGTACGGGGCAACCA
R: TACTCAGACCTGGGGGTACG

JMJD3 F: CTGATGCTAAGCGGTGGAAG
R: TGTTGATGTTGACGGAGCAG

JMJD4 F: ACTGGGTCAATGGCTTCAAC
R: AGGACCAGGAGCCTCTTCTC

JMJD5 F: ACATCAGCATCCCCGACTAC
R: AGGGTACAGAGCCCCTGACT

JARID1A F: TGAACGATGGGAAGAAAAGG
R: AGCGTAATTGCTGCCACTCT

JARID1B F: TTGGGATTGAAAAGGAAGCA
R: CAGCAATTTCCCTTCATTGG

JARID1C F: CAGGGCTTACTGGAGAATGG
R: TTCTCATCCAGGGTCACCTC

JARID1D F: ACTGAACTCCGGGTCCTTCT
R: GCTTCAGGCACCTCTACACC

JARID2 F: CTGTCTGGAGTGTGCTCTGC
R: ACGTCCACTGTCGCTCTCTT

UTX F: CGTGTCGTATCAGCAGGAAA
R: CACCCCAGTAACCTTCAGGA

HR F: CAGTCAGCGTCACTCAGCA
R: CGATCCCAGACACCTAGCA

HSPBAP1 F: AAGCTCAAAGACATGCGGTTA
R: CAGGCTCTGGTATTTTGTGGA

HIFAN F: ACAATCCCGACTACGAGAGGT
R: GCCACTTTCTGATGAGCTTTG

MINA F: ACTTTGGCTCCTTGGTTGG
R: CCCGGCTTCAGCATAAAC

PHF2 F: ATCTTTAAGTCCCGGTCGAAG
R: TTCCTCTTGGCACTCTTTT

PHF8 F: CTGATGATGATGACCCTGCTT
R: TTCTTCTTTTGGGCCTTCTGT

PHF20 F: ACCCGGCTCCCCAAAGGTGA
R: CTGCCACTGGTGCTGGGAGC

CCR5-ChIP F: TGTGGGCTTTTGACTAGATGA
R: TAGGGGAACGGATGTCTCAG

GAPDH F: CAACTGGTCGTGGACAACCAT
R: GCACGGACACTCACAATGTTC

Western blot
THP1-Mφs were lysed in RIPA buffer. Total proteins were 

separated by SDS-polyacrylamide gel electrophoresis on 
10% polyacrylamide gels and transferred to nitrocellulose 
membranes (Bio-Rad, Hercules, CA, USA). The membrane 
was blocked with 5% skim milk in TBST for 2 hours and 
incubated with special primary antibody (anti-H3K9me2, 
anti-H3K9me3, Abcam, USA) at 4˚C for 12 hours. After 
there were washed three times with TBST, the membrane was 
incubated with horseradish peroxidase-conjugated secondary 
antibody (Abcam, USA) at 25˚C for 2 hours. Protein bands 
were visualized with the Image Station IS2000 (Kodak, 
Rochester, NY, USA).
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Statistical analysis

All experiments were performed in triplicate, and all 
data are presented as means ± standard deviation. The 
statistical analysis conducted in this study was performed 
using SPSS 13.0 (SPSS Inc., Chicago, IL, USA). The 
Shapiro-Wilk was used to test the normality of the 
distribution. For the data presenting a normal distribution, 
the mann-withney (two groups) and kruskal-wallis (more 
than two groups) were used to compare results among 
different groups. The Wilcoxon rank-sum test was used 
for non-normally distributed data. P<0.05 denoted 
statistically significant results. 

Results
Polyinosinic:polycytidylic acid upregulated chemokine 
receptor 5 expression in THP-1-derived macrophages 
through toll-like receptor 3 signalling

The expression levels of diverse CCRs in THP-1 
monocytes and THP1-Mφs were detected. As shown in 
Figure 1A, CCR1, CCR4, CCR5, and CCR6 were expressed 
in both THP-1 monocytes and THP1-Mφs. CCR1 

expression was significantly higher in THP1-Mφs than in 
THP-1 monocytes (P=0.031). CCR2, CCR7, and CXCR4 
expressions at the mRNA level were not detected in THP-1 
monocytes and THP1-Mφs (Fig.1A). Then, the effects of 
polyI:C on CCR1, CCR4, CCR5, and CCR6 expressions 
were evaluated in THP-1 monocytes and THP1-Mφs. qRT-
PCR demonstrated that CCR5 expression was significantly 
elevated by polyI:C treatment in THP1-Mφs, while CCR5 
expression was not significantly changed by polyI:C 
treatment in THP-1 monocytes (Fig.1B). The remarkably 
increased CCR5 expression in polyI:C-stimulated THP1-
Mφs was also confirmed by flow cytometry (45.9% vs. 
20.8%, P=0.017, Fig.1D). 

Since macrophages can recognize polyI:C stimulation 
through TLR3 signalling. The effects of TLR3 silencing 
on CCR5 expression were detected in polyI:C-stimulated 
THP1-Mφs. Flow cytometry and qRT-PCR showed that 
TLR3 siRNA transfection significantly inhibited TLR3 
expression in polyI:C-stimulated THP1-Mφs (80.2% 
vs. 48.8%, P=0.011, Fig.1C, E). CCR5 expression was 
significantly inhibited by TLR3 siRNA transfection in 
polyI:C-stimulated THP1-Mφs (P=0.044, Fig.1F). 

Fig.1: Polyinosinic:polycytidylic acid (PolyI:C) upregulated chemokine receptor 5 (CCR5) expression in THP-1-derived macrophages (THP1-Mφs) through 
toll-like receptor 3 (TLR3) signalling. A. Expression profile of chemokine receptors in THP-1 monocytes and THP1-Mφs (Mφ) by quantitative real-time 
reverse transcriptase polymerase chain reaction (qRT-PCR) (fold change at the mRNA level), B. CCR1, CCR4, CCR5, and CCR6 expressions in polyI:C-
stimulated THP-1 monocytes and THP1-Mφs by qRT-PCR, C. CCR5 expression in polyI:C-stimulated THP1-Mφs by flow cytometry, D. TLR3 expression in 
THP1-Mφs with TLR3 siRNA by flow cytometry, E. Knockdown efficiency of TLR3 siRNA by qRT-PCR, and F. CCR5 expression in polyI:C-stimulated THP1-Mφs 
transfected with TLR3 siRNA. *; P<0.05 and **; P<0.01

A B

C E

F

D



Cell J, Vol 22, No 3, October-December (Autumn) 2020329

Yu et al.

Polyinosinic:polycytidylic acid promoted THP-1-
derived macrophage chemotaxis toward chemokine 
ligand 3 through toll-like receptor 3 signalling

Since CCR5 can be activated by CCL3, THP1-Mφ 
chemotaxis toward CCL3 was analysed. As shown 
in Figure 2A, THP1-Mφs easily migrated to rhCCL3 
(P=0.0005). PolyI:C significantly increased THP1-Mφ 
chemotaxis toward rhCCL3 (P=0.0006, Fig.2A). In 
addition, TLR3 siRNA transfection significantly inhibited 
polyI:C-stimulated THP1-Mφ chemotaxis toward 
rhCCL3 (P=0.0029, Fig.2B).

Polyinosinic:polycytidylic acid upregulated Jumonji 
domain-containing protein 1A and JMJD1C in THP-
1-derived macrophages

Since histone methylation is involved in the 

inflammatory response of macrophages, the 
expression levels of 23 JHDM family members were 
observed in polyI:C-stimulated THP1-Mφs by qRT-
PCR. As shown in Figure 3A, polyI:C significantly 
increased JMJD1A, JMJD1C, JMJD2A, JARID1A, 
and HSPBAP1 expressions in THP1-Mφs (all P<0.01, 
Fig.3A). Notably, two JHDM2 subgroup members, 
JMJD1A and JMJD1C, were highly expressed and 
abundant in polyI:C-stimulated THP1-Mφs. In 
addition, TLR3 siRNA transfection significantly 
reversed the upregulatory effect of polyI:C on JMJD1A 
and JMJD1C on THP1-Mφs (JMJD1A, P=0.002; 
JMJD1C, P=0.018, Fig.3B). Therefore, JMJD1A and 
JMJD1C were chosen as the targets for the following 
investigative processes.

Fig.2: Polyinosinic:polycytidylic acid (PolyI:C) promoted THP-1-derived macrophage (THP1-Mφ) chemotaxis to chemokine ligand 3 (CCL3) via toll-like 
receptor 3 (TLR3) signalling. A. THP1-Mφs migration toward CCL3 by polyI:C treatment and B. PolyI:C-stimulated THP1-Mφ migration toward CCL3 by 
TLR3 siRNA transfection. **; P<0.01.

A

B
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Fig.3: Jumonji C domain-containing histone demethylase (JHDM) family members expression in polyinosinic:polycytidylic acid (polyI:C)-stimulated THP-1-
derived macrophages (THP1-Mφs). A. The expression levels of 23 JHDM family members in polyI:C-stimulated THP1-Mφs by quantitative real-time reverse 
transcriptase polymerase chain reaction (qRT-PCR,fold change at mRNA level) and B. Jumonji domain-containing protein (JMJD)1A and JMJD1C expression 
in polyI:C-stimulated THP1-Mφs transfected with toll-like receptor 3 (TLR3) siRNA. *; P<0.05 and **; P<0.01.

Polyinosinic:polycytidylic acid-mediated Jumonji 
domain-containing protein 1A upregulated chemokine 
receptor 5 by inhibiting H3K9me2

In order to investigate whether the promoted 
expression of JMJD1A and JMJD1C is involved in the 
regulation of CCR5 expression, JMJD1A and JMJD1C 
were silenced in THP1-Mφs. As shown in Figure 4A, 
the protein expressions of JMJD1A and JMJD1C were 
significantly reduced in THP1-Mφs with JMJD1A or 
JMJD1C siRNA transfection. In addition, JMJD1A 
siRNA transfection significantly decreased CCR5 
expression in both THP1-Mφs (P=0.007, Fig.4B) and 
polyI:C-stimulated THP1-Mφs (P=0.013, Fig.4B). 
However, CCR5 expression was not significantly 
influenced by JMJD1C siRNA transfection (Fig.4B). 
The downregulation of CCR5 expression induced 

by JMJD1A siRNA was also confirmed in polyI:C-
stimulated THP1-Mφs by flow cytometry (43.8 vs. 
32.6%, P<0.05, Fig.4C).

Since H3K9 is known to be the substrate of 
JMJD1A, we sought to determine if the regulatory 
role of JMJD1A in CCR5 expression was dependent on 
H3K9 methylation. As shown in Figure 4D, H3K9me2 
expression was decreased in polyI:C-treated THP1-
Mφs, while H3K9me3 expression was not significantly 
changed. In addition, H3K9me2 was significantly 
upregulated by JMJD1A siRNA transfection in 
THP1-Mφs. However, H3K9me3 expression was not 
influenced by JMJD1A siRNA transfection in polyI:C-
stimulated THP1-Mφs (Fig.4E). In addition, polyI:C 
treatment downregulated H3K9me2 expression in the 
promoter region of CCR5 in THP1-Mφs (Fig.4F).

A

B
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Fig.4: Polyinosinic:polycytidylic acid (PolyI:C)-mediated Jumonji domain-containing protein 1A (JMJD1A) upregulated chemokine receptor 5 (CCR5) by 
reducing H3K9me2. A. JMJD1A and JMJD1C expression in THP-1-derived macrophages (THP1-Mφs) treated with JMJD1A or JMJD1C siRNA by Western 
blot, B. CCR5 expression in polyI:C-stimulated THP1-Mφs transfected with JMJD1A siRNA and JMJD1C siRNA by quantitative real-time reverse transcriptase 
polymerase chain reaction (qRT-PCR) (fold change at the mRNA level), C. CCR5 expression in polyI:C-stimulated THP1-Mφs transfected with JMJD1A siRNA 
by flow cytometry, D. H3K9me2 and H3K9me3 expression in polyI:C-stimulated THP1-Mφs by Western blot (protein level), E. H3K9me2 and H3K9me3 
expressions in polyI:C-stimulated THP1-Mφs transfected with JMJD1A siRNA by Western blot (protein level), and F. H3K9me2 expression in the promoter 
region of CCR5 in THP1-Mφs by chromatin immunoprecipitation (ChIP) analysis. *; P<0.05 and **; P<0.01. 
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Discussion
Macrophage chemotaxis is an important component 

of ALI pathogenesis. It is known that viral infections 
can induce alveolar macrophage recruitment, but the 
regulatory mechanisms of viral infection (polyI:C) on 
monocyte-derived macrophages are still unclear. Thus, in 
this study, we have explored the regulatory mechanisms 
of polyI:C on THP1-Mφs. The results showed that polyI:C 
significantly upregulated CCR5 in THP1-Mφs and 
promoted THP1-Mφ chemotaxis toward CCL3 via TLR3 
signalling. In addition, polyI:C-upregulated CCR5 was 
mediated by JMJD1A, and H3K9me2 was downregulated 
in the promoter region of CCR5 in THP1-Mφs. 

Since CCRs are important in macrophage chemotaxis, the 
expression levels of diverse CCRs were examined in THP1-
Mφs after polyI:C treatment. Our results demonstrated 
that only CCR5 was significantly upregulated by polyI:C 
treatment in THP1-Mφs. CCR5 is a cell surface G protein-
coupled receptor that is involved in inflammatory response 
via interaction with specific chemokine ligands, including 
CCL3, CCL4, and CCL5 (14-16). The activation of CCR5 
and CCL5 is required to prevent the apoptosis of virus-
infected macrophages (17). In addition, CCR5 is involved 
in obesity-induced adipose tissue inflammation via 
regulation of macrophage recruitment (18, 19). Moreover, 
it has been reported that polyI:C-treated macrophages 
can promote CCR5 expression (20), which is consistent 
with the findings of our study. It was supposed that 
CCR5 is involved in polyI:C-induced inflammation in 
THP1-Mφs. Subsequently, THP1-Mφ chemotaxis toward 
CCL3 (a ligand of CCR5) was investigated. The results 
suggest that polyI:C significantly increased THP1-Mφ 
chemotaxis toward CCL3. A previous study reported that 
CCL3 expression was significantly elevated in the lung 
of a murine model of LPS-induced ALI and mediated 
an enhanced inflammatory injury-possibly by recruiting 
macrophages (21). Therefore, polyI:C-upregulated CCR5 
contributes to the promotion of macrophage chemotaxis 
by interacting with CCL3. 

Moreover, our results also suggest that TLR3 siRNA 
transfection significantly suppressed CCR5 expression in 
polyI:C-stimulated THP1-Mφs and inhibited chemotaxis 
toward CCL3. TLR-3 is responsible for anti-viral immunity 
against several virus infections via double-stranded 
RNA recognition and the activation of multiple antiviral 
factors in macrophages (20). Similarly, TLR-3 is activated 
in macrophages in response to encephalomyocarditis 
infection via type 1 IFN production. It has been reported 
that CCR5 may participate in virus replication and acts as 
the primary receptor for regulating encephalomyocarditis 
infection in mediating inflammatory response–related 
genes in macrophages (22). These results indicate 
that macrophages may recognize polyI:C stimulation 
through TLR3 signalling. PolyI:C may upregulate CCR5 
expression and promote THP1-Mφ chemotaxis toward 
CCL3 through TLR3 signalling.

Histone demethylation, dynamically regulated by 

JHDMs, is implicated in the regulation of inflammatory 
response of macrophages (23). Previous studies have 
reported that JMJD3 is over-expressed in LPS-activated 
macrophages, which regulates diverse genes involved in 
LPS-induced immune and inflammatory responses (10, 
24). However, few studies have focused on the regulatory 
mechanisms of polyI:C in histone demethylation in 
macrophages. In this study, the expression levels of 
23 JHDM family members were detected in polyI:C-
stimulated THP1-Mφs. The expression levels of JMJD1A, 
JMJD1C, JMJD2A, JARID1A, and HSPBAP1 were 
significantly increased by polyI:C in THP1-Mφs, while 
that of JMJD3 was not significantly changed. These results 
indicated that the effects of polyI:C on inflammatory 
responses of macrophages might differ from LPS. Since 
JMJD1A and JMJD1C could be regulated by TLR3 in 
polyI:C-stimulated THP1-Mφs, the regulatory roles of 
JMJD1A and JMJD1C on CCR5 were further analysed 
in this study. It was revealed that CCR5 was significantly 
downregulated by JMJD1A siRNA transfection in polyI:C-
stimulated THP1-Mφs, while CCR5 expression was not 
significantly influenced by JMJD1C siRNA transfection. 
The regulatory role of JMJD1A has been found to affect 
the proliferation, migration, and invasion of cancer cells 
in various cancer types (25-27). It has been reported 
that JMJD1A inhibition suppresses tumour growth by 
downregulating angiogenesis and macrophage infiltration 
(28). Our findings indicate that polyI:C treatment may 
induce a similar macrophage inflammatory response 
with cancer; PolyI:C may enhance CCR5 expression by 
upregulating JMJD1A in THP1-Mφs.

Since JMJD1A is a H3K9 demethylase, the H3K9 
methylation state of CCR5 was analysed in polyI:C-
stimulated THP1-Mφs. Our results showed that H3K9me2 
expression was significantly decreased by polyI:C 
treatment in THP1-Mφs. H3K9me2 downregulation might 
have attributed to the upregulation of JMJD1A. However, 
H3K9me3 expression was not significantly influenced by 
polyI:C treatment. Our findings indicate that the regulatory 
role of JMJD1A on CCR5 was dependent on H3K9me2. In 
addition, H3K9me2 was upregulated by JMJD1A siRNA 
transfection in THP1-Mφs, while H3K9me2 expression 
was not significantly influenced by JMJD1A siRNA in 
polyI:C-stimulated THP1-Mφs. This may be explained 
by the fact that some other upregulated JHDMs induced 
by polyI:C, such as JMJD1C, and JMJD2A may share 
a target with JMJD1A. JMJD1C and JMJD2A exhibit 
redundant effects on H3K9me2 expression. The presence 
of H3K9me2 in the promoter region of target genes 
typically results in reduced expressions of its targets. A 
previous study has reported that H3K9 exhibits a low 
methylation level in response to the activation of dendritic 
cells and is erased from the promoters of some activated 
inflammatory genes (29). Consistent with the results of 
that study, our results reveal that H3K9me2 expression 
was significantly reduced by polyI:C treatment in the 
promoter region of CCR5 in THP1-Mφs. We suspected 
that polyI:C-mediated JMJD1A upregulation may 
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upregulate CCR5 by reducing H3K9me2 in the promoter 
region of CCR5. Interestingly, JMJD1A is also a hypoxia-
inducible gene that has been found to be upregulated in 
hypoxia-stimulated macrophages. However, hypoxia 
treatment decreases CCR5 expression via H3K9me2 
upregulation in the promoter region of CCR5 (30). This 
may be explained by the effects of hypoxia-induced 
repressive JMJDs, which can overwhelm the effects of 
JMJD1A. 

Conclusion
The present study revealed that polyI:C upregulated 

JMJD1A expression in THP1-Mφs, thereby elevating the 
CCR5 expression by reducing H3K9me2 in the promoter 
region of CCR5 via TLR3 signalling. However, this study 
is still limited to the cellular level, and the validation 
of these results in animal models is required in future 
research. 
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