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ABSTRACT 

Nowadays, the indiscriminate use of pesticides for plant protection, has led to severe environmental 

pollution. This input accounts for a portion of the agricultural economy and should be sprayed in a way that 

has the highest biological efficacy and the least run-off. Therefore, real-time evaluation of spray 

characteristics and its classification is necessary. In the current research, a piezoelectric sensor was 

employed for detection of vibration signals from impaction of droplets to the active surface of the sensor. To 

supervised classification, the Support Vector Machine classifier as a Machine Learning model was 

implemented by means of extracted features from conditioned signals. By using a feature selection 

algorithm, six features were selected comprising mean, median, mode of signal peaks, root mean square, 

mean deviation and impulse factor of the signals. These features used as Support Vector Machine inputs. 

Model targets were spray droplet characteristics that were determined using image processing techniques on 

water sensitive papers. The results showed that the Linear and medium Gaussian models have the highest 

overall accuracy. Linear Support Vector Machine has higher accuracy and precision for training data 

(94.60% and 94.63%) and its model was able to predict with 92.59% accuracy. Precision of classifier model 

was higher than 92% for all classes. The highest miss rate of the model was approximately 15% in the 

separation of class C. Accurate and precise performance of linear classifier was confirmed by determining 

the Kappa coefficient of 0.77. 

 

 چکیده

 اقتصاد از بخشی که نهاده این .آورد می فراهم را زیست محیط شدید آلودگی اتموجب نباتات،  حفظ عملیات در ها کش آفت رویه بی مصرف امروزه

 بنابراین. باشد داشته را هدررفت کمترین ، بیولوژیک گذاریاثر بیشترین ین عدر که شود استفاده طوری باید دهد می اختصاص خود به را شاورزیک

 بکارگیری با پژوهش این در. است ضروری امری  سمپاشی در پاشش  های وضعیت بندی طبقه و افشانه قطرات یاه ویژگی بلادرنگ ارزیابی

 با. شدند آوری جمع برخوردها از ناشی ارتعاشی های سیگنال و هدش آشکارسازی سنسوری موثر سطح به قطرات برخورد پیزوالکتریک فیلم سنسور

 شده نظارت بندی طبقه ،مدل های ورودی عنوان به شده آماده های سیگنال از شده استخراج های ویژگی از استفاده و پشتیبان بردار ماشین سازی پیاده

 افشانه قطرات های ویژگی تصویر،  پردازش های کنیکت بکارگیری باو شد استفاده آب به حساس غذهایکا از قطرات از گیری نمونه برای .دش انجام

 را کل بندی طبقه صحت بالاترین  متوسط گوسین و خطی پشتیبان بردار ماشین مدل که داد شانن نتایج . رفتند بکار مدل اهداف عنوان به و دشدن تعیین

 ضربه فاکتور و ازمیانگین انحراف مربعات،  میانگین جذر نیز و ها پیک مد و میانه میانگین،  شامل ویژگی شش ها،  ویژگی ابعاد کاهش با. دارند

 و درصد 94.60) داشت آموزشی های داده در را عملکرد دقت و صحت بالاترین خطی بند هطبق. گرفتند قرار استفاده مورد و شده انتخاب سیگنالها

 بالاترین  و بود درصد 92 از تربالا ازهم طبقات  تمامی تفکیک در مدل دقت . بود درصد 92.5 صحت با بینی پیش به قادر آن مدل و( درصد 94.63

 قرار تایید مورد 0.77 کاپای ضریب تعیین اب خطی مدل عملکرد دقت و صحت. بود C طبقه تفکیک به مربوط و درصد 15 تقریبا  مدل خطای نرخ

 .گرفت

INTRODUCTION 

Despite the disadvantages of using pesticides, while development and research on various methods 

of plant protection is ongoing, spraying is still the most effective and fastest method. Unfortunately, pesticide 

application techniques are such that even in the most optimistic way, too much of the pesticides enter the 

environment, disrupts natural balance and causes pests and diseases to emerge.  
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In addition, it is not getting the desired result, its environmental and health destructive effects appear 

over time. About 30 to 50 percent of the sprayed solution is dissipated by drift and pouring on the soil 

(Fallahjeddi, 2005). Also, it is difficult to determine how droplets deposits on the plant surfaces have the least 

run off and the highest biological efficacy. Limiting the use of chemical pesticides to the extent possible in the 

context of Integrated Pest Management programs and their impact on the actual goals is the basis of optimal 

pest management (Mathews, 2008). Indiscriminate use of pesticides and their detrimental environmental 

impacts of spraying on various targets (e.g. pests, diseases or weeds) and the excessive waste of pesticides 

as an economically expensive input doubles the importance of spraying monitoring. 

Methods to determine spray characteristics are typically low-precise, time-consuming and sometimes 

costly. The use of water sensitive papers (WSPs) is a common and practical method for estimating spray 

characteristics with relatively acceptable results with the advent of digital imaging and processing 

techniques. Expensive laser instruments and high-speed imaging in spray studies is a relatively new and 

precise method. The subject of atomization, spraying, and impaction of droplets to the surface have complex 

natures and is influenced by many parameters. Therefore, by conducting theoretical studies and using 

computational fluid dynamics (CFD) and experimental tests, some mathematical and numerical models are 

presented as well. 

The time-consuming and cost-effective tests have led many researchers to find suitable alternatives 

such as the development of computer simulations as their main advantage is their repeatability. Spray quality 

is a term used to describe the properties of sprayed droplets, which can be assessed by estimation of 

parameters such as droplet size, spray density and deposition rate. So, the fine droplets tend to be most 

prone to drift and the coarse droplets, due to their high kinetic energy, penetrate better through the foliage, 

but are more likely to run off from the plant surfaces (Minov et. al., 2016). Koch and Knewitz (2008) studied 

methods for determining the spray deposition and distribution in the vineyards. They concluded that although 

artificial samplers such as WSPs don’t provide a detailed image of the droplet deposition, are more common 

due to the ease of handling and use. Zhu et al (2011) launched a portable scanning system for evaluating of 

spray deposit distribution which includes an image processing software, laptop computer and handheld card 

scanner. The scanning resolution can be increased up to 2400 dpi, which enables it to detect minimum 17 

micron droplets. Canopy-spray interaction models were formed for predicting impaction behaviour at the leaf 

surface by scanning plant leaves and creating virtual leaf surface models and virtual spray models. The 

results revealed that the droplet retention increased with decreasing surface tension, static contact angle, 

droplet size and its velocity (Dorr et. al., 2014). Delele et. al. (2016) investigated the dynamic impact 

behaviour of spray droplets on plant surfaces by using a high-speed camera imaging technique with multi-

phase computational fluid dynamics model and volume of fluid (VOF) approach. It was reported that the 

process is highly influenced by the surface and droplet characteristics during impact. The various 

combinations of Weber, Reynolds and Ohnesorge numbers determine the droplet maximum spread factor 

and the number of secondary droplets produced in the impaction. These criteria can be used on a farm scale 

to determine droplet deposition and drift models to better understand agricultural spraying operations. A 

sensor was developed for measuring low volume spray deposit. The sensor surfaces had parallel conductive 

lines that varied the voltage of the sensor according to the droplet deposition on the surface. Two types of 

sensor surface with constant and variable line spacing were tested. Results showed that R-squared for the 

constant width line sensor and variable width sensor was 0.901 and 0.934 respectively (Maze and Parekh, 

1993). Crow et. al. (2008) developed a digital device for sensing distribution of spray deposition. The system 

used sensor surfaces with 15 lead conductive elements. The presence of droplets on the sensor surface 

caused electrical connection and their size and position were detected by the comparator circuit. They 

concluded by testing that the system was able to detect coarse droplets by using a low reference voltage and 

stated that the technique needed further investigation. A spray deposition sensing system was developed 

and evaluated preliminary. The sensor surface consisted of several parallel tin-plated copper traces of 

variable gap widths. The investigations showed that there was a significant difference in the output voltage of 

the sensor with different deposits and droplets size. Multiple sensing configurations and further experiments 

were needed to separate out the effects of application rate versus droplet sizes (Kesterson et. al., 2015). A 

system based on solution conductivity theory was developed to quickly measure the accumulating droplet 

mass of sprays. The relationship between accumulating droplet mass and solution conductivity was found as 

a linear regression relationship with high correlation and coefficient of determination of 0.99. The relative 

error of this system compared with WSPs was 7.75% and droplet collection and recovery rates were 84% 
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and 91%, respectively (Su et. al., 2017). Wang et. al. (2019) monitored pesticide droplet deposition with a 

novel capacitance sensor. The results indicated that there was a linear relationship between the deposition 

mass due to the impact of droplets on the sensor surface and the output voltage of the sensor. R-squared 

values for the ionized and non-ionized solutions were 0.835 and 0.882, respectively.  

Piezoelectric sensors have piezoelectric materials as a sensor element. They can create electricity 

when subjected to a mechanical stress. They will also work in reverse, generating a strain by the application 

of an electric field. The piezoelectric effect can be defined by the Eq.1. 

𝐷 = 𝑑 ∗ 𝑇 + 𝜀 ∗ 𝐸𝑐                                                                            (1) 

Where: 

D is the electric charge displacement, d is the piezoelectric coefficient, T is the applied stress, ε is the 

electric permittivity and Ec is the electric field strength. PVDF (Polyvinylidene fluoride) film sensors have high 

voltage output ten times higher than piezo ceramics for the same input force. They also have the advantages 

of being thin and flexible and have wide frequency response, and good linearity. 

WSPs are impregnated with bromophenol blue solution, which as a result of the impact of the droplets, 

stains are recorded on them. The papers are mounted on plant targets or on special stands. After spraying 

and drying, they are collected and digital images are prepared. Then, they are analyzed using image 

processing techniques. Volume Median Diameter (VMD) refers to the midpoint droplet size, where half of 

the spray volume is in droplets smaller, and half of the volume is in droplets larger than the mean. The spray 

deposition can be estimated by computing the volume of all droplets per unit area (Matthews, 2008). 

Support Vector Machine (SVM) first introduced by Vapnik and Chervonenkis in 1971, is a machine learning 

algorithm based on statistical learning theory and is a kind of structural risk minimization based algorithms 

and a supervised learning model. It is optimized overall and is used today as a robust and reliable 

classification tool. The nature of the SVM could be of two types, either linearly separated data with the 

largest distance, or by using nonlinear kernel functions map data into a high dimensional space to seek a 

separate hyperplane. Then it can perform classification by using the constructed N-dimensional hyperplane 

that optimally separates data (Vapnik, 1998). 

In this study, by using the approach of droplet impaction to surfaces and detecting the minor forces 

originated by impactions, vibration signals were acquired, filtered and processed. By extracting the features 

from the signals and implementing machine learning techniques, the classification of the sprays was 

performed in terms of the spray characteristics. The main objective is to provide a method or tool to evaluate 

the spraying characteristics for different nozzle status. 

 

MATERIALS AND METHODS 

The main part of electronic setup is comprised of a piezoelectric polymer (PVDF) sensor model LDT1-

028K manufactured by Measurement Specialties Inc. which formed a cantilever beam by using of two jaw 

holders (Fig. 1). The sensor specifications are listed in Table1.  

 
Fig. 1 - LDT01-28K film sensor and its dimensions in mm [inches] 

Table 1 

LDT1-028K PVDF film sensor specifications 

Minimum Impedance 1MΩ 

Preferred Impedance 10MΩ and higher 

Output Voltage 10mV-100V depending on force and circuit impedance 

Storage Temperature -40℃ - +70℃[-40℉- 60℉] 

Operating Temperature 0℃ - +70℃[32℉-60℉] 
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To increase the local resolution of the sensor, a sliding plastic plate with 10 x 10 mm2 aperture was 

installed on sensor so that 1 cm2 effective sensor surface is created in order to decrease the number of spray 

droplets impact or avoid multiple impacts. It relatively ensures that each sensor signal will be produced from 

one droplet. An ARDUINO board was used as an analog to digital converter and microcontroller. Signal 

amplifier module was designed using Proteus Pro 8.8 software and after it was built, it was mounted on the 

ARDUINO board (Fig.2). 

 

 
 

Fig. 2 - Amplifying module on board and its circuit 

 

LM358A operational amplifiers were used to amplify the signals. The data acquisition system was 

developed using the ARDUINO and serial communication script on the board side, as well as the Excel 

Macro on the laptop computer side, which could handle sampling frequency about 600 Hz. To reduce the 

noise effects on the signals, a shielded cable was used to transmit the signal, and a USB shielded cable was 

used to connect the board to the laptop computer. 

Despite the development of new atomization and spraying techniques such as centrifugal and air-

assisted techniques, hydraulic nozzles are used in most countries for spraying. The size and distribution of 

the droplets in these nozzles is very non-uniform and the application rate is very high. Hollow cone nozzles 

are classified into three types of spiral, axial whirl and tangential whirl, and the first type is mostly used in the 

agricultural applications (Fig.3). 

 

Fig. 3 - Three types of hollow cone nozzles 

 

To perform the spraying tests, a laboratory spraying setup was provided including a tank, centrifugal 

pump, barometer, and adjustable lance equipped with a hollow cone nozzle. By twisting Lance handle, five 

spraying status were determined including I, II, III, IV and V. The tap water was used as the spray liquid and 

performed primary tests using WSPs as droplet sampling surfaces and sensor system as a means of 

sensing vibration signals. To control the spraying time length, a metal base frame was provided with a sliding 

plastic plate as a barrier. The frame was located closer to the nozzle and in front of it. For sampling with 

WSPs and Sensor, barrier plate was raised and released. All spraying tests were carried out in the same 

spraying condition. The samples of vibration signals due to droplets impaction are shown in Fig.4. 
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I) 

 

II) 

 

III) 

 

IV) 

 

V) 

 

Fig. 4 - Samples of vibration signals for five spraying status 

 

Spray droplets were sampled by WSP with 30 replications for each spray status. The papers were 

scanned and digital images were obtained (Fig.5). By using image processing algorithm developed by coding 

in MATLAB environment it was able to identify objects and their properties by performing low-level and mid-

level processing with segmentation and labelling functions (Poorvousooghi Gargari, 2013). By analyzing the 

papers, the five spray classes were separated in terms of VMD and spray deposition. These classes were 

used as SVM targets. 

 

Fig. 5 - Digital images of water sensitive papers 

 

Signal processing includes signal conditioning and extraction of features from the signals. Initially, by 

applying the moving average filter and the band-stop filter, the signals were smoothed and filtered. Ninety 

signals with one second duration were selected for each spraying status. Twenty six features were extracted 

using a developed algorithm that includes peak detection functions, statistics and vibration features 

computing functions. By means of peak analysis, these features were extracted: 

Mean of Peak values is the central value of a discrete set of values (Eq.2). 

 

𝜇𝑝 =
∑ 𝑝𝑚

𝑀
𝑚=1

𝑀
                                                                                (2) 

 

Median of Peak values is the value separating the higher half from the lower half of samples (Eq.3). 

 

𝑚𝑒𝑑𝑖𝑎𝑛𝑝 = 𝑙 +
ℎ

𝑓
(

𝑀

2
− 𝑐)                                                                 (3) 
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Where: 

𝑙  is lower class boundary of median class, ℎ is size of median class, 𝑓 is frequency corresponding to 

the median class, 𝑀 is sum of frequencies and c is cumulative frequency preceding median class. 

Mode of peak values is the value that appears most often (Eq.4). 

𝑚𝑜𝑑𝑒𝑝 = 𝑙 + ℎ (
𝑓𝑚−𝑓1

2𝑓𝑚−𝑓1−𝑓2
)                                                                  (4) 

Where: 

𝑙 is lower class boundary of modal class, ℎ is size of modal class, 𝑓𝑚 is frequency corresponding to the 

modal class, 𝑓1 is frequency proceeding the modal class and 𝑓2 is frequency proceeding the modal class. 

Some important statistical and vibration features extracted from the signals and their equations are 

listed in Table 2. 

Table 2 

Some important features extracted from signals 

Equation Feature Equation Feature 

𝑀𝐷 =
∑ |𝑥𝑛 − 𝜇|𝑁

𝑛=1

𝑁
 

Mean 
Deviation 𝜇 =

∑ 𝑥𝑛
𝑁
𝑛=1

𝑁
 Mean 

𝑀𝑜𝑚𝑖 =
∑ (𝑥𝑛 − 𝜇)𝑖𝑁

𝑛=1

𝑁
 

Moment (order 
i) 𝑅𝑀𝑆 = √

∑ (𝑥𝑛)2𝑁
𝑛=1

𝑁
 

Root Mean 
Square 

𝐼𝐹 =
𝑀𝑎𝑥(𝑥𝑛)

1

𝑁
∑ |𝑥𝑛|𝑁

𝑛=1

 Impulse 
Factor 

𝐾𝑢 =
∑ (𝑥𝑛 − 𝜇)4𝑁

𝑛=1

(𝑁 − 1)(𝑆𝑇𝐷)4 Kurtosis 

 

By means of reducing the volume of SVM inputs, the processing speed can be increased, which 

reduces the time required for modeling and increases precision. To dimensionality reduction of the features, 

Correlation-based Feature Subset Evaluation algorithm and Best First method in Weka software were used. 

More efficient and main features were selected including mean, median, mode of peak values, root mean 

square, mean deviation and impulse factor of signals. The features matrix was created and 70% of the data 

were considered as training data and 30% as test data. In other words from 90*6 features for each spraying 

Status, 63*6 were used as training data and 27*6 as test data. 

Classification was implemented using the SVM classifier and by cross validation method in MATLAB 

software. The learning process was performed using SVM classifier with different kernel functions on the 

training data, the models were tested using test data and two most accurate learning models were extracted. 

The confusion matrix was used to analyze the classifier performance. In this matrix, the criteria such as 

Accuracy, Sensitivity, Specificity and Precision were used as the overall evaluation of the classifiers. The 

equations of these criteria are as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
                                                                 (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                         (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑁+𝑇𝑁
                                                                        (7) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                            (8) 

 

Where: 

TP is the number of true positive instances, TN is the number of true negative instances, FP is the 

number of false positive instances and FN is the number of false negative instances. 

Cohen's kappa coefficient is used as criterion for further evaluation of classifier performance and 

indicates the degree of agreement between predicted and actual instances for all classes (Eq.9). 

Ҝ =
𝑃0−𝑃𝑒

1−𝑃𝑒
                                                                             (9) 

Where: 

P0 is the observed relative agreement among actual values and prediction values and Pe is the 

hypothetical probability of chance agreement or probability that both prediction and actual values are positive 

or negative. Interpretation of Kappa coefficient is presented in Table 3. 
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Table 3 

Kappa interpretation guidelines of Landis and Koch (1977) 

Kappa statistic Strength of Agreement 

<0 Poor 

0.01-0.20 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost Perfect 

RESULTS  

The analysis of water sensitive papers indicated that the averaged VMD for the five spraying status 

were estimated to be 580, 621, 719, 903 and 1267 µm. Also, the averaged spray depositions were 0.52, 

0.65, 1.26, 1.47 and 4.07 µl/cm2. This points out that wisting the lance handle changes the nozzle status and 

thus increases the droplet size and the spray deposition. It is clear that the increase in droplet size has a 

slight slope in three first statuses and is evident in status IV and is sharp in status V. In the case of spray 

deposition, since the volume is theoretically directly related to the third power of the diameter, the slope of 

the increase is very significant. These results show that five spray classes were separable by using image 

processing technique including A,B,C,D and E. These classes were used for SVM classifier targets. Table 4 

presents spray classes and their specifications. 

Table 4 

Spray classes and their specifications 

Nozzle 
status 

 
Averaged 

VMD 
 

Averaged 
Deposition 

Spray 

Class 

I 580 0.52 A 

II 621 0.65 B 

III 719 1.26 C 

IV 903 1.47 D 

V 1267 4.07 E 

 

Signal processing, feature extraction and finally feature selection provide data for use as SVM inputs. 

The averaged features of signals for each nozzle status are presented in Table 5. 

 

Table 5 

The averaged features of Signals 

Nozzle 
status 

𝝁𝒑 𝒎𝒆𝒅𝒊𝒂𝒏𝒑 𝒎𝒐𝒅𝒆𝒑 𝑹𝑴𝑺 𝑴𝑫 𝑰𝑭 

I 
II 

193.47 193.38 188.10 189.15 2.59 1.06 

192.19 192.05 186.92 187.75 2.66 1.07 

III 179.77 179.10 177 177.66 1.74 1.09 

IV 181.14 175.64 170.50 171.88 9.61 1.60 

V 189.12 182.88 177.04 177.88 9.69 1.62 

 

 

The result of SVM classifier implementation shows that the overall accuracy of classifier with Linear, 

Quadratic, Cubic, Fine Gaussian, Medium Gaussian and Coarse Gaussian kernel functions are 94.6, 91.1, 

90.5, 91.7, 94.3 and 89.2%, respectively. Linear and Medium Gaussian have the highest performance 

accuracy in training and was further investigated. The prediction models were obtained and tested with test 

data.  

The overall evaluation criteria of the SVM classifier with linear and medium Gaussian kernels are 

presented in Table 6. 
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Table 6 

The overall evaluation criteria of the SVM classifiers  

Kappa Precision Specificity Sensitivity Accuracy Data  

0.83 94.63 98.65 94.60 94.60 Training 
Linear kernel 

0.77 92.58 98.15 92.59 92.59 Test 

0.82 94.31 98.57 94.29 94.29 Training 
Gaussian kernel 

0.70 90.56 97.59 90.37 90.37 Test 

 

 

Based on data from table 6, overall 92.58 percent of the cases classified by the linear model are 

accurate. Overall precision of classifier for predicting is 92.58%. SVM with linear kernel has performed better 

on training data and the evaluation criteria are great, SVM with Gaussian kernel performed much better in 

the training process but predicting with the obtained model has been weaker. The values of kappa coefficient 

are within the range of 0.61-0.80 that indicate the overall substantial agreement between the predicted and 

the target instances and validate classifier performance. These values for training show almost perfect 

agreement. 

However, the values of the overall classification criteria are desirable and acceptable. Therefore, the 

selected features can be used as SVM inputs to reduce the computational load of the processor and reduce 

the prediction time. The classification error using the linear kernel is up to 7.41%. Table 7 presents the 

sensitivity and precision of the linear classifier for each spray class. 

 

Table 7 

The Sensitivity and Precision of classifier for each class 

Precision Sensitivity Class 

Test Data Training  Data Test Data Training  Data  

92.86 96.83 96.30 96.83 A 

92.59 95.16 92.59 93.65 B 

92.00 93.55 85.19 92.06 C 

92.59 90.76 92.59 93.65 D 

92.86 96.83 96.30 96.83 E 

 

 

The linear SVM model is less sensitive to class C separation but in separation of class A and E is very 

sensitive. Miss rate (False Negative Rate) of linear SVM model in separation of class C from other 4 classes 

is highest (approximately 8% for training data and 15% for test data). Precision of classifier model is higher 

than 92% for all class separation. Low precision of classifier in separating class D from class C in training is 

due to its low accuracy in the separation of class C. ROC (Receiver Operating Characteristics) curves were 

obtained for test data that show that specificity is close to 100 in all classes and minimum sensitivity is 85% 

in Class C. Area Under Curve (AUC) for this class is within acceptable and good range (80-90) and 

classifying model is sufficiently reliable (Fig.6). 

Although classification of spray droplet has not been reported so far, spraying quality evaluation has 

been investigated with often expensive techniques in several papers. Sun et. al. (2017) reported a relative 

system error less than 7.75% in a system that works based on solution conductivity compared with WSPs. 

Baijing and Li (2011) used spectral technique and regression models to predict droplet concentration with an 

average error of 6.41. The method proposed by Yang Jun et. al. (2017) using the LiDAR technique for 

detection of spray droplet distribution had relative error less than 7% compared with WSPs. 
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Fig. 6 - ROC curves for all classes in training data 

 

CONCLUSIONS 

The research was conducted for the nozzle spraying characterization in agricultural activities. Analysis 

of vibration signals as a result of spray droplets impaction to the active sensor surface was considered. 

Spraying tests were carried out by using an adjustable nozzle. Spray droplets were sampled with water 

sensitive papers, and specifying characteristics were identified using image processing techniques. Feature 

extraction and selection algorithms were used for determination of effective signal features. The Support 

Vector Machine (SVM) classifier was implemented with various kernel functions for supervised classification 

and their performances were studied. As a consequence, the conclusion is summarized below: 

1) Results of machine learning process showed that accuracy and precision of SVM models with 

various kernel functions were acceptable. Therefore, SVM models have high potential for 

classification of spraying status. 

2) Linear SVM model has higher overall accuracy and precision than others. The model is capable of 

separating the spray classes with 92.59% overall accuracy. Kappa coefficient for the model was 0.77 

which indicates substantial agreement in classification. Within class analysis, Precision of classifier 

model is higher than 92% for all class separation. The lowest sensitivity of model is related to class 

C. Miss rate for class C was the highest value (approximately 15%). 

3) Due to the advantages such as low cost, real time outputs, easy set up and faster execution of the 

method, it can be uses as efficient and useful tool for the spray characterization in fields and testing 

centres. Manufacturer of nozzles and spraying equipment can also use it for preparation of nozzle 

instructions and guidelines. 
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