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Abstract 
The n-Queens problem is considered. A description of the regularities in a sequential list of 

all solutions, both complete and short, is given. Determined that: 
1. The fraction of total solutions in the general list of all solutions decreases, with increasing 

value of n. 
2. Complete solutions are distributed in a sequential list of all solutions in such a way that the 

most likely solutions are complete solutions located in the list close to each other. 
3. There is a symmetry in the order of the location of the complete solutions in the general list 

of all solutions. If the solution is complete in the i-th position from the beginning of the list, then 
the symmetric solution from the end of the list, located in the position n-i + 1, is also complete (rule 
of symmetry of solutions). 

4. Any pair of solutions, both short and full, arranged symmetrically in the list of all 
solutions, are complementary – the Queen position indices sum of the corresponding rows is a 
constant and is equal to n + 1 (the rule of complementarity of solutions). This suggests that only the 
first half of the list of all complete solutions is "unique", any complete solution from the second half 
of the list can be obtained on the basis of the complementarity rule. The consequence of this rule is 
the fact that for any value of n, the number of complete solutions will always be an even number.  

For an arbitrary matrix of a solution of size n x n, it is established that: 
5. The probability of completion to a full solution an arbitrary composition of k queens, 

gradually decreases with increasing value of k to a certain minimum, and then increases, with a 
further increase in the value of k. 

6. There is some minimum value of the size of the composition k0, such that any composition 
whose size is less than or equal to k0 can always be completed to a complete solution. As the value 
of n increases, the value of k0 also increases. 

7. The activity of row cells in solution matrix is symmetric with respect to the horizontal axis 
passing through the middle of this matrix. This means that the cells  activity in the i-th row always 
coincides with the cells  activity in the row n- i + 1. By activity is meant the frequency with which 
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the cell index occurs in the corresponding row of the list of complete solutions. Similarly, the 
activity of the cells of the columns of the solution matrix is symmetrical about the vertical axis 
dividing the matrix into two equal parts 

8. For any n, in the sequential search for all solutions, the first complete solution appears 
only after some sequence of short solutions. The size of the initial sequence of short solutions 
increases with increasing n. The length of the list of short solutions until the first complete solution 
for even values of n appears is much larger than for the nearest odd values. 

9. The row in the solution matrix, on which difficulties begin to move forward, and the first 
short solution is formed, divides the matrix according to the rule of the golden section. For small 
values of n, such a conclusion is approximate, but with an increase in the value of n, the accuracy of 
such an output asymptotically increases to the level of the standard rule. 

Keywords: n-Queens problem, constraint satisfaction problems, non-deterministic 
problem, state space, search for regularities. 

 
1. Introduction 
I was always sure that if the data is not random, then there must be a certain regularity in 

them, if even this regularity we can’t find. It was this conviction that was the reason for the search 
for regularities in the n-Queens problem solutions. 

The formulation of the problem is quite simple: it is necessary to distribute n queens on a 
chessboard of size n x n so that there is not more than one queen in each row, each column, and on 
the left and right diagonals passing through the cell where the queen is located. This task is easy to 
understand or explain to anyone, but it is difficult to solve it. The fact is that there is no rule (or set 
of rules) based on which we can arrange the queens in each row so get a solution. The solution can 
be obtained only on the basis of a search of various variants of the arrangement of queens in certain 
rows. However, the complexity of this method of solution is that the number of all variants of the 
arrangement of queens grows exponentially with increasing n. In addition, the execution of any 
step forward, for placing the queen in the free position of some row, changes the list of free 
positions in the remaining rows, and when we go back one step, in order to form a search branch, 
we must clear the traces of previously performed actions. 

The problem of the distribution of n queens on a chessboard of size n x n has a long history. 
Originally it was formulated in 1848 by M. Bezzel (Bezzel, 1848), as an intellectual task for a 
conventional chessboard. Over time, the statement of the problem was extended by F. Nauck 
(Nauck, 1850), and the size of the chessboard could take on an arbitrary value. 

There are a large number of publications related to various aspects of solving the n-Queens 
problem. Some of these publications are publicly available, and the other part requires payment to 
view the publication. I did not watch paid publications and can’t refer to them. Among open 
publications there are many interesting and informative works that relate to several areas of 
research: the search for all complete solutions for a given chessboard size n, the development of a 
fast algorithm for finding one solution for different values of n, the computational complexity of 
algorithmic calculations, and also various modifications of the initial statement of the problem. 
To familiarize with these areas, I would recommend the remarkable work of Bell & Stevens (Bell, 
Stevens, 2009) and also I.P. Gent, C. Jefferson, P. Nightingale (Gent et al., 2017), which provides a 
fairly detailed overview of the various areas of the study. Some directions are considered in more 
detail in the works of H.A. Priestley, M.P. Ward (Priestley, Ward, 1994), R. Sosic and J. Gu (Sosic, 
Gu, 1994), J. Mańdziuk (Mańdziuk, 2002), A.S. Farhan, W.h. Z. Tareq, F. H. Awad (Farhan et al., 
2015). Especially noteworthy is an online publication (Kosters, 2017), supported by W. Costers, 
which was prepared by a group from Universiteit Leiden and contains a link to 339 publications 
(as of 2018) related to the problem of n-queens.  

Although the problem of n-Queens has remained active for more than 150 years, and during 
this time research has been conducted, and a huge number of publications have appeared, I haven’t 
been able to find a publications that would have to do with the search for regularities in the results 
of solving this problem. 

Definitions 
Here and below, the size of the chessboard will be denoted by the symbol n. The solution will 

be called complete if all n queens are consistently arranged on a chessboard. All other solutions, 
when the number of correctly arranged queens is less than n, will be called short. By the length of 
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the solution we mean the number (k) of correctly arranged queens. The number of all solutions 
(short and complete), for a given value of n, will be denoted by the symbol m. As an analog of the 
"chessboard" of size n x n. 

 
2. Results 
Beginning 
In order to conduct the research, an algorithm for finding all solutions for an arbitrary value 

of n was developed. We did not use recursion or a nested loop system. For large values of n, such an 
approach would be rather problematic. The algorithm was built on the basis of a set of interacting 
events, in each of which, a certain system of actions, interconnected, takes place. This makes it 
possible to simply implement the mechanism of changing the state space when selecting the next 
node in the Forward Tracking branch, or clearing the traces of previously performed actions, when 
returning back to one or more steps (Back Tracking). In the algorithm there are no special 
requirements to the amount of memory or the speed of the processor, so the calculations can be 
made on any home computer (laptop). Based on this algorithm, all successive solutions (both short 
and complete) were found for different values of the solution matrix (n = 7, ..., 16). Since the size of 
the list of complete solutions is a named sequence (sequence A000170 [10]) and is indicated in 
many publications, it seems to me interesting to bring the size of the list of all solutions, for the 
values n: 7 (194), 8 (736), 9 (2936), 10 (12774), 11 (61076), 12 (314730), 13 (1716652), 
14 (10030692), 15 (62518772), 16 (415515376). 

Further, using the solutions found, we give formulations of some problems, methods for their 
solution, and a description of the results obtained. Also, we present the results of the 
computational experiments carried out to evaluate the probability of completion to full solution an 
arbitrary composition of k queens. 

1. About the state space in which solutions are being sought. 
The search of various variants of the arrangement of queens in certain rows leads to the 

formation of a state space. If there were no prohibitions on the location of queens in any cell, then 
the size of the state space would be equal to nn. If we only consider a rule that forbids the placement 
of more than one queen in each column, then we get a subset of the state space whose size will be 
equal to n! This subset of the state space corresponds to the problem of the distribution of n rooks. 
If, at the same time, we also take into account the rule that prohibits the arrangement of more than 
one queen on the left and right diagonals passing through the cell where the queen is located, we 
get a search space whose size is less than n!. We call such a subset of the state space a productive 
search space, starting from the fact that only in this subspace are all possible solutions. 
Any completed branches in the productive search space are solutions with a certain number of 
correctly arranged queens. Basically - these are short solutions, and only a small part of the rest are 
complete solutions. 

Figure 1 shows the graphs of the dependence of the natural logarithm of three indicators: 
a) the factorial values (n!) of the size of the solution matrix; b) the number of all solutions (both 
short and complete); c) the number of complete solutions, depending on the size of the solution 
matrix (n). As expected, all curves have exponential growth, and, evidently, the logarithm of the 
factorial grows much faster than the corresponding values of all solutions and complete solutions. 
Also, the growth rates of the number of all solutions and the number of complete solutions vary, 
although this is not so noticeable on the graph, due to the small size of the sample of values of n. 
For example, for n = 13, the difference between the logarithms of these indicators is 3.148, and for 
n = 16 this difference increases by 0.190 and is 3.338. Obviously, with a further increase in the 
value of n, this discrepancy will be more significant. 
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Fig. 1. Dependence the logarithm of the size of difference subsets of State Space from n 
 

 
Fig. 2. Decreasing complete solutions share in the list of all solutions with increasing n 
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2. How does the share of complete solutions change in the general list of all solutions? 
Figure 2 shows the plot of the fraction of complete solutions in the general list of all solutions 

from the value of n. It is seen that as the size of the solution matrix increases, the share of all 
complete solutions in the general list decreases. For initial values  n = 7, ..., 14, this value decreases 
rapidly from the value 0.2062 to 0.0364, and then a gradual, asymptotic decrease of this value 
continues. Here there is a formal contradiction between the two statements: on the one hand, the 
number of complete solutions exponentially increases with increasing value of n, on the other 
hand, the probability of obtaining a complete solution in a sequential list of all solutions is 
constantly decreasing. This seeming paradox is explained very simply, the size of the productive 
space and the associated size of the list of all solutions grows faster with increasing n than the 
number of complete solutions. It's like trying to find a needle in a haystack – the amount of hay 
"with increasing n" grows faster than the number of needles that are lost there. 

3. What is the frequency of solutions of different lengths in the list of all solutions? 
 

Table 1. Relative frequency (%) of solutions of different length (k) for a matrix of size nxn 
(n = 7, ..., 16). 
 

n\k 4 5 6 7 8 9 10 11 12 13 14 15 16 

7 10.31 31.23 27.84 20.62          

8 2.45 20.38 34.78 29.89 12.50         

9 0.34 5.79 21.73 35.83 24.32 11.99        

10 0.05 1.35 8.41 25.62 32.94 25.96 5.67       

11  0.15 2.12 11.80 26.71 34.47 20.36 4.39      

12  0.01 0.29 3.28 13.56 29.88  31.29 17.18 4.51     

13  e 0.03 0.68 4.72 16.57 28.76 28.84 16.11 4.29    

14   e 0.90 1.14 6.47 17.49 28.01 27.45 15.70 3.64   

15    0.01 0.18 1.80 7.53 18.46 27.07 26.63 14.64 3.68  

16    e 0.02 0.35 2.23 8.23 18.89 27.56 25.39 13.77 3.56 

e – denotes values that are less than 0.01 
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Fig. 3. Frequency of solutions of different lengths depending on the size of the solution matrix, 
n =    7, ..., 16 

 
As mentioned earlier, all completed branches in the productive search space are solutions 

with a different number of correctly arranged queens. It is of interest to us how often solutions of 
different lengths are found in the general list of all solutions. Table 1 shows the corresponding 
values of the relative frequencies for solutions having different lengths that were obtained from the 
list of all solutions for n = 7, ..., 16. The corresponding visual representation of these data is given in 
Figure 3. The analysis of the table allows us to draw the following conclusions: 

a) for each solution matrix of size n, there is some length of the solution that has the 
maximum frequency (these values are shown in bold). 

b) as the value of n increases, the number of solutions with different lengths increases. 
Accordingly, the relative frequency of all solutions decreases. 

c) for each solution matrix of size n, there is a certain minimum size of the solution length, 
below which short solutions do not occur. With increasing value of n, the value of this threshold 
increases. For example, for n = 8, the threshold value is 4, respectively, for n = 16, the threshold 
value is 7. 

4. How complete solutions are located in a sequential list of all solutions? 
In the formulation of the n-Queens problem there are no reasons that would give grounds for 

making any assumption about the order of following complete solutions in the general list of all 
solutions. We were interested in whether the complete solutions are distributed uniformly in the 
general list, randomly, or it has some peculiarities. To find this out, we analyzed the distances 
between the nearest complete solutions in a sequential list of all solutions. As can be seen from 
Fig. 4, where for n = 12, a histogram of the distribution of the corresponding frequencies is 
presented, with the greatest frequency there are complete solutions that directly follow one 
another. These are cases of the formation of the search branch, when the relationships of free 
positions in the last rows allow one to form two or more consecutive full solutions. Further, the 
maximum frequency has those complete solutions, between which are located: one short solution, 
two short solution, etc. 
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In order to find the regularities in the location of the complete solutions in the general list of 
all solutions, we analyzed the lists of all solutions for n = 7, ..., 16. To graphically demonstrate the 
results, in Figure 5, for the value n = 8, the length of each solution in the list of all 736 solutions is 
indicated. Here, only 92 solutions are complete, and they are highlighted in red, the remaining 
644 solutions are short, and are highlighted in blue. It can be seen that the complete solutions are 
not evenly distributed in the list of all solutions. There are zones where full solutions are found 
more often, but there are places where complete solutions are rare or do not occur at all. However, 
another thing is important here. If we look closely at the blue-red barcode, we can notice one very 
important feature, all the red lines are symmetrical with respect to some conditional vertical line 
passing through the middle of the list of solutions. In fact, as the check shows, if at the i-th step 
from the beginning of the general list there is a complete solution, then, respectively, the complete 
solution will necessarily be found at step m - i + 1, where m is the size of the list of all solutions. 
For example, for n = 8, if the first complete solution in the sequential search of all solutions 
appears at the step 43, then, respectively, the last complete solution in the list will be found in step 
736 - 43 + 1 = 694. If the 17th solution for a 10x10 matrix appears in the list at step 368, the 
symmetric complete solution will appear in the list of all solutions in step 12774 - 368 + 1 = 12407. 
This rule is valid for a matrix of a solution of any size. 

 
Fig. 4. Dependence of the frequency on the distance between two nearest complete solutions 

 



Modeling of Artificial Intelligence, 2018, 5(1) 

10 

 

 
 
Fig. 5. The length of each solution in a sequential list of all solutions, for a matrix of size 8x8 
(red – full solutions, blue – short solutions). The total number of all solutions is 736 

 
Therefore, we can formulate a rule. For any value of n, if the solution is complete in the 

sequential list of all solutions in the i-th position from the beginning of the list, then the symmetric 
solution from the end of the list in the position m - i + 1 will also be complete (rule of symmetry of 
solutions). The consequence of this rule is the fact that for any value of n, the number of complete 
solutions will always be an even number. (All the lists of complete solutions found so far are even 
numbers). 

If we compare the queen position indices of any two symmetric solutions, then we can find a 
critically important feature: symmetric pairs of solutions are complementary. The sum of the 
corresponding values of the indices of the queens of symmetric solutions is n + 1. For example, the 
17th solution for n = 10 in the list of all solutions is in the 368th step from the beginning of the list 
and the indexes of the queen positions at this step are (1, 5, 7, 10, 4, 2, 9, 3, 6, 8). 
The corresponding symmetric solution is at step 12407 and has queen positions indexes (10, 6, 4, 1, 
7, 9, 2, 8, 5, 3). If we add the corresponding values of the indices of each pair, we obtain (11, 11, ..., 
11). This rule is valid for any value of n, moreover, both for complete symmetric solutions and for 
short symmetric solutions. This allows us to formulate the second rule. For a matrix of solutions of 
any size n, any pairs of solutions (both short and complete) arranged symmetrically in a sequential 
list of all solutions are complementary - the sum of the indices of the positions of the corresponding 
rows is a constant and is equal to n + 1 (the complementarity rule for solutions). If we denote by Q 
( I ) and Q1 ( I ) the arrays of indices of complementary solutions, then the rule 

Q ( i ) + Q1 ( i ) = n + 1,    i = (1, n)  
This rule means that if a complete solution is obtained at the i-th step, then the symmetric 

complete solution at step m - i + 1 becomes known. Therefore, when searching for all complete 
solutions, it is sufficient to find only the first half of all complete solutions. The second half of the 
list of complete solutions can be determined from the solutions already obtained, on the basis of 
the complementarity rule. The criterion that half of the list of complete solutions is reached is the 
fulfillment of the complementarity rule between the previous complete solution Q (i - 1) and the 
subsequent Q ( i ). that is, it is necessary that the sum of each pair of corresponding values of the 
indices of two consecutive solutions be equal to n + 1. Since any complete solution from the list of 
all complete solutions is unique, only those consecutive full solutions will be complementary, which 
are on both sides of the border separating the list in half. 

These two rules will allow in the future, in the search for all complete solutions for any next 
value of n, to reduce the amount of calculations and, correspondingly, the counting time in half. 
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5. Visualization the sequence of steps to find the first complete solution 
How is the process of performing forward steps (Forward Tracking) and backward (Back 

Tracking) when forming the solution search branch. In order to answer this question, we, for a 
matrix of 10x10, determined a sequence of 194 transitions between the rows until the first complete 
solution appeared. The corresponding graph is shown in Figure 5. Blue lines mean forward 
movement, and red lines - return back. During these 194 steps, 35 short solutions were created, 
there were transitions between different lines without creating any solutions and, in the end, a 
complete solution was obtained. The figure shows that most of the transitions (84.5 %) occur 
between the lines (5, 6, 7, 8). This is, in a way, a "bottleneck" on the way to the "goal". As follows 
from the figure, there are only 7 cases of transition to the 4th row and one case of transition to the 
third row. There are also 13 cases of transition to the 9th row. Three attempts to go to the 10th row 
were unsuccessful, since there was no free position in these search branches on the 10th row. 
This example clearly demonstrates all the branches of the formation of short solutions, until the 
first complete solution is obtained. 

 
Fig. 6. Visualisation of BackTracking (red) and ForwardTracking (blue) for first 194 steps of 
search of solution (n=10) 

 
Any algorithm for solving such a problem will be effective if it contains a mechanism that will 

exclude all (or part) branches leading to short solutions. 
6. After what number of short solutions does the first complete solution appear? 
Considering that complete solutions appear unequally at different sections of the list of all 

solutions, it is important to find out through what number of short solutions the first complete 
solution appears. To this end, for the values n = 7, ..., 35, all short solutions were sequentially 
calculated before the first complete solution appeared. As can be seen from Figure 6, where the 
graph of the dependence on n, the natural logarithm of the step number is presented, when the first 
complete solution appears, for even values of n the first complete solution appears much later than 
for the nearest odd values of n. For example, for an odd value of n = 21, the first complete solution 
appears at step 3138, and for the next, even value of n = 22, the first complete solution appears at 
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628169 step. Accordingly, for the next, odd value of n = 23, the first complete solution appears at 
step 9155. The number of iteration steps for even n = 22, respectively, is 200.2 and 68.6 times 
greater than for the nearest odd values. Especially evident in the counting time, this is manifested 
for n = 34. Here, the first complete solution appears on the step 826 337 184, and for the nearest 
odd numbers (33, 35), respectively at step 50 704 900 and 84 888 759. It should also be said about 
the violation of the monotonicity of the growth of the number of short solutions until the 
appearance of the first complete solution, with increasing n. For even values of n, this occurs for n 
= 19, for odd ones, for n = 24 and n = 26. 

 
Fig 7. Number of short solutions until first complete solution appears for different n 

 
7. Is the frequency of occurrence of cells of each line in the list of all complete solutions 

dentical? 
The n x n size solution matrix, which is an analog of the chessboard, is like the scene where 

all events occur. Any complete solution formed on this scene consists of cell indices of different 
rows, since each such cell is a node in the solution search branch into the depth. The question that 
will interest us – is the activity of cells in each row the same, when forming a list of all complete 
solutions? Obviously, the higher the value of the frequency, the higher the activity of this cell will 
be in the formation of the list of complete solutions. To establish this, we define for each row on the 
basis of a list of all complete solutions, the relative frequency of occurrence of different indices. 
First, we perform an analysis for a solution matrix of size n = 8. Let's consider sequentially each 
row of the storage array of complete solutions and determine the frequency of different index 
values. In Table 2, the corresponding values of the absolute frequencies of the activity of the 
different cells in each of the eight rows are presented, and in Figure 6 shows a group of 4 graphs, 
where each graph characterizes the change in relative frequencies within a single row. One of the 
fundamentally important conclusions that can be drawn from an analysis of all the data obtained is 
as follows: 

- for a matrix of a solution of arbitrary size n x n, the activity of the cells of the i-th row 
coincides with the activity of the cell n - i + 1, i.e. the activity of the cells of the first row always 
coincides with the activity of the cells of the last row, respectively, the activity of the cells of the 
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second row coincides with the activity of the cells of the penultimate row, and so on. In Table 2, 
for clarity, the frequencies of the first and eighth row and column cells are highlighted in bold. 

 
Table 2. Absolute frequency of cell activity in each of the eight rows of the solution 
matrix 8x8, obtained on the basis of an analysis of the list of all complete solutions 

 

row\col      1      2      3      4      5      6      7      8 

      1      4      8     16     18     18     16      8      4 

      2      8    16     14      8      8     14     16      8 

      3    16    14      4     12     12      4     14     16 

      4    18     8     12      8      8     12      8     18 

      5    18     8     12      8      8     12      8     18 

      6    16   14      4     12     12      4     14     16 

      7     8   16     14      8      8     14     16      8 

      8     4    8     16     18     18     16      8      4 

 
- in the case when n is odd, only the median row of the solution matrix does not have a 

symmetric pair, for all other cells the above rule is valid. 
We call this, "the property of horizontal symmetry of the activity of cells of different rows of 

the solution matrix". For this reason, we gave only 4 graphs for a matrix of a solution of size n = 8, 
since the cell activity graphs for rows (1, 8), (2, 7), (3, 6) and (4, 5) are completely identical. 

It should also be noted that all graphs are symmetric with respect to the vertical axis dividing 
the matrix into two equal parts (in the case of an even value of n), or passing through a median 
column (in the case of an odd value of n). We call this, "the property of vertical symmetry of the 
activity of cells of different rows of the solution matrix". From Table 2, it is seen that the 1st column 
completely coincides with the last column and they are completely identical to the values of the 
first row. Similarly, the second column completely coincides with the seventh column, and their 
values completely coincide with the second row, etc. This means that the frequencies in the 
solution matrix are symmetric with respect to the left and right main diagonals. 

I think that the presence of limiting rules in the formulation of the problem, and the 
associated property of nondeterminism, "сreate" some kind of harmonious relationship between 
nodes in different lines. Those branches of search that fit into these rules - lead to the formation of 
a complete solution. The remaining branches of the search, at some point violate these rules, and in 
the end, "complete their way" in the form of short solutions. Here it should be noted that the cells 
of the solution matrix have only a local relationship within the projection impact group. There are 
no prescribed rules for concerted action between them. Collective activity of cells is only a 
consequence of the result of the impact of restrictive rules. Therefore, an interesting question 
remains open, how the restrictive rules, as factors of nondeterminism, influence the cells of the 
solution matrix, which ultimately leads to the formation of a "harmonious" matrix of cell activity – 
symmetric with respect to the horizontal and vertical axes, as well as relative to the left and right 
principal diagonals. Is this a characteristic property of only this task, or does it occur for other 
nondeterministic tasks? 
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Fig. 8. The activity of the cells of each row when forming a list of complete solutions, n=8 

 
8. From which row number is the Forward Tracking – Back Tracking algorithm included? 
If we follow the sequence of the algorithm's actions, when a row is selected in the solution 

matrix for the location of the queen, we can see that starting with some row, which we will call 
"StopRow", there is a "slowdown" of the process of moving forward. In the search branch, this row 
is the first, where there are problems with the presence of a free position for the location of the 
queen. It is from this line that the Forward Tracking algorithm is used to move forward or Back 
Tracking – to clear traces of previously performed actions, and to return back. This is the row on 
which the first short solution appears. 

The index of "StopRow", with which difficulties begin to move forward, depends on the size 
of the solution matrix. If we consider the ratio of this index, which we denote by StopInd to the size 
of the solution matrix n, then, as can be seen from the Figure 9-1, where the calculation results for 
the initial values n = 7, ..., 99 are presented, this ratio varies more or less and tends to decrease. 
As the value of n = (100, ..., 300) increases, this ratio ranges from 0.619 to 0.642 (Figure 9-2), and 
with a further increase in n, we get the following results (successively: n (StopInd, StopInd / 
n): 1000 (619, 0.6190), 2000 (1239, 0.6195), 3000 (1856, 0.6187), 4000 (2473, 0.6182), 5000 
(3091, 0.6182). It is surprising, but it can be argued that the stop line divides the matrix according 
to the rule of the golden section: namely, the StopInd / n relation differs from (n-StopInd) / 
StopInd by a small value, which tends to zero with increasing n. For example, for n = 5000, the 
difference between the ratios 3091/5000 and 1909/3091 is 0.006, which means less than 0.1% of 
the average of these two ratios. 
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Fig. 9-1. Dependence the ratio of StopRow index to n on the solution matrix size (part-1) 

 

 
 
Fig. 9-2. Dependence the ratio of StopRow index to n on the solution matrix size (part-2) 



Modeling of Artificial Intelligence, 2018, 5(1) 

16 

 

The graph presented in two figures Figure 9-1, 2 has not a random form of variability, which 
resembles a record on the "music camp". One can see repeated jumps upward and a stepwise fall 
down with some irregular periodicity. Obviously, there is some reason for this behavior of the 
curve, and perhaps this will be of interest for the study. For this reason, for a more detailed 
visualization, the graph was presented in two figures. 

9. What is the probability of completion an arbitrary composition of k queens to a complete 
solution? 

To answer this question, we need to determine all possible admissible combinations of k 
queens (k = 2, ..., n-1) for each of the considered values of the size n of the solution matrix. Here, 
by permissible compositions, we mean such combinations that do not contradict the conditions of 
the task. After this, we can compare the resulting list of compositions with a list of complete 
solutions and determine the number of those compositions that are at least once found in any of 
the complete solutions. Obviously, in the process of generating these compositions, we must keep 
the queen's position to the row index in order to make a correct comparison. Such a format of data 
representation will allow us, for example, to confirm that for n = 10, the composition of two queens 
(0,0,7,0,0,0,0,3,0,0) can be supplemented to a complete solution, since the active positions in this 
composition, coincide with the corresponding positions in the solution (1, 5, 7, 10, 4, 2, 9, 3, 6, 8), 
which is the first in the list of complete solutions for n = 10. 

We made a selection of all possible combinations of k queens based on a pseudo-random 
number generator, taking into account the limiting rules: "in each line, each column, and on the 
left and right diagonals passing through the cell where the queen is located, there should not be 
more than one queen". At the same time, we observed two conditions: a) the generation was carried 
out for a sufficiently large number of samples in order to cover all possible combinations with a 
high probability; b) before the analysis, classification of the obtained data was carried out, and 
those samples that coincided with the already selected compositions were excluded from the 
sample. It should be noted that this is a fairly time-consuming computational task, since the 
sample sizes are very large. Further analysis was carried out only on the basis of unique 
compositions. This way of generating combinations of k queens, quite accurately characterizes the 
variety of compositions in a real situation. 

 
 
Fig. 10. The number of initial and implemented compositions of different size for the solution 
matrix 11x11 
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It should be noted that the calculations that we carried out for the same value of k yielded 
very similar results. This is due to the observance of the generation condition for a sufficiently large 
sample of random compositions. For example, for n = 11, the following samples of unique 
compositions were obtained (the value of k is given, and the sample size of unique compositions is 
indicated in parentheses): 3 (53190), 4 (151786), 5 (309764), 6 (449629), 7 (558196), 8 (637556), 
9 (586628), 10 (191414). In order to obtain such samples, we each time generated one million 
compositions, some of which, then, as a result of classification, were filtered out. Calculations were 
carried out by us for ten values of the solution matrix, n = 7, ..., 16.  

 
Table 3. The probability of completion to obtain the complete solution of an arbitrary composition 
of k queens located on a n x n-size solution matrix (n = 8, 9, 10) 
 

   k \  n         8         9        10 

     2    0.8168    0.9817    1.0000 

     3    0.3907    0.6569    0.7326 

     4    0.1763    0.2942    0.2944 

     5    0.1136    0.1463    0.1170 

     6    0.1145    0.1061    0.0615 

     7    0.2306       0.1185    0.0471 

     8     0.2290    0.0589 

     9      0.1284 

 
Some of these results are presented in Table 3, (n = 8, 9, 10). In Figure 10, as an example, for 

a 11x11 size solution matrix, a set of bar charts is presented that correspond to the sample size of 
the generated compositions and the sample size of those compositions that have been confirmed, at 
least in one solution, from the list of complete solutions. Accordingly, and in Figure 11, for n = 8, 
10, we presented graphs of the change in the probability of completion to obtain a complete 
solution. The most important conclusions that can be drawn from the analysis of the results 
obtained are as follows: 

a) the probability of completing to obtain the complete solution of an arbitrary composition 
of k queens is not a constant value. The value of this probability gradually decreases to a certain 
minimum value, and then increases with increasing value of k. This is true for a matrix of a solution 
of any size. For example (Table 3, Figure 11), for n = 10, a minimal probability is 0.0471. 
This corresponds to compositions consisting of 7 queens. If we increase the size of the composition 
to 9, then the probability of completion increases to 0.1284, which is 2.73 times greater than at the 
minimum point. 
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Fig. 11. Probability of completion to full solution depending on the number of queens in the 
composition. Blue- solution matrix 8x8, red - 10x10 

 
b) for each value of the solution matrix n, there is a certain minimum value of the 

composition size k0, such that any composition whose size is less than or equal to k0 can be 
completed to a complete solution. For values of n = 7, 8, 9, the value of k0 = 1. This means that not 
every composition of the two queens, from the list of acceptable compositions, can be completed to 
a full solution. For example, for n = 8, the probability of completing to obtain the complete solution 
of an arbitrary composition of two queens is equal to 0.8168. As the value of n increases, the 
corresponding value of k0 increases. For example, for n = 16, the value k0 = 5. This means that for 
a n=16 solution matrix, any composition formed in an allowable search space, whose size is less 
than or equal to 5, can be completed to a full solution. 

In Figure 12, depending on the value of n (7, ..., 16), two graphs are presented: the first is the 
size of the composition k, at which the probability of completing to the full solution is minimal, on 
the second – the size of the composition, which can always be completed to obtain full solution. 
It is seen that the values of both these indicators increase with increasing n. 
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Fig. 12. The composition size at which the probability of completing is minimum (red) 
or equal 100 % (blue) 

 
3. Conclusion 
An analysis was carried out of the sequence of all solutions (both short and complete) for 

different values of the solution matrix (n = 7, ..., 16). As a result, it was established that for an 
arbitrary solution matrix of size n x n, the following statements hold: 

1. Although the number of complete solutions increases exponentially with increasing value 
of n, however, their share in the general list of all solutions decreases. 

2. Complete solutions are distributed in a sequential list of all solutions in such a way that 
they are found in the list with the greatest frequency, located close to each other. 

3. There is a symmetry in the order of the location of the complete solutions in the general list 
of all solutions, with respect to the axis passing through the middle of the general list. For any value 
of n, if the solution is complete in the sequential list of all solutions in the i-th position from the 
beginning of the list, then the symmetric solution from the end of the list in the position m - i  + 1 
will also be complete (rule of symmetry of solutions). Here m is the size of the general list of all 
solutions. 

The consequence of this rule is the fact that for any value of n, the number of complete 
solutions will always be an even number. (All the lists of complete solutions found so far are even 
numbers). 

4. Any pairs of solutions (both short and full) arranged symmetrically in a successive list of all 
solutions, with respect to the axis passing through the middle of the list, are complementary – the 
sum of the indices of the positions of the corresponding rows is a constant value and is equal to n + 
1 (the complementarity rule for the solutions ). 

This rule means that if a complete solution is obtained at the i-th step, then the symmetric 
complete solution at step m - i + 1 becomes known. Therefore, when searching for all complete 
solutions, it is sufficient to find only the first half of all complete solutions. The second half of the 
list of complete solutions can be determined from the solutions already obtained, on the basis of 
the complementarity rule. 
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The criterion that half of the list of complete solutions is reached is the fulfillment of the 
complementarity rule between the previous complete solution and the subsequent one, that is, it is 
necessary that the sum of each pair of corresponding values of the indices of two successive 
solutions be equal to n + 1. 

5. In a sequential list of all solutions, the first complete solutions appear after a certain 
number of short solutions. For even values of n, the first complete solution appears much later 
than for the nearest odd values of n. For example, for n = 34, the first complete solution appears at 
826 888 759th step, and for the nearest odd numbers (33, 35), respectively at 50 704 900th and 
84 888 759th steps. 

6. The activity of the cells of the solution matrix is symmetrical about the axis passing 
through the middle of this matrix. This means that the activity of the cells of the i-th row always 
coincides with the activity of the cell n - i + 1, i.e. the activity of the first line always coincides with 
the activity of the cells of the last row, respectively, the activity of the second line - coincides with 
the activity of the penultimate line, etc. By activity is meant the frequency with which the cell 
appears in the corresponding row of the list of complete solutions. 

7. The row in the solution matrix, where difficulties begin to move forward, and the first short 
solution is formed, divides the matrix according to the rule of the golden section. For small values 
of n, such a conclusion is approximate, but with an increase in the value of n, the accuracy of such 
an output asymptotically increases to the level of the standard rule. 

8. The probability of completion to a full solution an arbitrary composition of k queens, 
gradually decreases with increasing value of k to a certain minimum, and then increases, with a 
further increase in the value of k. 

9. There is some minimum value of the size of the composition k0, such that any composition 
whose size is less than or equal to k0 can be completed to a complete solution. 

Another rule that I would like to add to the list is the following:-in any problem connected 
with the formation of the branch of the search for solutions in the state space, in the presence of 
constraints, there must exist some rules for harmonious relations between all nodes of the branch 
of the search for solutions. The presence of bounding rules in the formulation of the problem, and 
the related property of nondeterminism "form" some kind of harmonious relation between the 
nodes of the search branch. This means that the relationship between the nodes of the branch of 
search for a solution is not accidental. Only those branches of the search, which fit into the 
harmonious rules of relations inherent in the given problem, lead to the formation of the correct 
solution. The remaining branches of the search, which at some point "violate" these rules, are 
ultimately excluded from consideration, as they lead to incorrect solutions. I think that such a fact 
can also occur in some other nondeterministic problems of forming a search branch in the state 
space under constraints. 

I have considered only some questions that can be formulated on the basis of the results of 
solving the n-Queens Problem. I hope that the obtained results will make the mechanisms of the 
formation of nondeterministic processes and changes in the state space more transparent for 
understanding. Perhaps this will serve as a fulcrum for formulating new tasks and moving ahead.  

 
References 
Bezzel, 1848 – Bezzel M. (1848). Proposal of 8-queens problem, Berliner Schachzeitung. 3, 363. 
Nauck, 1850 – Nauck F. (1850). Briefwechseln mit allen fur alle, Illustrirte Zeitung. 15 (377): 

182. September 21 ed. 
Bell, Stevens, 2009 – Bell J., Stevens B. (2009). A survey of known results and research areas 

for n-queens. Discrete Mathematics. 309: 1–31. 
Gent et al., 2017 – Gent I. P., Jefferson C., Nightingale P. (2017). Complexity of n-Queens 

complmpletion. Journal of Artificial Intelligence Research, 59: 815-848. 
Priestley, Ward, 1994 – Priestley H.A., Ward M.P. Ward (1994). A Multipurpose 

Backtracking Algorithm. Journal Of Symbolic Computation, 18.1: 1-40. 
Sosic, Gu, 1994 – Sosic. R., Gu J. (1994). Efficient local search with conflict minimization: 

A case study of the n-queens problem. IEEE Transactions on Knowledge and Data Engineering, 
6(5): 661-668. 

 



Modeling of Artificial Intelligence, 2018, 5(1) 

21 

 

Mańdziuk, 2002 – Mańdziuk J. (2002). Neural networks for the N-Queens Problem: 
a review. Control and cybernetics. v.31, № 2. 

Farhan et al., 2015 – Farhan A.S., Tareq W. Z., Awad F. H. (2015). Solving N Queen Problem 
using Genetic Algorithm. International Journal of Computer Applications. Volume 122 – No.12. 

Kosters, 2017 – Kosters W. (2017). n-Queens – 339 references. [Electronic resource]. URL: 
www.liacs.leidenuniv.nl/~kosterswa/nqueens/ 

Sloane, 2016 – Sloane N.J.A. (2016). The on-line encyclopedia of integer sequences. 
[Electronic resource]. URL: https://oeis.org/search?q=A000170&language=english&go=Search 
 
  

http://www.liacs.leidenuniv.nl/~kosterswa/nqueens/

