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Abstract 
In the queuing theory, there are single-channel models with a Poisson incoming flow. Among 

these models, parametric models are considered to be the most suitable for use when priority 
among incoming flows is specified by functions that depend on one or more parameters. Such 
models are called parametric models and their research is rarely found in modern scientific 
literature, since a complex apparatus of the theory of random processes is used. 

The article describes the class of all possible limit distributions for a random vector of waiting 
time in the same parametric system mass service with absolute priorities. In the process of the 
results, obtained limit theorems for univariate and multivariate characteristics of the system 
related to the timeouts. 

Keywords: queueing system, waiting times, random vector, limit distributions, the period 
of employment, length of queue, random process, distribution function. 
 

1. Introduction 
The parametric model of queueing system considered in this paper is based on the principle 

of the quantification of the time axis (Bronshtein, 1976). 
In a single-server queueing system with waiting there arrive independent Poisson flows of 

   customers, … ,    customers with parameters           , respectively. The service times 
are independent in their totality, do not depend on the arrival process and for the    customers 
(     ̅̅ ̅̅ ) they have the distribution functions                 . There are no customers in the 
model at time   . The time axis is divided into intervals of fixed length, called 
"quanta":                    ,…; an    customer has absolute priority before a   customer 
(       )  if both arrive in the system in the same quantum. In the zones of all the flows, 
arriving at different quanta, the customers are served in the order of arrival. The indicated model is 
called a model with categorized-time absolute priorities or a (   ) scheme (Simonyan, 2014; 
Danielyan, 1980). The quantity T is the parameter of the model (      ). 

We introduce notations:     ∑       
 
   is the load of the model by the    ̅̅ ̅̅  customers  (  

 customers, … ,    customers), where     ∫               ̅̅ ̅̅                  ̅̅ ̅̅  
 

 
 is the 

under-load of the model by the     ̅̅ ̅̅ ̅– customers;  ̅ 
           ̅̅ ̅̅ ̅  is the conditional virtual waiting time 

of a    customer at the moment   under the condition that the accessibility of the customers in the 
model ceases starting from the moment  . 
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The investigation is carried out the following conditions: if    , then for 

      ∫                 ̅̅ ̅̅   
 

 
one has the expansions 

                                           ,         (1.1) 

where      constants. 
For a given  , we represent time   in the form 

                       is an integer). 

For      and an "arbitrary variation" of   , the limit distributions for  ̅ 
            ̅̅ ̅̅ ̅  

depend in an essential manner on the relation between   and   and on the ratio of the loads      
and      we are interested in the case      . For the correct formulation of the problem one 
requires additional explanations. We turn for                           to the ratio 
  ⁄ . The limit points of this ratio fill out completely the interval        at an arbitrary variation of    . 
If for      ⁄ when      one considers the limit point 0, then one has to take the limit points of 

another ratio   
 

  ⁄⁄ ,    where       (                )           ̅̅ ̅̅ ̅ . 

The limit points of the last ratio, under the condition that one considers the limit point 0 of 
the ratio   ⁄   fills out completely the semiline [0,   ). In the usual sense, for     , the limit 
distribution for  ̅ 

     does not exist. But if we take a sequence of moments        when 

      such that there exist the limits        (
  

  ⁄ ) and       (
  

  
    ⁄⁄ ) , then there 

exists a limit distribution for  ̅ 
     ). 

Consequently, we assume     , and thus, that there exists the limit 

            ⁄⁄                                       (1.2) 

Condition (1.2) appears at the investigation of the limiting DF for  ̅ 
             ̅̅ ̅̅ ̅  when 

     . In (Danielyan, 1982) one solves a series of problems, one of which is formulated in the 
following manner. 

Under the condition of the existence of the limit (1.2), it is necessary to describe the class of 
all possible limit laws for  ̅ 

             ̅̅ ̅̅ ̅ . We formulate the results of (Danielyan, 1982) for 

     . We introduce notations. Let   ̃                be the DF of a nonnegative random 
variable (RV), defined by its Laplace-Stieltes transform (LST)( Re         is Euler's Gamma 
function): 

∫        ̃       

 

 

{  
 

 (  ⁄ )
∫     

 

 

         
  }  

Let  ̅             ̅̅ ̅̅ ̅   be the stationary DF of the waiting time of a    customer in the 
scheme          We set         ̅̅ ̅̅ ̅  

   {                }    ∑     

    

          
  

  
   ⁄⁄   

 
Table 1. 
 

Load Limit point Norma-
lization 
     

Cen- 
ter- 
ing 

     

Scheme Limit 
distribution 

                  1 0        ̅     

                         
   ⁄  0          

̃         

 
Under a unit load there exists the limit 

   
    

P {
 ̅ 

         

    
  }                                             
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where the functions occurring in (1.3) are given by Table I. 
We note that for       and     the condition of type (1.2) is not required. As shown in 

(Danielyan, 1981), there exists the limit (1.3), where    ,       . 
The Formulation of the Problem. Assume that in the scheme      we have      , the 

loads are fixed, conditions (1.1) hold, and for     ,  the quantity  can vary in an arbitrary 
manner. Under the condition of the existence of the limit (1.2), one has to describe the class of all 
possible limit laws for the vector  ̅ 

        ̅ 
    . 

In Sac. 2 we give auxiliary results, some of which will be proved. 
In Sac. 3 we formulate and prove the fundamental results of the paper. 
 
2. Auxiliary Results 
The analysis of the scheme      is based on the relation between the processes 

 ̅ 
              ̅̅ ̅̅ ̅̅                     . 

and the processes 
                  

where       is the total service time of the     ̅̅ ̅̅̅   customers, arriving over a time interval of 
length          relative to  is a process with independent increments); w(u) is the virtual waiting 
time at the moment u of the model M|G|1|∞ (Simonyan, 2004) with entrance intensity    and with 
DF       of the service time of the customers (hare                    ̅̅ ̅̅ ̅̅ );       is the busy 

period in the servicing of the     ̅̅ ̅̅̅   customers with lag   in the scheme (     ) , i.e. the time 
interval starting with the lag  , at the beginning of which there are no customers, and ending first 
time after the gap when the servicing device is free of the    ̅̅ ̅̅̅   customers       relative to   is a 
process with independent increments). Here by the lag we mean the interval time in which the 
customers accumulate but are not served. The relation between the above described processes in 
the "terminology of RV" is established in (Danielyan, 1982) and is given by the following statement. 

LEMMA 2.1. Let                      . Then for  ̅ 
             ̅̅ ̅̅ ̅  we have the 

relations 

{
 ̅ 

          
            if    (     )    

 ̅ 
     ̅ (    (     )) 

  if    (     )    
                      

The symbol d indicates the equality of the DF of both sides of the random equality on the set 
indicated in the rlght-hand side of the equality;  ̅ 

     is the conditional virtual waiting time of a 

   customer at the moment t in the scheme (    ), i.e.  ̅      ̅ 
      By virtue of formulas 

(2.1), for the proof of the limit theorems in the case  ̅ 
             ̅̅ ̅̅ ̅  for      ,  one has to have 

available the corresponding limit statements for the processes for                  for     . 
We denote (     ̅̅ ̅̅       ) 

  
     

          

        ⁄
          {

             
             

       
     

 ̅                 

           ⁄
  

Here  ̅                           ̅̅ ̅̅ ̅             is the total service time of the   
 customer, arriving in an interval of time  . 

LEMMA 2.2. Assume that conditions (1.1) hold. Then for      there exist limits (  
   ̅̅ ̅̅       ̅̅ ̅̅ ) 

 
   

    
P   

           
                                               

   
    

P{ ̅ 
      }       

                                               

   
    

P     
         

                                                   

where 

        ∫    
((

  

    
)
   ⁄

  (
    

    
)
   ⁄

 )    
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        ∫            
                                      

 

  

 

             
      

                                            

Here                       is a stable law with parameter  , defined by its 
characteristic function (  is the imaginary unit,   is a real number): 

∫     

  

  

                

The proof of  (2.2) is given in (Danielyan, 1982) and (2.3) is proved similary to (2.2). 
We processed to the proof of the relations (2.4) – (2.7). 

We perform the computations (     ̅̅ ̅̅ ; t>0): 
        P     

         
         

 ∫P {    
    

       
     ⁄

       
   ⁄

   
    

           ⁄

        ⁄
      

      ⁄ }  

 

  

 

       
         

 ( ∫  

  

  

∫

  

  

)P{ ̅ 
      

        ⁄

           ⁄
[   

       
     ⁄

        ⁄
]       

       }  

In this case for every     the number     is select sufficiently large so that we should 
have the inequality      

      . Then by virtue of (2.2) we have (     ̅̅ ̅̅   

   
    

           
    

          

    
    

∫ P{  
      

        ⁄

       
     ⁄

[   
       

     ⁄

        ⁄
]       

       }       

  

  

 

where  

   
    

            
    

∫       
             

    

  

  

                         

uniformly with respect to y o Making use of the statement of Theorem 1 from (Shilov, 1965) 
in the second term of the right-hand side of (2.8) we change the sign of the integral and we 
interchange the limits; then we let   go to zero (then      ), which by virtue of (2.9) yields 
(     ̅̅ ̅̅   

   
    

          

 ∫    
    

P {  
      

        ⁄

       
     ⁄

[   
       

     ⁄

        ⁄
]       

   }

  

  

        

By (2.10), the problem reduces to the computation of the limit (     ̅̅ ̅̅   

           
    

P {  
     

        ⁄

       
     ⁄

[   
       

     ⁄

        ⁄
]}   

We consider the mutually exclusive cases, mentioned in Lemma 2.2: 
a)             Obviously,        . Then by virtue of (2.3), we obtain 

           
((

  

    
)
   ⁄

  (
    

    
)
   ⁄

 )   

for where there follows (2.5); 
b)             Obviously,              and        . Then 

   
    

        ⁄

       
     ⁄
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     ⁄

        ⁄
      

Consequently,               , from where we o,tain (2.6); 
c)             Obviously,              and        . Then 

        ⁄

       
   ⁄

     

   
    

       
     ⁄

        ⁄
      

and, consequently,            
   , from where there follows (2.7). 

COROLLARY 2.1. The limit relation (2.2) is a consequence of the relation (2.4). Namely 
(     ̅̅ ̅̅   

              
    , 

            
    .                                     (2.11) 

The proof of the first of the equalities (2.11) follows trivially from (2.5)-(2.7), while the proof 
of the second one is obvious except in the case               . On the basis of (2.5) we have 

         ∫   ((
  

    
)
   ⁄

     )     
((

  

    
)
   ⁄

 )

  

  

  

    
((

    

  
)
   ⁄

 )     
((

    

  
)
   ⁄

 )                        

where * is the convolution sign, while the symbol above the convolution sign indicates the 
variable with respect to which the convolution is taken. The right-hand side of (2.12) is the DF of 
the random variable 

  (
    

  
)
   ⁄

   (
    

  
)
   ⁄

     

where the RV     and    in our case we have has a stable DF    
    . Sinc in our case we have 

            , on the basis of Theorem 2 (Feller, 1950), we conclude that the RV   has a stable 
DF    

     this proves the second of the equalities (2.11).  

It is known (Feller, 1950) that the DF                       has density        
It turns out that the DF          has density 

        
  

    
          

COROLLARY 2.2. a) For           we have 

        (
  

    
)
   ⁄

   
((

  

    
)
   ⁄

  (
    

    
)
   ⁄

 )   
      

b) for           we have 

                 
    , 

where 

      {
  if     

  if  x y.
 

c) for           we have 

             
      

     

 COROLLARY 2.3. Assume that conditions (1.1) hold. Then there exists the limit 
   

    
P   

              ̅̅ ̅̅                 

where            has the multidimensional density 

           ∫  

  

  

∫                  

  

  

  

Moreover, 
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∏             

   

∏    
    

 
   

     

The proof is similar to the proof of Corollary I from (Grigoryan, 1982). 
LEMMA 2.3. Assume that in the scheme       of the model Mr |Gr|1|∞ we have        the 

loads are fixed, and conditions (1.1) are satisfied. Then there exists the limit 

   
    

P {
          

     
   ⁄

  }   ̃  
                 

We consider the vector function (               

(                   )  (  
   

           
   

      )+ 

 (    
   

              
   

       )+ 

+(     ⏟  
   

     
                 ).     (2.13) 

Here the processes   
   

    (     ̅̅ ̅̅̅)  and       are independent and identically distributed. 

IN the right-hand side of (2.13) the vectors are added component wise.  
Assume that the following conditions hold:  
for                           ther exist the limits 

   
     

  

    
                                                         

Then a consequence of a theorem of E. A. Danielyan (Danielyan, 1980) holds 
LEMMA 2.4. . Assume that in the scheme       of the model Mr |Gr|1|∞ we have     

   the loads are fixed, and conditions (1.1) and (2.14) are satisfied. Then there exists the limit 

   
     

 P {
        

  
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  }                 

where 

             {
                      

                            otherwise.
 

3. Fundamental Results 

We describe the class of all possible limit DF of the vector process ( ̅ 
        ̅ 

    ) for 

                     ,        fixed loads and for an arbitrary variation of   . 
TEOREM 3.1. Let       , assume that the loads are fixed, conditions (1.1) are satisfied, and 

for      there exists the limit (1.2). 
a) If       then there exist the limit            ̅̅ ̅̅   

   
    

P { ̅ 
                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

 ̅ 
    

     
   ⁄

   }   

  ̅            ̃  
                                            

where  ̅            is the limit distribution for       and         jf the vector 

( ̅ 
        ̅ 

    ); 

b) If         then there exist the limit            ̅̅ ̅̅   

   
    

P{ ̅ 
              ̅̅ ̅̅  }     

(   
     

       )                   

PROOF. The proof of the theorem follows immediately from Lemmas 2.1-2.4. 
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