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Abstract 
The goal of the present paper is to investigate covariograms of convex bodies (it is equivalent 

to investigate the orientation dependent chord length distribution functions). The applications of 
these problems are known in both geometric and computer tomography. Algorithms to reconstruct 
convex bodies by its covariogram for finite number of directions (the same problem for orientation 
dependent chord length distribution function has the negative solution) is one of the main problem 
of stochastic geometry. In particular, find the covariograms for classes of three dimensional convex 
bodies. Covariogram problem for three dimensional case is an open problem, while in the planar 
case the problem has the positive solution and if dimensionality of space greater than or equal 4 it 
has negative solution. The formulation of the problems is accompanied by discussion of the 
existing tools and ways of their implementation.  

Keywords: сovariogram, kinematic measure, orientation-dependent chord length 
distribution, convex body. 

 
1. Introduction 
Complicated geometrical patterns occur in many areas of science. Their analysis requires 

creation of mathematical models and development of special mathematical tools. 
The corresponding area of mathematical research is called Stochastic Geometry (see Gardner, 
2006 and Schneider, Weil, 2008). Among more popular applications are Stereology and 
Tomography. The objective of stereology is to draw inferences about the geometrical properties of 
 -dimensional structure,     , when information is only available in some lower-dimensional 
form via linear probes, planar sections, or projections of thick slices. Its application arises in the 
study of geometrical structure of inclusions or pores in opaque bodies such as metals, minerals, 
synthetic materials, or biological tissues; in these cases the available information must come from 
linear probes or planar sections. The methods and formulae of stereology relate characteristics of 
 -dimensional structures to quantities arising from measurements of planar sections . The step 
from spatial structures to their sections involves a great loss of information and so stereological 
methods commonly yield only ``global'' information of a statistical character.  

At the Conference on Tomography at Oberwolfach, R. Gardner introduced the term 
geometric tomography. In the R. Gardner monograph (Gardner, 2006), the following definition is 
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offered: ``Geometric tomography is the area of mathematics dealing with the retrieval of 
information about a geometric object from data about its sections, or projections, or both''. 
The word projection is used in the sense of a shadow, that is, the usual orthogonal projection on a 
line. The parallel X-ray of    in the direction    gives the length of the chord of intersection of   
with the line through x parallel to  . The sections of bodies by random planes and lines (X-rays, 
cracks) are considered in many mathematical models of modern physics (computer tomography, 
crack tessellations etc). Two important mathematical problems are arisen: 1) for given convex body 
to calculate the chord distribution, 2) for given chord length distribution to reconstruct the convex 
body. Although there are many recent results and investigations in these directions, some problems 
are open, in particular, the computer programs for calculation of chord length distributions are 
missing. We are considered the problem of investigation of chord length distribution in  -
dimensional space. Recognition of planar domains   by means of random lines intersecting   is 
one of the interesting problem of Stochastic Geometry. 

Let          be the  -dimensional Euclidean space,       be a bounded convex body 
with inner points, and    be the  -dimensional Lebesgue measure in   . 

 
2. Discussion 
Definition 1. (see Matheron, 1975, Schneider, Weil, 2008). The function 

         (        )                                                   (1) 

is called the covariogram of the body  . 
Here                          is called the set covariance of   . 
The definition of the covariogram is given by G. Matheron, who formulated it for more 

general sets, and even for functions. In (Matheron, 1975), G. Matheron conjectured that the 
covariogram of a convex body   determines   within the class of all convex bodies, up to 
translations and reflections. G. Averkov and G. Bianchi (Bianchi, Averkov, 2009), showed that 
every planar convex body is determined within all planar convex bodies by its covariogram, up to 
translations and reflections.  

Very little is known regarding the covariogram problem when the space dimension is greater 
than 2. It is known that centrally symmetric convex bodies  in any dimension, are determined by 
their covariogram up to translations. For     the problem is open. Nevertheless, for the case of 
bounded convex polyhedron for     Matheron's conjecture received a positive answer. In fact, 
the covariogram problem is equivalent to the problem of determining a convex domain from all 
orientation-dependent chord length distributions (see Bianchi, Averkov, 2009, Schneider, Weil, 
2008). 

The problem of finding the measure of the segments of a constant length that are contained 
in   has no simple solution and depends on the shape of  . It is known the explicit form for the 
kinematic measures of some planar domains: a disk, a rectangle, if the length of the segment is less 
than the smaller side of the rectangle (see Santalo, 2004) and for the equilateral triangle, the 
rectangle (for an arbitrary length of the segment) and regular pentagon (see Gasparyan, Ohanyan, 
2013). 

Let      denote the      -dimensional sphere of radius 1 centered at the origin in   . 
We consider a random line which is parallel to        and intersects  , that is, an element from 
the set: 

                                                       
Let        be the orthogonal projection of   onto the hyperplane    (here   stands for the 

hyperplane with normal u, passing through the origin). 
A random line which is parallel to   and intersects   has an intersection point (denoted by  ) 

with       . We can identify the points of        and the lines which intersect   and are parallel to 

u, meaning that we can identify the sets       and       . Assuming that the intersection point   

is uniformly distributed over the convex body       , we can define the following distribution 
function. 
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Definition 2. The function 

       
          

  
                       

     
                                         (2) 

is called orientation-dependent chord length distribution function of   in direction    at 
point      , where        is the line which is parallel to   and intersects        at point   and 

                  . 

Observe that each vector       can be represented in the form        , where   is the 
direction of   , and   is the length of  .  

Lemma 1. (see Matheron, 1975) Let         and     be such that           contains 
inner points. Then          is differentiable with respect to   and the following equality holds: 

 
          

   
 (        )                                                (3) 

At     the right-hand derivative exists, and the same equality holds. 
Let      be a random segment of length    , which is parallel to a given fixed direction 

        and intersects  . Consider the random variable                     , where      
     , and the set       is defined as follows: 

                                                                       
Observe that each random segment      lying on a line        can be specified by the 

coordinates           , where   is the one-dimensional coordinate of the center of      on the line 
      . As the origin on the line        we take one of the intersection points of the line        
with the boundary of domain  . Using the above notation, we can identify       with the following 
set: 

      {                       [ 
 

 
           

 

 
]}   

where                     . Note that the set       does not depend on the choice of the 
origin of the line       , and the choice of the positive direction follows from the explicit form of 
the range of variation of   . Further, we set 

  
                                             

and observe that the sets       and   
    are measurable subsets of   . 

Definition 3.  The function 

          
  (  

   )

  (     )
 

 

  (     )
∫     
  

                                                (4) 

is called orientation-dependent distribution function of the length of a random segment   in 
direction        .  

Let     be the space of all lines   in   . A line       can be specified by its direction 

        and its intersection point   in the hyperplane   . The density     is the volume element 
    of the unit sphere      and    is the volume element on     at  . Let      be a locally finite 
measure on   , invariant under the group of Euclidian motions. It is well known that the element 
of       up to a constant factor has the following form (see Santalo, 2004): 

                
Denote by            

     the surface area of the unit sphere in    . For each bounded 
convex body  , we denote the set of lines that intersect   by 

                    
We have (see Santalo, 2004) 

       
             

      
  

A random line in     is the one with distribution proportional to the restriction of   to    . 
Therefore, for any      , we have  

     
                          

      
  

which is called the chord length distribution function of   . 
Let   be a random segment of length   in    and let      be the kinematic measure of   

(Santalo, 2004).  
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If       is the line containing   and   is the one-dimensional coordinate of the center of   
on the line  , then the element of the kinematic measure up to a constant factor is given by  

                

where    is the one-dimensional Lebesgue measure on   and       is a motion element in   , 

that leaves   unchanged (see Santalo, 2004 and Schneider, Weil, 2008). 
The length     of a random segment  , provided that it hits the body  }, has the following 

distribution function: 

        
                        

            
             

Theorem 1. (see Gasparyan, Ohanyan, 2014). We establish a relationship between the 
distribution function of the random variable        and the orientation-dependent chord length 
distribution function in   , given by the following formula:  

          {

                                                                                  

                     ∫        
 

 
     

             
                         

                                                                                   

               (5) 

Note that explicit forms for orientation-dependent chord length distribution function        
for triangles, ellipses, regular polygons and parallelograms were obtained in the papers 
(Gasparyan, Ohanyan, 2013; Gasparyan, Ohanyan, 2014). Hence substituting in (10)     and the 
corresponding formulas for       , we get explicit expressions for           for the mentioned 

planar convex domains. 
Theorem 2. (see Gasparyan, Ohanyan, 2014). The distribution function of the random 

variable        and the covariogram over the interval       are related by the following formula:  

             
 

             
[
          

   
              ]                  (6) 

Theorem 3. (see Gasparyan, Ohanyan, 2014). The following relationship between the 
distribution function of the length of a random segment intersecting   and the chord length 
distribution function of    in   : 

        {

                                                                                  

                           ∫      
 

 
     

                            
                         

                                                                                   

               (7) 

Denote by              probability, that random segment        (of fixed length   and 
direction  ) entirely lying in body  . 

Proposition 1. (see Aharonyan, Ohanyan, 2018) Probability              in terms of 
distribution function        has the following form: 

              
                      ∫          

 

 

               
 ,                            (8) 

while in the terms of the covarigramm of body   has the form: 

               
        

               
                                             (9) 

Denote by            probability, that random segment of length   in    having a common 
point with body   entirely lying in body   (in this case the direction of the segment      is 
arbitrary). Note, that probability            can be obtain from probability              by 
integration over all directions        .  

Proposition 2.  Probability            in terms of chord length distribution function      
has the following form: 

            
            (∫        

 

 
 – )                     

                            
                 (10) 

Since the ball       is an isotropic body, then                         does not depend on 
direction        . Therefore, we get 

                                  
          

                      
                 (11) 

It is known that the volume of  -dimensional ball of radius   equals to  
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  (     )  
 

 
 

 (
 

 
  )

                                                         (12) 

while           is the projection of  -dimensional ball of radius   on hyperplane     equals 

           
 

   

 

 (
   

 
)

        

Where      ∫             
 

 
 is the Gamma function.  

It is easy to see, that the covariogram of  -dimensional ball of radius   equals to twice the 
volume of  -dimensional spherical cap of high      . Using the formula for  -dimensional 
spherical cap (see Gasparyan, Ohanyan, 2015) we get  

 (       )      
 

   
 

  
   

 
 
     ∫      

 

 
                                 (14) 

where            
 

  
 . 

Therefore, putting            from (14) we get that the probability that the segment of the 
length      entire lies in  -dimensional ball of radius   equals to (see Aharonyan, Ohanyan, 
2018) 

 (          )  
  

  
√   

     

 
 

 (
 

 
  )

  

   ∫          

 

 

 

 
Obviously, for any dimension   we have                    for     and         

           for     . 
We have a computer program for calculating the chord length distribution for an arbitrary 

convex polygon. 
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