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Abstract 
In this paper we calculate the price of the arithmetic average Asian option on several 

consecutive future contracts. The calculations are made using the method introduced by Curran, 
and the underlying  
model for future prices proposed by Andersen. His model describes future prices by Stochastic 
Differential Equations with several coefficients, which are to be evaluated for each case, generally 
by model calibration. We use least squares principle to do that, taking the sum of squared 
differences of real values and the values suggested by model to minimum. Curran’s method is 
based on the order of geometric and arithmetic means, and to calculate value of options takes 
expectation of conditional expectation of the considered derivative. Splitting the integral into two parts 
it evaluates explicitly one of them, and approximates the other. For our case new structure of the 
options and the underlying assets, requires review of the formulas. In the paper we derive the formulas 
for this case, and use them for calculating the value of Asian option. In the considered example 
derivative is based on 4 future contracts with 15, 30, 30, 15 days of engagement in Asian option. 
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1. Introduction 
The paper continuous the investigation in (Kechejian, Ohanyan, 2012), and (Kechejian et al., 

2015 and 2016b). We consider Asian options based on multiple futures contracts in the averaging 
period. We use the Markov model on futures prices introduced in (Andersen, 2008), as the 
underlying price process. We have introduced an explicit formula for geometric average option in 
(Kechejian et al., 2016b). Next we used Monte Carlo method with control variance for 
approximating Asian options with arithmetic mean (see Kechejian et al., 2015). The latter method 
is well covered in (Rubinstein, Kroese, 2017). Another widely used approach for approximating the 
arithmetic average options was introduced by Curran (see Curran, 1994), where conditioning of 
arithmetic average with geometric is employed. But first let's revise some formulas used in 
Andersen's paper (Andersen, 2008). 
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where                   , 
                                                          ; 

with                   and           is given.  
 
So for geometric average options we have to compute the following                                                                     
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where    is the number of days of last futures contract used in the averaging period. 
Therefore, we obtain 
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(1.2) 
We note that we do not use all the daily prices up to the expiration time    of futures prices in 

the averaging period. This means that it is not necessarily to consider the case           . 
The reason for the latter in that futures prices may be erratic close to expiration dates, hence 

we omit these days from the averaging periods. Therefore, we have 
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We can note that         -s for     and      are normally distributed, hence their sum is 
also normally distributed. Therefore, we get 
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These formulas were presented in (Kechejian et al., 2015 and 2016b). Now let's turn to 

Curran's method. 
 

 
2. Results 
Curran's method 
Curran's method (see Curran, 1994), is based on the fact that expectation of conditional 

expectation is always equal to expectation. That is, if we denote by   and  , the arithmetic average 
and geometric average of some sequence of random variables (in our case it will be the collection of 
future prices), then can say that                        , where the right hand side 
represents the Asian options price with arithmetic mean at time 0. We have 

          ∫                
 

  
                                               (2.1) 

where      is the density function of geometric average. 
Next the inequality between arithmetic and geometric mean is used in the second integral. 

Using conditional expectation we can rewrite (2.1) in the following form: 
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In (2.2)      is the density of    , that is the density of normal distribution. The last integral 
can be calculated explicitly. The second still needs some simplification, however it can also be 
found. The first integral needs to be approximated explicitly. 

In our case     has normal distribution with mean and variance respectively 
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So the last integral will be 
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where       is the distribution function of the standard normal distribution. 

To calculate the second integral we use the fact that     (        )       has bivariate normal 

distribution, as              itself is normally distributed. So the conditional (   (        )       ) 

will be normally distributed with the following mean and variance: 
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where      and     
  are the mean and variance of               and  

                              . Moreover, we have 
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So the distribution of (   (        )       ) is normal with already determined coefficient. 

Using log-normality of  (        ) we obtain 
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So the first integral in (2.2) becomes 

∫       
 

   

         

 

∑   
 
   

∑∑∫      
 

   

  

   

 

   

     
       

     
          

 

 
     

  
       

 

     
         

   
 

∑   
 
   

 ∑∑     

  

   

 

   

     
    

 

 
 (   (

               

    
))  

where            
  and        are as in (2.3) – (2.5). 

 
Evaluation of the first integral 
We approximate the second integral in (2.2) exactly as it is done in (Curran, 1994). 

This technique needs the covariance matrix of the vector random variable consisting of only the 

   (        )-s. So if we denote this covariance matrix with  , then it would be ∑   
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matrix, with entries 
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with     . 
This is the precise formula of the covariance matrix. Further, denote the covariance by         , 

then we would have the following formula 
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and the conditional covariance matrix with respect to    , have that and the random vector 

and     itself are normally distributed, will be of the following form: 
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One can see, that this does not depend explicitly on the value of    . 
Remark 1. In all above formulas (3.1) – (3.3) we assume that our data is daily, with no days 

omitted. So when data is taken for unequal periods, a slight change should be done in the formulas, 

i.e. 
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  formula will not be the same for the cases when data are not equidistant. 

Having the conditional covariance matrix, we can get the first integral. The only case where 
we can get rid of the maximum sign is when        .  So the idea is to approximate the integral 
near this value of geometric average.  

Curran achieves this by approximations the sum of lognormals with lognormal. 
The technique assumes         to be lognormal, near        . So let's first find the mean and 
variance at that point. Note that this can be done explicitly. The following formulas can be found in 
the (Curran, 1994) (just a little bit adjusted to our situation). 
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        with   near   is then lognormally distributed with parameters        
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. As per Curran we then use the approximation: 
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For some suitable  .       , is Black-Scholes formula for strike price   .   has lognormal 

distribution with parameters            . 
 
Numerical results 
Using Anderson's model for futures, and doing preliminary model calibration with implied 

volatilities and the least squares method (see Andersen, 2008) we get the following values of 
coefficients in this model 

 
   -0.176014365 

   0.354977735 

   -0.11036869 

  0.445339952 
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As a numerical example we consider an Asian option with 90 day averaging period. 
Four consecutive futures contracts are used in the averaging period with 15, 30, 30 and 15 days 
used from each contract respectively. 

Valuation date for option was taken to be 31.12.2016. And for futures we obtain. 
 
 

  Initial Price of future         Maturity of future    Days in averaging period 

1 43.91 01.20.17 15 
2 44.37 02.21.17 30 
3 44.98 03.21.17 30 
4 45.68 04.20.17 15 

 
And we got the following results for Asian options prices calculated with Curran's method. 
 

Strike Curran 
10 34.80801207 
32 12.97993474 
34 11.23442471 
37 9.00816554 
40 7.30159877 
41.5 6.60293169 
43 5.96866820 
100 0.00001051 
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