
 263 

  Vol. 40, No. 2 (2018) 263-273, DOI: 10.24874/ti.2018.40.02.10 
 

Tribology in Industry 
 

www.tribology.rs 

  

 
 

Sliding Tribological Behavior of Carbon 
Nanotube/Natural Rubber Composites 

 
 

R. Chawla 
a 

 
a

  Department of Mechanical Engineering, Lovely Professional University, Phagwara-144411, Punjab, India. 
 

Keywords: 

Carbon nanotubes 
Composite 
Molecular Dynamics 
Tribology 
Friction Coefficient  
 

 A B S T R A C T 

A computational study has been made to investigate the tribological 
properties of carbon nanotube reinforced natural rubber composites as a 
function of sliding velocity at a normal loading. A three-layer model in 
which top and bottom layer using Iron atoms and the middle part with 
natural rubber matrices are constructed. Results obtained from 
simulations reveal that increase in sliding velocity 0.1 Å /ps to 0.11 Å /ps 
significantly decrease the coefficient of friction and abrasion rate. The 
addition of carbon nanotube to the natural rubber matrix decrease the 
average coefficient of friction and abrasion rate 24 % and 17 %, 
respectively. 
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1. INTRODUCTION  
 
Carbon nanotubes (CNTs) are the boon of 
materials science to the scientific community. 
Day by day increasing use of these small 
nanostructures have replaced many old filler 
materials for the generation of durable and 
lightweight composites with extraordinary 
properties [1]. CNTs are widely used as a 
reinforcement for improving the mechanical, 
thermal and tribological properties of polymers 
[2-4]. The improvement depends on several 
parameters such as aspect ratio, size of the 
particle, dispersion state and the chemistry of 
surface that determines the interface between 
filler and polymers [5-7].   

Natural rubber (NR) is one of the oldest rubber, 
but still, account for more than 40% of the total 
volume. Several experimental and theoretical 
studies have been made on the friction of 
rubber-based materials [8-14]. There are also 
numerous experimental studies which have 
shown the addition of fillers to polymers 
significantly improves their tribological 
performance.  
 
Fu et al. [15] studied the mechanical and 
tribological properties of natural rubber (NR) 
reinforced carbon blacks (CBs) and Al2O3 

nanoparticles. The studies showed the 
improvement in abrasion resistance and thermal 
stability of NR with a combination of carbon 
black and Al2O3 nanoparticles fillers. The Studies 
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on ZnO nanoparticle reinforced 
polytetrafluoroethylene (PTFE) composites 
shows the reduction in the coefficient of friction 
(COF) with increasing sliding velocity [16]. 
Chang et al. [17] investigated the sliding 
tribological properties of TiO2 nanoparticles 
reinforced polyamide 66 (PA66) composites. 
The studies showed that nano-TiO2 particles 
could remarkably improve the coefficient of 
friction (COF) and abrasion rate under high pv 
conditions (p = normal pressure and v = sliding 
velocity). At low filler loading, the reinforcement 
of nano-SiO2 particles into epoxy significantly 
improves the tribological behavior [18]. Friction 
and wear behavior of polyetherimide (PEI) and 
polyetheretherketone (PEEK) reinforced with 
sub microparticles of TiO2, ZnS, graphite flakes 
and short carbon fiber (SCF) were studied under 
dry sliding condition at room and elevated 
temperatures [19]. The addition of conventional 
fillers (short carbon fiber and graphite flakes) 
into polymers significantly improves the load 
carrying capacity and abrasion rate. In addition, 
the sub-micro particles remarkably enhance the 
tribological properties at elevated temperatures. 
Wang et al. [20] investigated the friction and 
wear behavior of polyimide reinforced with 
nano-Si3N4, short carbon fiber (SCF) and 
graphite using a block-on-ring arrangement. The 
studies reveal that tribological properties of 
developed polymer composite greatly influenced 
by the sliding velocity and shows better 
performance under higher sliding velocities. 
Polymer composites filled with fibers have also 
studied widely by researchers as it works on the 
component supposed to run without external 
lubrication. Jacob et al. [21] used sisal/oil palm 
hybrid fiber as reinforcement for natural rubber. 
The studies conclude that the longitudinal 
direction gives superior mechanical properties 
of composites than that of transverse direction. 
The curing characteristics and mechanical 
properties of bamboo fiber reinforced natural 
rubber composites were studied as a function of 
filler loading and bonding agents [22]. The 
studies show adhesion between natural rubber 
and bamboo can be enhanced by using a bonding 
agent. Murty et al. [23] prepared the jute fiber 
reinforced natural rubber composites in the 
presence of silica and carbon black. Their study 
shows the improvement in adhesion by 
minimizing the resin formation and controlling 
it to a low molecular weight species. Sugarcane, 
jute, cotton, and wood fibers have also been used 

as potential reinforcement for improving the 
tribological properties of polymers [24,25]. 
 
However, experimental studies show that the 
carbon nanotube significantly improves the 
mechanical and tribological properties of the 
polymer in comparison to other fillers. 
Experimental studies of Manchado et al. [26] 
reveals a marked increase in the storage 
modulus by the addition of low content of single-
walled carbon nanotubes (SWCNTs) in NR. This 
phenomenon was not visible with the addition of 
carbon blacks in equal amount. Bhattacharyya et 
al. [27] prepared the natural rubber composites 
by incorporating 8.3 % multi-walled carbon 
nanotubes (MWCNTs) activated by oxidation. 
The developed composite shows the 
exceptionally high tensile and storage modulus 
in the rubbery region at room temperature. This 
phenomenon was due to rigid networking 
effects coming from latex structure and cross-
linking via functional groups on the surface of 
CNT and organic molecules present in the 
natural latex solution. The studies on 
polyacrylonitrile-methylmethacrylate (PAMMA) 
reinforced carbon nanotube copolymer 
nanocomposite shows the dramatic 
improvement in friction and wear behavior by 
varying wt.% addition of carbon nanotubes [28].  
 
Further, to examine the tribological contact area 
which plays an important role when any new 
filler is introduced to the polymer. Zoo et al. [29] 
developed CNT reinforced ultra-high molecular 
weight polyethylene (UHMWPE) composites. 
The investigations revealed that the worn 
surface of the pure UHMWPE shows a broader 
and deeper track than that of the CNT reinforced 
polymer. The surface images obtained from 
scanning electron microscope (SEM) at higher 
magnifications show the locally smashed regions 
that indicate the changes in tribological behavior 
by using CNTs. In addition, the incorporation of 
CNT shows no changes to the internal structure 
of the polymer. Reinert et al. [30] studied the 
friction and wear behavior of CNT reinforced 
Nickel matrix. The experimental results show 
that frictional behavior is mainly influenced by 
the presence of CNTs in the contact zone. Zarrin 
et al. [31] studied the frictional behavior of CNT 
reinforced polymer composites at varying 
concentration of filler. The lowest value of 
friction coefficient was obtained at 0.2 % CNT 
concentration where it was expected a good 
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dispersion of nanotubes in the matrix. The 
friction coefficient reaches a peak value with 
further increase in CNTs concentration. The 
reason for the dramatic increase in friction was 
given as an increase in contact area under 
sliding. In addition, they reported nanohardness 
of the material also increases with the increase 
in CNTs concentration. The SEM micrographs 
obtained for the friction and wear test reveals 
that addition of CNT in polyimide (PI) 
composites prevents the scuffing against steel 
and showed much better wear resistance than 
pure polymer [32].  Suarez et al. [33] studied the 
friction and wear behavior of multiwalled 
carbon nanotube (MWCNT) reinforced Ni 
matrix. The friction test in their study was 
conducted at two different load regions for 
comparing the tribological performance. The 
study based on tribochemical showed the 
formation of oxide and carbon coating films in 
the samples. In their report, the developed CNT 
interfacial layer in the friction process worked 
as friction-reducing agent. The friction 
mechanism for low and higher loads were 
related to indentation depth of the dynamic 
counterpart and oxidation plus interfacial 
lubrication. The outcomes of studies showed the 
size of grains decreased by adding CNTs which 
improved the hardness, friction coefficient and 
wear rate. Reinert et al. [34] investigated the 
ways to improve the quality of metal matrix 
composites by employing suitable carbon 
nanoparticle materials. The studies proved that 
the grain refinement was more dependent on 
the agglomerate distribution within the matrix 
rather than on the actual agglomerate size. In 
addition, refinement of grains directly 
influenced the hardness of the materials which 
was also discussed in study [33]. Lim et al. [35] 
investigated the CNT distribution effect on 
tribological behavior of alumina-CNT 
composites from 0 to 12wt.% content.  The 
introduction of tape casing followed by 
lamination and hot pressing showed the 
superior tribological properties. 
 
Molecular dynamics (MD) simulation is 
considered as one of the most influential tool to 
predict the properties at the molecular level. 
Brostow et al. [36] proposed characterization 
methodology and new methods of studying 
static and dynamic friction. The scratch testing 
of polymers using molecular dynamics 
simulation has been studied [37]. The studies 

showed that the behavior of each 
macromolecular chain segment at each moment 
in time can be studied using MD simulation. 
Chawla and Sharma [38] developed a three-layer 
model to predict the friction and wear behavior 
of graphene oxide (GO) reinforced styrene-
butadiene rubber (SBR) using MD simulation 
technique.  Brostow et al. [39] using MD 
simulation studied the sliding wear behavior of a 
coarse-grained model of high-density 
polyethylene (HDPE). The increase in scratching 
force leads to higher penetration depths and 
lower recovery depths. The outcomes of the 
research revealed that tribological properties of 
polymers can be efficiently study by using the 
same rod for multiple sliding velocities. There 
are many experimental studies on the 
tribological behavior of polymer composites, but 
decidedly less at the molecular level.  
 
Although, mostly all experimental and 
theoretical studies show the enhancement in 
tribological properties of CNT reinforced 
polymer composites. The mechanism of 
enhanced tribological properties at the atomic 
level when CNT used as reinforcement is given 
in study [40]. 
 
In this study, sliding tribological behavior of 
carbon nanotube reinforced natural rubber 
composites is studied by using molecular 
dynamics simulation technique. A three-layer 
model as described in author’s previous studies 
has been used [38,40]. The coefficient of friction 
and abrasion rate are calculated at multiple 
sliding velocities of 1m/s to 11m/s. Further, 
radial distribution function and average van der 
Waals energy have been calculated during 
sliding to support the observed phenomenon. To 
the best of the author’s knowledge, this will be 
the first molecular level study on the tribological 
behavior of CNT reinforced NR composites. 
 
 
2. MATERIALS AND METHODS 
 
2.1 Modeling of Filler 
 
In this study, for modeling and simulation, the 
Amorphous Cell and Forcite module of Materials 
Studio (MS) 2017 software have been used. 
Firstly, a single-walled carbon nanotube 
(SWCNT) of diameter 6.78 Å and aspect ratio of 
3.26 was constructed. The stress-strain curve for 
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the same was calculated by using a Perl script. 
Fig. 1, shows the stress-strain curve for an 
armchair (5,5) SWCNT which makes a good 
agreement with previous research [41]. 
 

 
Fig.1. Stress-Strain curve of single-walled carbon 
nanotube (d=6.78Å). 
 
 
2.2 Force Field 
 
The selection of force field is considered as a key 
point of any atomistic simulation study. The 
force field helps in an accurate enough 
approximation of the potential energy surface in 
which the nuclei moves. The potential energy 
can be described as follows:  

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + 𝐸𝑐𝑟𝑜𝑠𝑠−𝑡𝑒𝑟𝑚 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑       (1) 

The valence energy term includes the bond-
stretching term, bending energy and the four 
body terms including a dihedral bond-torsion 
angle term and an inversion (out-of-plane 
interaction) term : 

𝐸𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 + 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 
+𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛                                                                         (2) 

The cross-term includes the energy changes 
induced by the change in the bond 
length and the angle changes in the surrounding 
atoms as given in Eq. (3): 

𝐸𝑐𝑟𝑜𝑠𝑠−𝑡𝑒𝑟𝑚 = 𝐸𝑏𝑜𝑛𝑑−𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒−𝑎𝑛𝑔𝑙𝑒 +
𝐸𝑏𝑜𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑒𝑛𝑑_𝑏𝑜𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +

𝐸𝑚𝑖𝑑𝑑𝑙𝑒−𝑏𝑜𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑎𝑛𝑔𝑙𝑒−𝑡𝑜𝑟𝑠𝑖𝑜𝑛  +

𝐸𝑎𝑛𝑔𝑙𝑒−𝑎𝑛𝑔𝑙𝑒−𝑡𝑜𝑟𝑠𝑖𝑜𝑛                                                   (3)    

The non-bonded term includes the inter- and 
intramolecular interactions, including Van der 
Waals interactions which are the induced 
dipole–dipole interactions (also named as 
London forces), the Coulomb interactions which 
account for electrostatic interactions and finally, 
hydrogen bonds (H-bonds). The non-bonded 

term includes the inter- and intramolecular 
interactions, including Van der Waals 
interactions which are the induced dipole–
dipole interactions (also named as London 
forces), the Coulomb interactions which account 
for electrostatic interactions and finally, 
hydrogen bonds (H-bonds). 

  𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑣𝑑𝑊 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝐸𝐻−𝑏𝑜𝑛𝑑         (4) 

The condensed phase optimized molecular 
potential for atomistic simulation studies 
(COMPASS) force field has been used several 
times for calculating the mechanical and 
tribological properties of polymer composites 
[42-46]. The COMPASS force field uses the 
following terms for various components of the 
total potential energy: 
 

𝐸𝑏𝑜𝑛𝑑 = ∑[𝑘2(𝑏 − 𝑏0)2 + 𝑘3(𝑏 − 𝑏0)3

𝑏

+ 𝑘4(𝑏 − 𝑏0)4],                                  (5) 
 

𝐸𝑎𝑛𝑔𝑙𝑒 = ∑[𝑘2(𝜃 − 𝜃0)2 +  𝑘3(𝜃 − 𝜃0)3

𝜃

+ 𝑘4(𝜃 − 𝜃0)4],                                  (6) 
 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑[𝑘1(1 − cos ∅) + 𝑘2(1 − cos 2∅)

∅

+ 𝑘3(1

− cos 3∅)],                                           (7) 
 

𝐸𝑜𝑜𝑝 = ∑ 𝐾2𝜒2 ,

𝜒

                                                                 (8) 

 

𝐸𝑏𝑜𝑛𝑑−𝑏𝑜𝑛𝑑 = ∑ ∑ 𝑘

𝑏′𝑏

(𝑏 − 𝑏0)(𝑏′

− 𝑏0
′ ),                                                     (9) 

      
 

𝐸𝑎𝑛𝑔𝑙𝑒−𝑎𝑛𝑔𝑙𝑒 = ∑ ∑ 𝑘 (𝜃 − 𝜃0)(𝜃′

𝜃′𝜃

− 𝜃0
′ ),                                                  (10) 

 

𝐸𝑏𝑜𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 = ∑ ∑ 𝑘

𝜃𝑏

 (𝑏 − 𝑏0)(𝜃

− 𝜃0)                                                    (11) 
 

𝐸𝑏𝑜𝑛𝑑−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ ∑(𝑏 − 𝑏0)[𝑘1𝑐𝑜𝑠∅ + 𝑘2𝑐𝑜𝑠2∅

∅𝑏

+ 𝑘3𝑐𝑜𝑠3∅]                                       (12) 
    
 

𝐸𝑎𝑛𝑔𝑙𝑒−𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ ∑(𝜃 − 𝜃0)

∅𝜃

× [𝑘1𝑐𝑜𝑠∅ + 𝑘2𝑐𝑜𝑠2∅
+ 𝑘3𝑐𝑜𝑠3∅],                                      (13) 
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𝐸𝑎𝑛𝑔𝑙𝑒−𝑎𝑛𝑔𝑙𝑒−𝑡𝑜𝑟𝑠𝑖𝑜𝑛

= ∑ ∑ ∑ 𝑘

𝜃′𝜃∅

(𝜃 − 𝜃0)(𝜃′

− 𝜃0
′ ) 𝑐𝑜𝑠∅                                        (14)  

 

𝐸𝐶𝑜𝑢𝑙𝑢𝑚𝑏 = ∑
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑖𝑗

                                                         (15) 

 

𝐸𝑣𝑑𝑤 =    ∑ 𝜖𝑖𝑗

𝑖𝑗

 [2 (
𝑟𝑖𝑗

0

𝑟𝑖𝑗
)

9

− 3 (
𝑟𝑖𝑗

0

𝑟𝑖𝑗
)

6

]                       (16) 

 
Where: 
k, k1, k2, k3, k4 = force constants determined 
experimentally, 

b,  = bond length and bond angle after 
stretching and bending, respectively, 
𝑏0, 𝜃0= equilibrium bond length and equilibrium 
bond angle, respectively, 

 = bond torsion angle , 
𝜒 = out of plane inversion angle, 
𝜖𝑖𝑗 = well depth or bond dislocation energy, 

𝑟𝑖𝑗
0 = distance at which the interaction energy 

between the two atoms is zero , 
𝑟𝑖𝑗  = interatomic distance between the 

atoms/molecules , 
𝑞𝑖 , 𝑞𝑗 = atomic charges on the atoms/molecules 

𝜀0 = permittivity of free space, 
 
This force field is implemented in the Material 
Studio 2017 materials modelling and simulation 
application package, which was used in this 
study. 
 
2.3 Modeling of composite  
 
The monomer of natural rubber (NR), 3 chains 
with 10 repeat units and packed molecules in a 
simulation cell at an initial density of 0.98 g/cm3 
have been illustrated in Fig. 2.  
 

 
Fig. 2. (a) Natural rubber monomer (b) 3 Natural 
rubber chains with 10 repeat units (c) Natural rubber 
molecules packed simulation cell. 
 
Firstly, an energy minimization for the 
developed NR matrix and CNT/NR composite 
has been performed using the conjugate 
gradient method. The convergence criteria used 

for this step was    1×10-4 Kcal/mol and 0.005 
Kcal/mol/Å for energy and force, respectively. 
The optimized simulation cells were first heated 
in 20 K increments from 300 K to 500 K and 
then cooled back to 300 K in 20 K increments. 
All annealing processes were performed for the 
duration of 50 ps under isothermal-isobaric 
(NPT) ensemble. Then, to obtain the system with 
less residual stresses and proper density, the 
system was put into NPT ensemble for 2000 ps. 
The integration of Newtonian equations of 
motion was performed by Verlet velocity time 
integration method [47] with a time step of 1 fs. 
The non-bonded interactions were calculated by 
applying a cutoff distance of 15.5 Å. The spline 
and buffer widths in this study were 1 Å and 0.5 
Å, respectively. The structure obtained from this 
step was later used for studying the tribological 
properties.  
 
2.4 Modeling of the layer system 
 
To study the friction and wear behavior of carbon 
nanotube reinforced natural rubber (NR), a three-
layer model was constructed. The modeling 
methodology has been shown in Fig. 3.  
 

 
Fig. 3. Modeling strategy of pure NR matrix and 
CNT/NR composite for the calculation of tribological 
properties. 
 

 
Fig. 4. Development of top Iron nanorod and bottom 
layer using BCC (body-centered cubic) structure of 
Iron (Fe). 
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Since Iron (Fe) is widely used as antifriction 
material in progressing cavity pump technology 
[38,40], the top and bottom layers are designed 
by Fe element atoms. The development strategy 
of Iron atom layers has been shown in Fig. 4. The 
three-layer model which contain the top and 
bottom layer of Fe (Iron) atoms in the size of 0.28 
× 0.28 × 1.579 nm3 and 2.59 × 2.59 × 0.85 nm3, 
respectively. A periodic boundary condition of 
dimensions 2.59 × 2.59 × 6.24 nm3 has been used 
for obtaining accurate results of the simulation. 
 
2.5 Calculation of tribological properties   
 
The developed three-layer system by using 
‘Build Layer’ module of Materials Studio 2017 
software package is illustrated in Fig. 5. The 
energy minimization of the layer system has 
been performed by using the same criteria as 
given in section 2.3. 
  

 
Fig. 5. The initial three-layer model of (a) pure natural 
rubber matrix (b) carbon nanotube reinforced natural 
rubber composites. 
 
A 5-cycle annealing process at an initial 
temperature of 150 K and mid-cycle temperature 
of 300 K for 50ps was performed before sliding 
the nanorod to composite surface. The 
temperature during annealing process was 
controlled by using NVT (the constant volume, 
constant temperature) ensemble. The time step 
for this process was set to be 1 fs. Finally, by 
applying a load to the top wall (Fe rod), the 
relative motion was developed between the top 
wall and a bottom wall. A normal loading of 0.12 
GPa and sliding velocities of 0.01 Å/ps to 0.11 
Å/ps (1 m/s to 11 m/s) has been applied for 400 
ps to all the simulations. 
 
 
3. RESULTS AND DISCUSSION  
  
To calculate the tribological properties of CNT 
reinforced NR as a function of sliding velocity. A 

series of sliding velocities with a difference of 2 
m/s (0.02 Å/ps) has been applied. The trajectory 
of the molecules was stored and later analyzed to 
calculate radial distribution function (RDF) and the 
behavior of other responsible forces. The 
coefficient of friction (COF) was calculated 

by 𝜇 =
𝐹𝑁

𝐹𝑇
 , where μ is the COF; and FN and FT are 

normal force and friction force, respectively. The 
molecules moved out from the polymer matrix 
during the sliding process were considered as 
worn out molecules. The ratio of worn out 
molecules to the molecules of the whole polymer 
matrix is known as abrasion rate [45]. The 
obtained COF and abrasion rates of pure NR and 
CNT/NR as a function of sliding velocity are 
plotted in Figs. 6 and 7. The average values of COF 
for pure NR matrix and CNT/NR were obtained as 
0.457 and 0.346, respectively. The addition of CNT 
in NR matrix shows the decrease of 24 % in the 
average COF. The obtained result makes a good 
agreement with previous experimental study [48]. 
The addition of CNT significantly improves the 
mechanical, thermal and tribological properties of 
polymer composites [49-51].  
 

 

Fig. 6.  Coefficient of friction with respect to sliding velocity. 
 

 

Fig. 7. Abrasion rate with respect to sliding velocity. 
 
The strong bonding strength between carbon 
nanotube and styrene-butadiene rubber resist 
the movement of molecules towards nanorod 
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[40]. Many experimental and simulation studies 
have revealed the better load transfer, uniform 
stress distribution, improvement in hardness and 
the reduction in viscosity obtained by the 
addition of CNTs [52-56]. From Fig. 7 the 
obtained average abrasion rates values for 
natural rubber and CNT reinforced natural 
rubber are 21.7 % and 18 %, which shows a 
reduction of 17 % in abrasion rate by the 
incorporation of CNT. The increase in sliding 
velocity from 0.01 Å/ps to 0.11 Å/ps decreases 
the COF of NR and CNT/NR composites from 
0.487 to 0.430 and 0.375 to 0.318, respectively. 
The decrease in abrasion rates from 32 % to 11 % 
and 28 % to 7 % under the same range of sliding 
velocities has been obtained. This phenomenon 
has also been seen in an experimental study [57]. 
To support the results from an atomic point of 
view radial distribution function of the iron 
atoms nanorod and NR matrices under sliding 
velocities from 0.01 Å/ps to 0.11 Å/ps has been 
calculated and plotted in Figs. 8 and 9. The 
average values of the radial distribution function 
of pure NR matrix and CNT/NR matrix decrease 
from 0.935 to 0.815 and 0.761 to 0.526, 
respectively. This leads to a phenomenon in 
which less polymer matrices are in contact with 
the iron nanorod at higher sliding velocities.  
 

 
Fig. 8. Radius distribution function at different 
sliding velocities of Pure Polymer. 
 

 
Fig. 9. Radius distribution function at different sliding 
velocities of CNT reinforced polymer composite. 

This is because the adsorption occurs at the 
interface of metals and polymers [58]. On the other 
hand, at a low sliding velocity in the dynamics 
process, many molecules interact with the 
nanorod. Hence, from the above discussion, it can 
be concluded that at higher sliding velocities less 
polymer molecules encounter nanorod so leading 
to less COF and abrasion rate. Therefore, a 
decrease in the friction coefficients and abrasion 
rates are observed with increase in the sliding 
velocities from 0.01 Å/ps to 0.11 Å/ps.  
 
In addition, to verify the results obtained from 
simulation average van der Waals energy of the 
pure NR matrix and CNT/NR matrix obtained 
during the sliding process as shown in Fig. 10. The 
average van der Waals energy of pure NR matrix 
and CNT/NR composite decreases from 53987.09 
to 53850.77 Kcal/mol and 53450.23 to 52898.66 
Kcal/mol, respectively under sliding velocity from 
0.01 Å/ps to 0.11 Å/ps. At higher sliding velocities, 
it is observed that the polymer chains interact less 
with nanorod that leads to improve the tribological 
performance. The snapshots of pure NR matrix 
and CNT/NR composite subjected to a series of 
sliding velocities are shown in Fig. 11.  
 

 
Fig. 10. Van der Waals Energy of pure polymer 
matrix and carbon nanotube reinforced composite. 
 

 
Fig. 11. Snapshots of the final states of pure polymer 
matrix at (a) 0.01 Å/ps, (b) 0.05 Å/ps, and (c) 0.11 
Å/ps, and carbon nanotube reinforced matrix at (d) 
0.01 Å/ps (e) 0.05 Å/ps and (f) 0.11 Å/ps. 
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From Fig. 11, it is concluded that at higher 
sliding velocities fewer polymer molecules 
interact with the Iron nanorod that improves the 
COF and abrasion rate. The sliding tribological 
behavior of polymer composites plays a vital 
role in various engineering applications [59,60].
  
 
4. CONCLUSION 
 
In this study, tribological properties of CNT 
reinforced NR matrix have been investigated as 
the function of sliding velocity. The results 
obtained from simulations were friction 
coefficient, abrasion rate, radial distribution 
function and average Van der Waals energy. The 
addition of CNT into NR matrix showed the 
decrease of 24 % and 17 % in friction coefficient 
and abrasion rate, respectively. The increase in 
sliding velocity 0.01 Å/ps to 0.11 Å/ps decrease 
the friction coefficient and abrasion rate of pure 
NR and CNT/NR composite from 0.487 to 0.430, 
0.375 to 0.318 and 32 % to 11 %, 28 % to 7 %, 
respectively. The obtained RDF values showed 
that at higher sliding velocities fewer polymer 
molecules interact with the Iron (Fe) nanorod. 
Hence, at higher sliding velocities COF and 
abrasion rates are low. 
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