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The	 new	 technology	 is	 developed	 for	 polymer	 concrete	 (PC)	
structure,	which	 is	 intended	 for	using	as	 construction	materials,	
for	example	the	bodies	of	metal‐working	machines.	A	mechanism	
for	comparison	of	materials	with	different	PC	structures	with	good	
damping	 characteristics	 is	 found.	 The	 cross	 vibration	 of	 PC	
outrigger	was	 investigated	as	 continuum	media	under	 the	 force	
impulse	action	 in	the	end	of	the	beam.	Analytical	solutions	about	
continuous	impulse	of	force	are	derived	and	numerical	results	are	
presented.	 The	 established	 model	 allows	 identification	 of	 the	
elasticity	module	of	the	beam	material.	
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1. INTRODUCTION		
	
The	 creation	 and	 wide	 application	 of	 new	
materials	 as	 polymer	 concrete	 (PC)	 in	 building	
and	 mechanical	 engineering	 domains	 requires	
determination	 of	 their	 various	 mechanical	
characteristics.	In	the	last	decade	there	are	many	
papers	 [1‐9]	 in	 the	 field	 of	 damping	
characteristics	of	this	kind	of	materials,	as	often	
the	 objects	 of	 study	 are	 log	 scale	 coefficient	 of	
attenuation	 and	dispersing	coefficient	 .		
	

In	 [9]	 is	 developed	 a	 new	 technology	 for	
polymer	 concrete	 structures,	which	 is	 intended	
for	using	as	construction	materials,	 for	example	
the	 bodies	 of	 metal‐working	 machines.	 For	 the	
presented	there	problem,	it	is	necessary	to	build	
up	 a	 model	 for	 comparison	 of	 materials	 with	

different	PC	structures	compiled	with	the	aim	of	
reaching	 a	 good	 damping	 characteristics.	 The	
experiments	 are	 made	 on	 prismatic	 bars	 with	
dimensions	 in	mm	 30x30x350	 [9].	 The	 beam	 is	
stuck	vertically	and	at	the	initial	moment	of	time	
at	 the	 end	 of	 the	 beam	 there	 is	 a	 percussion	
action	 through	 a	 special	 hammer.	 Special	
equipment	 measures	 the	 vibration	 in	 the	 final	
section	 after	 the	 impact.	 It	 is	 considered	 the	
transverse	 oscillation	 of	 the	 console	 beam	 as	 a	
continuous	medium	under	the	action	of	hammer	
strike	 at	 the	 end	 of	 the	 beam	 and	 inelastic	
resistance	in	the	form	of	surface	tension	 p

 	with	

a	 magnitude	 proportional	 to	 speed	 and	
backward	 oriented:	 p v  

  .	 The	 introduced	
here	coefficient	of	resistance	  	depends	on	the	
method	 of	 attachment	 of	 the	 beam,	 the	 shape	
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and	dimensions,	internal	friction	in	the	material	
and	the	resistance	of	the	air.	
	
	
2. FORMULATION	OF	THE	PROBLEM		
	
Must	 be	 find	mechanism	 for	 the	 comparison	 of	
damping	 characteristics	 of	 prismatic	 PC	
outriggers.	 The	 transverse	 oscillation	 of	 the	
console	 beam	 under	 the	 action	 of	 initial	 shock	
impulse	 and	 inelastic	 resistance	 must	 be	
investigated.	 The	 following	 tasks	 will	 be	
considered:	

 Determination	 of	 the	 differential	 equation	
for	 transverse	 oscillations	 of	 console	 beam	
under	 the	 action	 of	 impact	 force	

00F( t ), t t  ,	which	is	applied	in	the	end	of	
beam	at	point	 shx l ;	

 Determination	 of	 the	 transverse	 damped	
natural	oscillations	of	the	beam	w( x,t ) ;	

 Determination	 of	 transfer	 function	 H( ) 	
and	 response	 function	 1h(t) F [H( )] 	 for	 the	
final	point;	

 Overcoming	 the	 problems	 associated	 with	
instability	 at	 determination	 of	 response	
function	by	experiment.	

	
	
3. TRANSVERSE	OSCILLATIONS	OF	 CONSOLE	
BEAM	 AT	 TRANSVERSE	 IMPACT	 LOAD	 IN	
THE	ENDPOINT		

	
The	characteristics	of	the	polymerconcrete	beam	
are	following:	length	 el ,	side	of	the	square	cross‐
section	 a ,	density	 PB 	and	Young’s	modulus	 E .	
The	 differential	 equation	 of	 transverse	
oscillations	 of	 console	 beam	 after	 transverse	
impact	load	at	the	end	is	[10]:	
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The	 concentrated	 impact	 force	 F( t ) 	 at	 point	

shx l 	 is	 represented	 as	 distributed	 load	 of	 the	
section	 shx l   	with	intensity:	
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where	 sh( x l )  	 is	 the	 impulse	 function	 of	 first	
order,	 as	 its	 mechanical	 mean	 is	 infinity	 force	
with	single	impulse.	
	
The	boundary	and	initial	conditions	(at	 0t  	the	
beam	is	in	a	rest)	for	Eqn	(1)	are	respectively:	
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,0)0,(,0)0,(  xwxw  																											(3)	

For	the	solution	of	homogeneous	Eqn	(1)	is	used	
the	Fourier	method,	i.e.	separation	of	variables:	

,10,0),()(),(   tZtAtw 										(4)	

where	 A( t ) is	 an	 amplitude	 depending	 on	 the	
time	and	the	type	of	load;	 Z( ) 	is	the	function	of	
the	 form	of	beam	deflection	 for	 the	given	 fixing	
and	it	must	be	satisfied	the	boundary	conditions.		
After	 substitution	 of	 (4)	 in	 the	 homogeneous	
equation	(1)	and	separation	of	the	variables	are	
obtained	the	following	two	equations:	

	 ,0)()(2)( 42  tAktAntA 
											

														(5)	

	 .0)1()1()0()0(,0)()( 4)4(  ZZZZZZ  		(6)	

The	solution	of	homogeneous	equation	(6)					

)()()cos()sin()( 4321  chCshCCCZ  	

leads	 to	 the	 search	 for	 non‐trivial	 solution	
satisfying	 the	 boundary	 conditions,	 i.e.	 come	
down	to	the	task	of	eigenvalues:	

.01)()cos(  ch 																															(7)	

The	roots	of	the	characteristic	equation	(7)	are:	

.3),12)(2/(,...,854.7,694.4,875.1 321  iii 
	

For	 i 	corresponds	to	an	eigenfunction:
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For	
i corresponds	a	solution	of	Eqn(5)	in	form:	
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where	 i iA , 	are	constants.	
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Homogeneous	 solution	 of	 Eqn	 (1)	 due	 to	
linearity	 and	 homogeneity	 represents	 a	 sum	 of	
the	particular	solutions	 1i i i i{ A ( t )Z ( )} 

 :	
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Finding	a	particular	solution	 w*( ,t ) 	of	the	non‐
homogeneous	 differential	 equation	 (1)	 is	
associated	 with	 difficulties	 and	 therefore	 an	
approximate	 solution	 by	 Bubnov–Galerkin	
method	 is	 used.	 For	 this	 purpose,	 looking	 for	 a	
solution	in	the	form	of	series:				
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where	 )(tAi
 	 is	 an	 undetermined	 coefficient	

representing	 the	 amplitude	 of	 oscillation,	
depending	 on	 the	 time	 and	 load;	 Z( ) 	 ‐	 the	
function	 of	 the	 form	 of	 beam	 deflection	 for	 the	
given	 fixing	 and	 it	 must	 be	 satisfied	 the	
boundary	conditions	(2).		
	
For	the	function	(9)	the	requirement	is	to	satisfy	
the	following	equation:	

1

0

0sh[ Dw f ( t ) ( )] w ( ,t )d         							(10)	

For	the	variation	 w 	of	the	function	 w 	is	valid	

the	 following:	
1

n

i i i
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functions	 i iZ ( )  are	fixed.	
	
From	 Eqn	 (10)	 due	 to	 the	 independence	 of	
variations	follows:	

	 .0),()]()([
1

0

   dtwtfDw sh
											(11)	

The	substitution	of	function	 w 	 from	(9)	in	(11)	
yields	a	system	with	 n equations	for	founding	of	
n unknowns	 iA

 .	The	i‐th	term	is	represented	as:	
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Since	 the	 functions	 iZ 	 are	 independent	 and	
orthogonal	then	can	be	written:	
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After	 simplification	 the	 following	 equation	 is	
obtained	(at	zero	initial	conditions):	

	 0/)()(2
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The	 Eqn	 (12)	 is	 integrated	 by	 the	 operational	
methods.	For	this	purpose	the	imaging	equation	
is	constructed:	
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where	 i iA ( s ) L[ A ( t )], f ( s ) L[ f ( t )]   	 are	 Laplace		
images	of	the	originals.		
	
For	the	image	of	the	original	is	found:	
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The	image	of	the	original	 )(tAi
 	is	multiplication	of	

the	transfer	function	 14222
]2[)()(   iishii knssZZsH  	

and	 f ( s ) ,	 as	 in	 that	 case	 by	 using	 the	 theorem	
for	 convolution	 of	 originals	 is	 possible	 to	write	
the	relation:		
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The	original	 1
i ih ( t ) L [ H ( s )] was	found	from	the	

third	theorem	of	decomposition:	
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Then	for	the	solution	of	Eqn	(12)	is	obtained	the	
following:	
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while	 the	 approximate	 solution	 of	 (9)	 acquires	
the	form:	
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(17)	

The	initial	conditions	(3)	allow	to	find	the	values	
of	 i iA , :		 0 0 0 0i i h, A , i w ( ,t )       .	
	
Finally	must	be	mention	that	the	solution	of	the	
non‐homogeneous	equation	(1)	is	given	by	(17).	
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4. TRANSFER	H( )
	AND	IMPULSE	

h( t ) 	
FUNCTIONS	OF	THE	OSCILLATION	
PROCESS	AT	THE	BEAM	ENDPOINT		

	
As	 the	 system	 has	 the	 ability	 linearity	 with	
constant	 in	 time	 characteristics,	 then	 there	 is	 a	
Linear	 Stationary	 System	 ( LSS )	 which	
transforms	 the	 external	 force	 load	 f ( t ) 	 (input	
signal)	 into	 displacement	 of	 the	 beam	endpoint	
(point	A)	‐	 w( t ) 	(output	signal):	w( t ) LSS{ f ( t )} .	
The	input	can	be	presented	as	convolution:	

0

t

f ( t ) f ( t ) f ( ). ( t )d        ,	

where	 ( t ) 	 is	 an	 delta	 function.	 Since	 the	
convolution	 is	 linear	 in	 both	 of	 the	 multiplier,	
then	for	 LSS 	the	following	is	valid:		

LSS{ f ( t )} LSS{ f ( t )} f LSS{ ( t )}     	

After	 introducing	 the	denotation	 h( t ) LSS{ ( t )} 	
for	the	function	giving	the	system	response	of	a	
single	 impulse	 ( t ) ,	 the	 system	 operation	 is	
represented	as	a	convolution	between	the	input	
f ( t ) 	and	the	impulse	function	 h( t ) :		

.)().()()(
0
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t
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The	Fourier	image	 H( ) 	of	the	impulse	function	
h( t ) 	 is	 called	 transfer	 function.	 The	 image	 of	
output	 w( t ) 	 as	 convolution	 represents	 a	
multiplication	of	the	images	of	 h( t ) 	and	 f ( t ) :		

).(/)()()().()(  FceWHFceHW  	

On	 a	 Figs.	 1	 and	 2	 are	 given	 the	 force	 impulse,	
impulse	and	spectral	functions	of	the	system.	
	
	
5. DETERMINATION	 OF	 THE	 OSCILLATION	
OF	 THE	 BEAM	 ENDPOINT	 FROM	 THE	
EXPERIMENTALLY	 MEASURED	 ITS	
ACCELERATION		

	
It	was	experimentally	measured	the	acceleration	
of	the	endpoint	 A 	of	the	beam	after	the	applying	
of	 cross	 impact	 load,	 w( t ) acc( t ) .	 In	 Fig.	 3	 are	
presented	 the	 spectral	 function	 Acc( ) and	
acceleration acc(t ) .	 The	 spectral	 function	 of	
acceleration	 Acc( ) is	expressed	by	Fast	Fourier	
Transformation	(FFT)/ ‐	circular	frequency:	
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Fig.	1.	Force	impulse	‐ F( t ) ,	Impulse	function	–	 3hr 	and	Spectral	function	‐ 3H 	for	continuous	model.	
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Fig.	2.	Spectral	function‐F( ) 	and	force	function.	
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Fig.	3.	Spectral	function‐ Acc( ) 	and	acceleration.	
	

0 0.8 1.6 2.4 3.2
0.07

0.03

0.01

0.05

0.09

0.13
AmSpectrum of velA

kHz

m
/s

RSvelA

ISvelA

ASvelA

fk

				

0 0.005 0.01 0.015 0.02
0.5

0.3

0.1

0.1

0.3

0.5
Velocity of point A

time, s

m
/s svelA

ts

	
Fig.	4.	Spectral	function	‐V( ) and	original‐ v( t ) .	
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Fig.5.		Spectral	function‐W( ) 	and	original‐w(t ) .	
	
where	 0t 	is	the	duration	of	action	of	the	impulse,	

1j   	 ‐	 the	 imaginary	 unit,	 	 1
0
N

i ia { acc( t )} 
 	 ‐	

vector	of	discrete	values	of	the	acceleration	with	
a	power	 N ,	 1

0
fftN

k kA { Acc( )} 
 	‐	vector	of	discrete	

values	 of	 the	 spectral	 function	with	 power	
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     	 ‐	

discretization	of	time t and	circular	frequency	 .	
The	 spectral	 function	 of	 the	 velocity	 is	
determined	by	the	relation:	
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After	discretization	we	can	find	the	vector:	

.1,))](0()([)(,)}({ 0..11
0  


tj

kkk
N
kk

kfft ejAccAccVelVelV  	

From	 the	 other	 hand	 the	 spectral	 function	 of	
displacement	can	be	determined	by	the	relation	
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Here	 after	discretization	 the	 following	 vector	 is	
found:	
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Meanwhile,	 since	 both	 0 0V Vel( ) 	 and	

0 0W Dsp( ) are	unknown,	the	new	functions	are	
introduced:	
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(22)	

	

In	 that	 case	 the	 Inverse	 Fourier	Transformation	
(IFT)	is	applied	to	(22):	
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The	 recovery	 of	 function	 becomes	 in	 terms	 of	
the	average	value	at	a	given	point:	
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Now	 from	 (24)	 can	 be	 determining	 both	
unknowns:	
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	(25)	

By	using	the	Inverse	Fast	Fourier	Transformation	
(IFFT)	both	 v 	and	 w are	found:	

.)}(
~

{
~

,)}(
~

{
~

),
~

(}~{~),
~

(}~{~

1
0

1
0

1
0

1
0
















fftfft N

kk
N
kk

N
ii

N
ii

spDWelVV

WIFFTwwVIFFTvv


					(26)	

Finally	 the	 velocity	 and	 displacement	 are	 given	
by:	
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In	Figs.	4	and	5	are	given	the	spectral	function	of	
the	velocity	and	the	displacement	of	the	point	A.	

6. TRANSFER	 FUNCTION	 AND	 RESPONSE	OF	
THE	SYSTEM	IN	THE	ENDPOINT	A	BY	THE	
EXPERIMENTALLY	MEASURED	ACCELERATION		

	
The	experimentally	obtained	spectral	function	of	
acceleration	and	its	original	are	given	on	a	Fig.	3.	
The	spectral	functions	of	the	force	‐	 Fce( ) 	and	
respectively	 of	 the	 displacement	 ‐	 Dsp( ) are	
presented	in	Fig.	2	and	Fig.	5.	
	
The	transfer	function	is	a	ratio	of	Fourier	images	
of	 output	 to	 input:	 ).(/)()(exp  FceDspH  In	

discrete	form	the	transfer	function	is:	
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The	 impulse	 function	 is	 sought	 through	 IFFT:	
exp exphr IFFT( H ) .	 The	 transfer	 function	 expH ( ) 	

and	system	response	 exphr ( t ) 	are	given	on	Fig.		6.	
	
Obviously,	 the	 type	 of	 the	 impulse	 function	 in	
Fig.	 6	 indicates	 the	 presence	 of	 instability	
associated	with	a	critical	 loss	of	accuracy	 in	the	
determination	 of	 the	 spectral	 function	 of	 the	
force	 at	 high	 values	 of	 the	 frequency,	 from	
where	follows	the	same	for	the	transfer	function.	
It	requires	regularization	of	the	solution	related	
to	the	system	response	[11].	
	
6.1 Regularization	of	the	solution	for	system			

response	
	
It	 is	 assumed	 that	 the	 impulse	 function	

00h( t ), t [ ,t ] 	belongs	to	the	Sobolev	space	 2( )W :	
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where	 0 1 2ik , i , , are	the	weighting	coefficients.	
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Fig.	6.	Transfer	and	response	functions	at	the	endpoint.	
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Fig.	7.	Comparison	of	the	impulse	functions.	
	

2( )W 	 is	 the	 space	 of	 smooth	 square	 summable	
functions	of	 second	order.	 Let	 us	now	 form	 the	
stabilizing	functional:	
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where	  	 is	 an	 regularization	 parameter.	 For	
determination	 of	 regularized	 solution	 must	 be	
found	the	minimum	of	the	functional	 :	

).,(min:  hh
h

 																										(29)	

After	discretization	of	 the	 impulse	 function	and	
its	derivatives	of	first	and	second	order:				
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can	 be	 determined	 the	 partial	 derivatives	 of	 the	
functional	on	the	response	function	discrete	values:	
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Here	the	vectors	 A,B,C and	 b are	respectively:	
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The	following	system	of	linear	equations	by	 h 	is	
worked	out:			

.0,).(    bhP 																										(32)	

Here	 the	 matrix	 P( ) 	 is	 square	 of	 order	 N ,	
symmetrical	 with	 five	 diagonals,	 which	
facilitates	the	search	for	a	solution	 h 	by	running	
forward	 and	 reverse.	 Family	 solutions	 { h } 	 by	
 	 are	 found.	 Regularization	 parameter	 * 	 is	
determined	by	the	condition:	

.min:
2

2exp 
 hhr  																									(33)	

Finally	 for	 the	 regularized	 solution	 of	 the	
impulse	function	is	found:	

	 ..)]([ 1 bPh 
   																											(34)	

In	 the	 Figure	 7	 the	 experimental	 exphr ( t ) 	 and	

theoretical	 3hr ( t ) 	 functions	 are	 compared	with	
regularizated		 h ( t ) 	impulse	function.	
	
6.2 Identification	 of	 the	 elasticity	module	 of	

the	PC	structure		
	
On	 the	 Fig.	 6	 is	 presented	 the	 spectral	 function	
Acc( ) 	 of	 the	 experimental	 measured	
acceleration	 in	 the	 beam	 endpoint	 A ‐	 acc( t ) .	
The	 amplitude	 spectrum	 of	 acceleration	 gives	
three	 outstanding	 tops	 corresponding	 to	 quasi‐	
natural	 linear	 frequencies ,,)9.1,7.0,1.0(}{ 2

0 kHzfrfr mm  
	

while	the	first	three	eigenvalues	of	the	boundary	
problem	from	(6)	are	 )854.7,694.4,875.1(  .	The	
Young’s	 modulus	 of	 PC	 structure	 is	

13 55E . , GPa .	 The	 coefficient,	 in	 which	 is	
involved	in	the	Young's	modulus	of	the	material	
of	 the	 beam	 [10],	 can	 be	 obtained	 as	 the	
arithmetic	mean	of	the	ratios	of	the	square	of	the	
natural	angular	frequencies	of	the	system	to	the	
biquadrate	 of	 the	 corresponding	 eigenvalues	 of	
the	boundary	problem	for	the	beam:	
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The	 Young’s	 module	 and	 its	 relative	 change	 in	
the	current	case	are	respectively:	
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7. CONCLUSION	
	
The	main	results	from	the	current	analysis	can	be	
concluded	as	follows:	

 A	non‐homogeneous	differential	equation	for	
transverse	 oscillations	 of	 console	 beam	 is	
derived.	

 A	 theoretical	 solution	 for	 the	 transverse	
oscillations	 of	 a	 cantilever	 beam	 under	
transverse	impact	load	is	found.	

 The	 velocity	 and	 displacement	 at	 the	 beam	
endpoint	 from	 experimentally	 measured	
acceleration	are	obtained.	

 The	 transfer	 functions	 and	 response	
functions	 for	 the	 theoretical	 model	 by	 the	
experiment	are	defined.	

 A	 regularized	 solution	 for	 impulse	 function	
obtained	from	experimental	characteristic	is	
found.	

 The	 established	 model	 allows	 identification	
of	the	elasticity	module	of	the	beam	material.	

 It	is	created	a	mechanism	for	comparing	the	
damping	 characteristics	 (coefficient	 of	
relative	 damping,	 logarithmic	 decrement	 of	
damping)	of	PC	structures,	which	are	used	as	
construction	materials.	
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