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The solutions of generalized Klein-Gordon equations are considered. The generalizations of the Klein-Gordon equation allow one to
derive convergent integrals for the Green functions of these equations. The generalized equations are presented as products of the
operators for the Klein-Gordon equation with different masses. The solutions of derived homogeneous equations (total fields) are
sums of fields corresponding to particles with the same values of the spin, the electric charge, the parities, but with different masses.
Such particles are grouped into the kinds (families, dynasties) with members which are the generations. The chronological products
of the scalar fields for kinds of particles are obtained at arbitrary quantity of the generations. These chronological products are the
causal Green functions of generalized Klein-Gordon equations. The Lagrangians for the generalized Klein-Gordon equations of
arbitrary order are derived. These Lagrangians are used to obtain the energy-momentum tensors for the particle kinds at arbitrary
quantity of generations. It is shown that the generalized Hamiltonians (for total fields) have got positive eigenvalues for all the
generations. These results are derived with the use of the indefinite metrics.
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XPOHOJIOTTYHI IOBYTKH, TEH30PU EHEPTTI-IMITYJIbCY CKAJISIPHUX ITOJIB JJISI ITIOKOJITHD
YACTUHOK TA IHAE®IHITHA METPUKA
O0.B. Kynim
Yxpaincoruii Oeporcasnuii ynieepcumem 3anisHUNHO20 MPAHCNOPILY
M. @eticpbaxa 7, Xapkis, 61050, Yrpaina

PosrasiHyTO pO3B’sA3KM y3aranpHeHHX piBHAHb KieliHa-I'opmona. Y3aranpHeHHs piBHAHHS Kieitna-I'opmona nosBounsie omepkatu
30DkHI iHTerpanu s QyHKUii ['piHa nux piBHAHB. Y3arajabHEHI piBHSIHHS MPEICTABISIOTH COO0I0 TOOYTKH ONEPaTOpiB piBHAHHS
Kneitna-I'opgona 3 pisHEMH Macamu. PO3B’S3KM Ofep)KaHWX OJHOPIAHUX PIBHAHE (TIOBHI TOJIS) € CYMH TIOJIB BiATIOBIIHHX
YaCTHHKaM 3 OJIHAKOBUMH 3HAYCHHSIMH CIIiHY, €JICKTPHYHOTO 3apsiy, MapHOCTeil, ame 3 pi3HUMH Macamu. Taki 4acTHHKH
IPYIYIOTECS B poju (ciM’{, fUHACTI) 3 WieHaMH, Ki € MOKOMIHHAMU. O/iep>kaHO XPOHOJIOTIUHI JOOYTKH CKISIPHUX IONIB IS POJIIB
YaCTHHOK 3 JJOBUIBHOIO KUJIbKiCTIO MOKOMiHB. LIi XpoHonoriuni 1o0yTKH € npuunHHI GyHKUii ['piHa y3aranbHeHux piBHsAHb KieiiHa-
Topnona. OpepixkaHO JarpamXUsSHA JUis  y3aralbHeHUX piBHsSHb KueiiHa-I'opgona poBinmeHOro mopsaky. L{i marpamkisHu
BUKOPUCTAHO AJIS 3HAXOHKEHHS TEH30pIB €HEeprii-iMIyJIbCy Uil POMIB YaCTHHOK 3 JAOBUIHHOIO KiBKICTIO MOKOJiHB. [loka3aHo, 110
y3arajbHeHi TaMiJIbTOHISIHU (JUIS TIOBHUX IIOJIIB) MAalOTh JOJATHI BJIAacHi 3Ha4YCeHHs /Ul BCix mokoiinb. Li pe3ynpTaTi omepxaHo 3
BHUKOPUCTAHHSM 1HIE(IHITHOI METPUKH.

KJIFOYOBI CJIOBA: VY3aramsaeHni piBHaHHSA KieliHa-['opmoHa, MOKONIHHS YaCTHHOK, XPOHOJIOTIYHI JOOYTKH OB, (QyHKIIi
I'pina, marpamxisau, eHeprii YacTHHOK, IMITYJIbCH YaCTUHOK, iHAeiHITHA MEeTpHKa.

XPOHOJIOTHYECKHUE ITPONU3BEIEHMS, TEH3OPHI SHEPTUH-UMITYJIbCA CKAJIAPHBIX ITOJIEA JIJIS
MOKOJEHU YACTHII 1 UHAE®WHUTHAS METPAKA
10.B. Ky
Yxpaunckuii 2ocyoapcmeennviii ynugepcumem diceneznoo0opoNtCHO20 MpaHcnopma
nn. Qetiepbaxa 7, Xapwvkos, 61050, Yrpauna

Paccmotpens! pemenus 0600meHHbIX ypaBHeHnid Kieitna-I'opnona. O6o6uienne ypaBHeHuit Kneiina-I'opjoHa mo3BoiseT mony4yuTh
cxomsmuecs MHTEerpansl st ¢yHkuuilt ['puna stHx ypaBHeHmi. OOOOIIEHHBIE YpaBHEHHS HPEICTaBISIOT COOOH IPOM3BEINCHHS
omneparopoB ypaBHeHust KieifHa-I'opioHa ¢ pasHBIMH MaccaMmu. PeleHHsl NMOTyYeHHBIX OXHOPOJHBIX ypaBHEHWH (IIOJHBIE ITOJIS)
ABISIFOTCSA CyMMaMU IOJIeH, COOTBETCTBYIOIIUX YaCTUIIaM C OAMHAKOBBIMU BEJIMUMHAMU CIIMHA, 3IEKTPUYECKOro 3apsijia, YeTHOCTEH,
HO C pa3HBIMH MaccaMu. Takue 4acTHIIbI TPYIITUPYIOTCS B poaa (CEeMbH, IMHACTHH), KOTOPbIE SBISAIOTCS MOKOJICHUAMU. [loyueHs
XPOHOJIOTHYECKHE TPOM3BEACHUS CKAIAPHBIX MOJeH O POJOB YaCTHUI[ C IPOU3BOJBHBIM KOJIMYECTBOM IOKOJNEHUH. OTH
XPOHOJIOTHYECKHE MNPOU3BEACHUS SABIAIOTCA NPUYMHHBIME (QyHKUMsIMH ['puHa 00600meHHbIX ypaBHeHuil Kieitna-I'opnona.
[ony4ens! narpamxuansl 0000MICHHBIX ypaBHeHUH KieliHa-['opgoHa mpon3BONBHOTO MOpsAAKA. DTH JIarpaHXKHaHbl HCIIOJIb30BaAHBI
JUISL TIOTYYCHUS] TEH30POB SHEPIHU-UMITyJIbCa POJOB UYACTHI[ C IIPOM3BOJIBHBIM KONMYECTBOM MokoieHui. [lokazano, dTo
0000IIIeHHBIE TaMIJIBTOHUAHB! (JUIS TIOJMHBIX IOJEH) MMEIOT ITOJIOKUTENbHBIE COOCTBEHHBIC UHCNIA JUISI BCEX IOKOJECHWH. ODTH
Pe3yJIbTaTHI MOTyYeHBI IIPH UCIOIF30BAaHUN NHAS()UHATHON METPUKH

KJIFOUYEBBIE CJIOBA: 0606meHnHbIe ypaBHeHus KieitHa-I'opioHa, HOKOJI€HHs 4aCTHILI, XPOHOJIOTHUECKUE ITPOU3BE/ICHNUS TI0JIEH,
¢ynkuyun ['puHa, 1arpaHyKuaHbl, SHEPTUH YaCTHLI, UMITYJILCHI YACTHILI, MHISC(QUHUTHAS METPHKA.

It is known that reaction amplitudes are calculated with the use of the particle propagators and the vertex functions
[1-8]. In the momentum representation all the particle propagators can be presented as products of the propagator for the
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spinless particle and corresponding projection operator. The particle propagator of the spinless particle in coordinate
representation is the causal Green function of the Klein-Gordon equation (the Klein-Gordon-Fock equation). It means
that the Green functions of the Klein-Gordon equation and other wave equations for any spin particles are infinite
improper four-fold integrals with respect to momentum variables. In Refs. [9, 10] it is shown that corresponding four-
fold integrals for the Klein-Gordon and Dirac equations, as well as triple integral for the Yukawa potential, diverge. To
eliminate these divergences the integrals for the Green functions have been generalized in Refs. [9, 10]. New Green
functions correspond to equations with higher partial derivatives. Among these equations the generalized Klein-Gordon
equation is very important, as many features of generalized equations may be seen. The ®(x)solutions of the

generalized Klein-Gordon equations can be presented as sum of solutions of the Klein-Gordon equations for different
particle masses. These sums correspond to some sets of particles. Therefore, values related to the solutions of the
generalized Klein-Gordon equations can have some feature in a comparison with similar values for the Klein-Gordon
equations. In particular, it is of importance to study Lagrangians and energy-momentum tensors for generalized
equations.

The aim of present paper is the study of some topics related to the solutions of the generalized Klein-Gordon
equations. Similar topics for one field are well known [1-8]. So, it is shown that the chronological product of quantized
free solutions for the generalized Klein-Gordon equation is the causal Green function of this equation. In terms of the
total fields the Lagrangians, the energy-momentum tensors, and a generalized Hamiltonian are derived. In particular, the
question on the positive determination of the generalized Hamiltonian is investigated. In addition, conditions, which
permit one to derive some general relations for the solution of the Klein-Gordon equations, are studied.

RELATION OF CHRONOLOGICAL PRODUCTS FOR FIELDS AND GREEN FUNCTIONS
It is known that the & (x—x') - function and the G(x—x’) Green functions of differential equation can be

expanded in the set of eigenfunctions for the operator of this differential equation [11]. Accordingly to Refs. [2-6] the
vacuum average of the chronological product for the scalar fields is related to the D(x,m)c causal Green function. This

relation is given by

d*q )

(0[r(e(-00))

The generalized Klein-Gordon equations and their CD(x) solutions (which are named as total fields and fields of

particle generations) are considered in Appendix. It is of interest to study the relation between the chronological product
of the quantized <D(x) total fields, which are the solutions of the homogeneous equation (A.1), and the Green function

of this equation.
For the chronological product of the A(x) operator and the B(y) operator usual definition can be exploited:

T(4(x)B(y))=0(x, = y,) A(x)- B()+0(y, —x,) B(»)- A(x) @

The discontinuous function 49(x0 ) can be presented by the improper integral

1 % e%™dg
O(x)=—— 3
(xo) it q—ie )
We propose that the total ®(x) quantized field is given by
CD( Zf @J‘d p[ -ipx ) ) +e”"b J zre
1 —sz ipx - +j|
b , , 4
o [ (B), +"b(p), @




6
EEJP Vol.5 No.2 2018 Yu.V. Kulish

where o, are some phases. The o, phases can give parameters of mixing for composite states. The ¢(x), field is the

scalar quantized free field of the & number generation.
We use the indefinite metrics. The covariant normalization condition, the non-zero commutators of the a(p),

(b(p),) annihilation operators for particles (antiparticles) and the a(p),” (b(p),”) creation operators are the
generalizations of usual commutators for one particle:

(Biokis01 | Prsksso) = 200, (<1)"" 5, 250,075( P)
[a(p)), ,-a(B.)', 1= 20, (-1)"" 5,
b(B,), , b(P,) . ]1=20, (-1)" 5,
(0]0)=

where o,,0, are some discrete quantum numbers. The signs in the relations (5) agree with the signs of the A,

coefficients (4, = (~1)""'|4,]).

Using the formulae (2) and (4) the chronological product of the total scalar fields may be written as
(,l 2) exp[i(&kl —5k2)]><
Y s Q)

XJW{eXp[i(—Plﬁpzy)KOa(ia ), a(5),,"10)0(x, = v)+exp[i(por=poy) (0[(52),, b(5:), 10)0 (3, )

; &)

S >
3*
9
S
S,
—~
S
I
=
Y

T(@(x)o(y )

The vacuum matrix elements of the products for the annihilation operators and the creation operators equal the
corresponding commutators (5). After the substitutions of these commutators in the chronological product (6) we can
write:

T(<I>(x)<l)(y)+):(2;”)3%|Ak|(—l)k+1jg p{exp[ —ip(x—y) }0 yo)+exp[ip(x—y)]6’(y0—xo)} (7)

Now it can be used the representation (3) for discontinuous function. Then we obtain four-fold integral for (7)

r(o(x)e(y))= (2,,),2 N

@)
{exp[l(q a)k)( ]exp[zp x y ]+exp[ (q —a)k)(xo —y)o]exp —1'13()?—)7)]}
In Ref. [12] has been shown that for N >3
N d3 o N d3 o
ZAkJ—pepr:ip(x—y):l=2Akj—pexp[—lp(x—y)] ©)
=1 20, k=1 20,

Note that each term in (9) is diverging triple integral. We change the variable of integration ¢ in (8) by means of such
variables: g = @, — p, in the first term and ¢ = @, + p, in the second term. Then the T-product (8) with the use of (9)
can be written as

T(d)(x)q)(J’Y):(zﬂl_) e /c_[_eXP{ ip(x— y)} [ k_ll,o_ig+a)k+ll)0—i8}:
(10)
N 2o,

B 2z) i fS “ 20, —p(x-y)] o —p,} —2ico,
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The @), value (4) is positive and the 2igw, -value is the imaginary positive infinitesimal numbers. Therefore, we may

denote the 2isw, value in (10) as the i¢ value. Now the T-product of the total fields (10) is given by

T(d)(x)CD(yY): (2721_)4 - gAkJ.fP exrik[;ip;f:i);)] = —iiAkD(x—y,mk )C = —ié(x—y)c (11)

Thus, the chronological product of the total scalar fields (4) is related to the causal Green function (A.10) of the
generalized Klein-Gordon equation (A.1), similarly to the (1) relation for one particle. This relation is the consequence
of the indefinite metrics, expressed by the commutators (5), and the equality (9) at N >3 .

Lagrangians for generalized Klein-Gordon equations
In Ref. [13] the Lagrangians for the generalized Dirac equations are derived. Therefore it is of interest to obtain the
Lagrangian for the generalized Klein-Gordon equations. Operators of the generalized Klein-Gordon equations (A.1) are
polynomials with respect to the O operator of d’ Alembert (d’ Alembertian). They can be written as

ﬁ(u+mn2)=iS(mlz,mzz,n',mNz)NﬁD”. (12)
n=l1 n=1

The S, values are elementary symmetric functions [14]. They equal:

S(mlz’mzz’ my’ )0 =1,

S(m12’m22’ ’mNZ)l :m12 +m22 L. +mN2’

S(m12,m22:"'5mN2)2 :m12m22 +m12m32 +“.+mN712mN2, 13)
S(mlz,mzz, ,mNZ )3 :m12m22m32 +m12m22m42 +”'_’_mN_zsz_lszz’”.’

S(m12,m22’ ,mNz )N _ m]2m22m32 "'melszz-

For these functions the formula can be written at £ > 1

N
2 2 2\ _ 2 22 2 2
S(ml S, My, )k = Z mil miz ]’I’ll.3 n’likil ml.k . (14)
I i > >i >0 21
In the case of equal masses (ml2 =m,’=---=m,’ :mz) the elementary symmetric functions are related to the

binomial coefficients C},

N!

S(l’l’lz,mz,..-,mNz)k =m2kC§, =m2km

s)

As the operators of generalized Klein-Gordon equations (A.1) include the partial derivatives of the 2 N order and
they are polynomials, Lagrangians for these equations must have polynomial structure. Let us denote

(D(x)/llﬂz"‘/ln :8 a .'.8/4,,(D(X):q)xnlu7

M
®(x)+,lllﬂz<.-/zn =0,0,,0, ()" =dx™",. (16)
o ox,ox, ...0x,

n

axﬂn = aﬂlaﬂz a
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In general, the Lagrangian can depend on the x coordinates, ®(x), ®(x)* fields, and their derivatives (16) for

1<n< N . Using the least action principle (the Ostrogradskii-Hamilton principle), the Ostrogradskii-Euler equations,
which are generalizations of the Euler-Lagrange equations, can be derived (for example, see Refs. [15, 16]). The
equation (A.1) for the ®(x) -field can be obtained by means of the variation of the Lagrangian L(x) with respect to the

®(x)" -field and their derivatives. The equation for the ®(x)" -field, similar to (A.1), can be derived by means of the
variation of the L(x) Lagrangian with respect to the ®(x) -field and their derivatives. In the terms of the definitions (16)
the Ostrogradskii-Euler equation for the @(x) field may be written as

oL & n oL
> (-1) ox," ———=0 1
op* ’ p (=1) e, oox™", (a7
The total Lagrangian equals
L(x):L(x)free +L(x)int ’ (18)

The L(x),,, -part of Lagrangian allows one to derive the homogeneous equation (1) from the equation (18) and the
L(x)
be written as

-part leads to the right hand of the equation (A.1). The Lagrangian for homogeneous Klein-Gordon equation can

int

N
L (X),;ee =-S5, @ (x)D(x)-D (-1)" S_,Ox™" Dx" . (19)

n=1

The Lagrangian of an interaction is given by
L(x),, =®" (x)7(x)+®(x)n" (x) (20)

A substitution of the (18)-(20) Lagrangians into the Ostrogradskii-Euler equation (17) gives the generalized Klein-
Gordon equation (A.1) at arbitrary quantity of generations in a kind (or a family or a dynasty).

Energy-momentum tensor for total fields
The Lagrangian (19) for free total fields (4) does not depend on the X coordinates explicitly. Therefore, we can
expect that some conserved values (some first integrals of the equations) must exist. In the case of scalar field for one
particle the conserved values constitute the energy-momentum tensor. In this case the Lagrangian includes the partial
derivatives of the fields of first order. The Lagrangian (19) for the total fields (corresponding to the kind with N
generations) includes the partial derivatives of the N order. The total derivatives of the Lagrangian (19) with respect to
each coordinate equal

dL oL & OL
= 2.

—=— + O Ox" +® < D" 21
dx, o0 * fHoox", “ 7 @1

_ L . . .
After the substitution of the % term from the equation (17) the derivatives (21) are given by

oL
? 6dx" R

dL il n+ n
EZCDH Z(—l) lﬁx

" n=l1

N oL
+ 0 Ox" +O P, 22
,,Z:‘ad)x”p woor (22)

The right hand of (22) must be presented as a sum of total derivatives with respect to the coordinates. In particular, the
right hand of (22) equal:
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L L
orn=1 L 5| %o tooor
dx, D,
dL oL
forn=2  ——=0,[-®,0,+D, | —+D @ (23)
v u Zp p
dx p G(Dvp
dL oL
forn=3 ——=0,[®,-0,0,-®,0,+®, | +® > O
4 H P P2 HPL P2 HP1P2
dx/, aq)vplﬂz

The use of total derivatives permits one to introduce the £ (x)ﬂv tensor, which is the generalization of the T (x)

uv

energy-momentum tensor for one particle (e.g., in Refs. [1-8])

®,0,0, 0, ~®,08,0, 0

Pn-1 Hpy o~ P2 P Pn-1 y
N . _ n+l
E (X)W - Z_]: (_1)"+1 @, p(;i 8 ap,,fl + ( 1) D o -8, L. (24)
x———+[0 D]
VPP Pt

The E (x)w tensor is symmetric with respect to the x index and the v index. The four-dimension divergence of the

E (x) tensor vanishes similarly to the T’ (x) energy-momentum tensor. Therefore, the vector
uv uv
) 3
=jE(x)ﬂOd X (25)

must be conserved, i.e., components of this vector do not depend on the x, time. For quantized fields the components
of this vector are operators. We shall consider matrix elements of these operators between one-particle states for the

same particles.
At first, we calculate the contribution of the Lagrangian (19) to the E (x)ﬂv tensor.

*

e S () el -0,

27[) k=1
jds J’ 5)1 a)fz {exp[z -p+ D, x] a(p,), 01([31 )k1 +b(p, )k1 b(ﬁz)k2+ .exp[i(p1 —pz)x]}x

{S +Z( ppy) )}= 06
=Sl Lets <ﬁ>k+b<ﬁ>kb<ﬁ>;][szv&(—m;)"sNJZ
U [ a(ﬁ)k+b(ﬁ)kb(p)k*].ﬁ(mnz_mkz)zo

— n=1

I
Mz

=

The integration in (26) with respect to the spatial coordinates gives the (27[)3 5(p, - b, ) -function. As the P, -vector
does not depend on a time, the components of the p, momentum and the p, momentum must be equal

( pl=p, = mkz). We assume that the quantity of generations is enough large for a convergence of the integrals in

N
(26), similarly to the (9) relation. The I—I(mn2 -m,’ ) -factor in (26) vanishes for arbitrary & number generation.
n=l1

The derivatives of the Lagrangian (19) can be written as
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8L n-1 GL n-1
=(-1)"'s,_ dx"" =(-1
a@xnlu ( ) N-n X H a®x+nla ( )

Sy, ®x", 7)

Now we find the vector of the four-momentum 1_3/1 (25)
Po(F)= ol B A ) eli(5, -, )]

xjd3xfci:5)‘—czlf)2{eXp[i(—pl+p2)x].a(l32)k2+a(ﬁl)kl +b(ﬁl)klb(p2 -exp[i(p pz)x]}

1

(p(x)kl w909s,0,,, _w(x)k,,upl 05,050, , +
> (_I)H1 (p(x)’ﬁ»ﬂﬂ]pz 6P36P4 “.apnfl e (_1)"”
-

x | o(x), > o(x)
8(0(x)k2 0p1927* Pyt |: § " :|

-ZIA L2 0, ) a(B), a(p), +b(5),b(B), 12 (m).

Again the 1ntegrat10n with respect to spatial coordinates in (28) leads to the p, = p,, k, =k, equalities, similarly
to (26). The Z(m,”) factors are determined by the derivatives of the fields ¢(x), (4) for the k number generations:

x (28)

( )
X k. . p D
AP P2 Py X (Za)kl W, O Py T O 1)

¢(x)k5ﬂ/lp1p2“‘pan :_mk2¢(x)k,/71pz“‘/’n72 ’

(p(x)nﬁﬂﬂﬂlpz“‘/?nfz = _mk2¢(x)+k’P|P2“‘Pn72 ’ ’ (29)
(D(X)Jrk,llpll?z'“/?n-l ga(x)k»ﬂ"l"z"“’n-l = mk2 ) ¢(x)+ksl?|ﬂz‘“/7n-l go(x)ksvl‘/Z"'Vn—l
2 N n—1 2\l
Z(mk )=Z(—l) n-(mk ) Sy, - (30)
n=l1

Z(q2)= (—1)Hn (qz)w1 Sy, =
=1
N ., B N
(_l)N—ld_qzn:1 (_I)N—n (qz) 'SN_,, =(—1)N lqu2 ] (qz _ng )’ G1)
N
Z(mkz):(_l)N—ldiqzl—II(qz_mnz) o :Ak_l :(_1)k+l Ak—l“
n= g =y

After calculations of derivatives in (31) we must put ¢° =m,” . Now the energy-momentum vector P for the kind of

particles with the N generations is given by

P=(H.P)- kN (-1 d;" (@0.5)-[a(P),” a(B), +b(P),b(P)," ] (32)

This vector can be presented in terms of normal products of the operators similarly to the Hamiltonian for one particle
(Refs. [1-8])

P = (o P ) = 2V [ L L 0, 5) [a(p), a(p), +0(5), b(5), ] 69

k=1 20,
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The contribution to H,, ~for k=1 in (33) equals the Hamiltonian of particle (Refs. [1-8]). The H,, value in
(33) can be named as the generalized Hamiltonian or the total Hamiltonian or the Hamiltonian of particle generations.
The total Hamiltonian (33) includes the sign factors (—1)**' in each term. Calculations of the eigenvalues for the total
Hamiltonian with the use of the positive metrics give positive and negative values. Such calculations confirm known
results that the particle energies are not positively determined for Lagrangians including higher derivatives of fields.
Therefore, we consider the eigenvalues for the total Hamiltonian with the use of the indefinite metrics (5). Then for the

particle with the ¢ momentum (q = (a)qk ,q ), @, = NG +m’ ) of the k& number generation the eigenvalues of the 4-

momentum may be derived

gk ) =3 () L [a(p), a(p), +b(p), b(F), |a" (), 0)=
7 (34)

N aed’ N+ + .
:Z(_l)k ljza)p Py 'a(p)k 2a)pk (_l)k 15kk15(p_q)|0>:q# q5k1>,
k=1 pk

norm, j

where p = (C() k> ﬁ) . The Egs. (34) are valid for particles. But similar equations can be written for antiparticles also.

Thus, the eigenvalues of the total Hamiltonian for all the particle generations are positive at the use of the indefinite
metrics. This result is important. Therefore, it is of interest the consideration of different consequences of the indefinite
metrics.

Consequences of indefinite metrics
The conserved P energy-momentum vector (32) has been derived from a condition that the Lagrangian (19) does
not depend on x - coordinates explicitly. Now we calculate the vacuum average of the H - operator in (32)

y (35)
(0 0)+ 3 (2L 0(5), (), Jo)=0+ 355 (3) [orap =
010) = S0 (0] 1a(p), " a(p), +b@) b )= o9

=(0|A,,,[0)+ Z(—l)"” j d7p<o\ [6(P),,b(P), 1]0)=0+ 25(3)(5) j w.d’p =

Thus, the vacuum average (32) of the energy is infinite, similarly to such value for one particle (Refs [1-8]). Note that
vacuum average of the H,, total Hamiltonian (33) vanishes. As the 6 (5)-value equals the spatial volume, the
density for the vacuum average (32) of the energy is infinite too.

Further the P, energy-momentum vector (33) will be considered without the norm -index (i.e., the operators in

normal forms will be consider).
For arbitrary function of the P -momentum operators we may write

/(P)

q.k)=1(q)

q.k) . (36)
In particular, the equalities

exp (J_ril_’x)

q.k) =exp(iiqx)|q,k> (37)

are valid at an use of the indefinite metrics.
Consider now the commutator of the total field and the operator of the total momentum (33) using the indefinite
metrics:
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|:CI)(x) — ]_ (272')3 k=1 2(0k _
: ad 1+l d3 -\ + - N+ .
;(_l)k J‘ﬁq# '(a(q)kl a(q)kl —i_b(ql)kl b(q)kl) (3%)
1 N ; d’ + 1+ e g (=) * 0D (x
T = pk P

The commutators (38) have the same forms as the commutators for one field and the Hamiltonian for one particle in
Refs. [1-8]. Therefore, an use of the commutator (38) allows one to derive

CD(x):exp(il_’x)q)(O)exp(—iISx) (39)
Using (36) and (39), matrix elements may be written as
(,|®(x)|g,) = exp[ix(q, — /)] {a,|®(0)]a,) (40)
The commutator of the particle annihilation operator and the total Hamiltonian (33) is given by

[a(@), )= 21" [ a(@), .a(p), Jalp), -
(41)

Similarly, the commutators of the total Hamiltonian with the antiparticle annihilation operator and the creation
operators can be derived:

(@), |=-0,0(3), . [5(d), H |=,b@),. |0(@)," 1 |=-0,b(3)," “2)

If H

g,k ) = E(k)

q,, > then we can write

‘]p |: ‘h ky ? ]‘Il’kl):(E(kl) qzkz) (‘b) ‘Iwkl)’
> ( (k) qzkz) ‘_j |q”
&k )= ( (k)- 42k2)b(q) ql’k1>’

(4

s >=( (k)+‘02k2) )k2+ q.k,).

From the relations (41-43) we may conclude that indeed the a(g,), (b(q,), ) operators are the annihilation

az ‘I1a>

ky

1

=I

(43)

@I

2k2

®I

2

()
(@),
(4.)
(@),

operators of particle (antiparticle) with the ¢, -momentum from the %, generation number and a(g, )k2+ (b(q,) k;’)

operators are similar creation operators of particle (antiparticle).
Consider the operators

(_1)k+l . B
b b
5o (P b(P), (44)

Pk

Vo) = a5 al), N (k)=

g T

and states with # particles and / antiparticles |q1,k1;q2,k2;---;qn,kn;q"ﬂ,knﬂ;---;qw,kﬁ, >
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Then we can write:

J-d3pNa (p’k)|ql’kl;q2’k2;'";qn’kn;qn+l’kn+l;'“;qn+l’kn+l>:

(45.2)
:n|q1’kl;q2’k2;'H;qn’kn;qn-ﬁ—l’knﬂ;“';Qn+1’kn+l>’

J.d?,pr (p9k)|q1’kl;QZ’k2;.“;Qn’kn;QnH’an;.“;Qn+l’kn+l>:

(45.b)
:l|q1’kl;q2’k2;'H;qn’kn;qn-ﬁ—l’kn-%—l;“';qn+1’kn+1>

Thus, the N, (p,k) (N,(p,k)) is an operator of a density for particle (antiparticle) quantity in a momentum space.

The use of the indefinite metrics permits one to derive the relations (36-43), (45) for total ®(x), @(x)* fields.
These relations have the same forms as corresponding relations for one field (for example, in Refs. [1-8]).

CONCLUSION

In present paper it is shown that chronological products of the total free fields (4) for spinless particles are related
to the Green functions (11) of generalized Klein-Gordon equations (A.l) at arbitrary N -number, which equals a
quantity of particle generations in a kind ( N >3 ). The Lagrangians (18-20) for spinless fields allow one to derive the
generalized Klein-Gordon equations at arbitrary N -number as consequence of the least action principle. These
Lagrangians have been used to obtain the energy-momentum vectors (32,33). It is shown that positive eigenvalues of
total Hamiltonians for all the particles in a kind can be derived using the indefinite metrics with the relations (5). In an
addition, the equal-time commutators of total scalar fields [12], the relations between the chronological products of the
total free fields and the Green functions (11) of generalized Klein-Gordon equations, and the relations (36-43), (45) can
be just derived using the indefinite metrics. However, it is known that the indefinite metrics leads to negative
probabilities for some states [17]. From the covariant normalization conditions (5) it is seen that the sign for particles
with minimal masses (i.e., for k£ =1) is positive. Therefore, particles for £k =1 may be stable. But all particles for even
k (i.e., for negative sign factors in (5), (32), (33), (44)) must be unstable. It may be assumed that the negative
probabilities will not appear in final results for observables values. This assumption may be valid due to the

independence of the relations (36-43), (45) on the sign (—1)**' -factor in (5).

It may be assumed that the relations (38), (39) allow one to derive the S -matrix in terms of the interaction
Lagrangian (20) including the total fields:

S:T(exp(iJ.L(x)imd“x)). (46)

In addition to the investigations for spinless total fields executed in present paper, it is of importance similar
studies of spinor total fields. In this case the Lagrangians [13] for spinor total fields at arbitrary number of particle
generations can be used. It is of interest the investigations of consequences of the Lagrangians (18)-(20) and the
Lagrangians from Ref. [13] for electromagnetic interactions. These Lagrangians include higher derivatives of total
fields. As it is known, the electromagnetic interactions with the charge of one particle can be derived by means of a
change of partial derivatives on the 4-vector of electromagnetic potential (Refs [1-8]). Therefore, we can assume that
for total fields the electromagnetic interactions with the electric charges can be derived by means of similar changes. At
such changes the 4-vector of potential for the photonic kind must appear. The total field of the photonic kind is a sum of
the fields for neutral vector massless particle (photon) and massive particles, by analogy with (A.2), (4). As the
Lagrangians for generalized Klein-Gordon (Dirac) equations include higher derivatives, vertex functions for
interactions of spinless (1/2-spin) particles with some number of photons can appear. These interactions correspond to a
point in Feynman diagram (the contact interaction).
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Appendix

Generalized Klein-Gordon equations
The generalization of the Klein-Gordon equation proposed in Refs. [9, 10] is given by

(D+m12)(u+m§) ........ (D+m,2v)CD(x)=77(x), (A1)
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where <D(x) is the field and n(x) is the current (the field source). In momentum space the differential operator in
(A.1) is the polynomial of the N - degree. We consider the case of the polynomial with real non-negative different
zerosat m’ <m,” <m,’ <...<m,’.

The general classical solution @, (x) of the linear equation (A.1) is the sum of the general solution of the

corresponding homogeneous equation @ (x) ree and partial solution @ (x) of non-homogeneous equation:

nh

) (x)fm = Id“q%é‘(gz -m; )[cke’i"x + Ekeiqx] (A.2)
k=1

®(x), = [G(x=y)n(y)d'y. (A3)

where ¢, and ¢, are arbitrary constants. Thus, CD(x) is the sum of the terms corresponding to particles with the

free
same charges, parities, spin, but with different masses. Each term in (A.2) corresponding to number £ is the solution of

the homogeneous Klein—-Gordon equation as (D+m,f )(cke""’“ +5ke”"’")5 (q2 —-m; ) =0 . In Ref. [9] it is shown that the

case of equal masses in Eq. (A.1) must be excluded. It was shown that the functions CD(x) e CAN include non-

normalizable terms if at least two masses are equal. Thus, the masses in the generalized Klein Gordon equation must be
different. The N -number equals to the quantity of generations for spinless bosons and order of the equation (A.1)
equals 2 N .

The Green functions for the generalized Klein-Gordon equations (A.1) are given by

() 1 e—iqxd4q _ 1 e—iqxd4q ,
O e o o) om) e Bl

(A4)

where P,(g’) is the polynomial of the N degree with respect to ¢”. It is clear that the integrals in (A.4) can converge

at N >3, i.e., when the order of the equation (A.1) is greater than or equals six. Consequently for each spinless particle

two (or greater) particles with the same charges, isospin, C - and P parity, but different masses, must exist in addition.

We may say that such particles are members of some set (a family or a kind or a dynasty). In Eq. (A.2) & is the number

of the particle generation. We may assume that the quantity of members in kinds for the elementary particle is less than

the quantity of member in kinds for the composite particle. Each particle belongs to some kind and some generation.
According to Refs. [9, 10], the rational fraction in (A.4) can be written as

_ 1 R A,
P, (qz) - (—q2 + m,z)(—q2 + mzz)...(—q2 + mlz\,) = —q*+m; ’
: _q2 + m/f k+1
A =- = lim ———, 4,=(-1) |4 A5
k P]\f[(m2) qzl_gnli PN(q2) k ( ) | k| (A.5)
47 =)L T](¢* - m,?)
k qu n=l1 ! qzzmkz
The A, coefficients obey the relations:
ZN:Akm,f’ =0, [=0,1,2,..,N-2 (A.6)
k=1
N
> Am = (-1)"", (A7)
k=1

Using the equality (A.5) we may write the Green functions (A.4) of Eq. (A.1) in the form
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_ N
G(x):ZAkD(x,mk), (AB)

k=1

where D(x, m) is the Green function of the Klein-Gordon equation:

1 e 4q
D(x,m)= A9
(x.m) ) I_qz e (A9)
The causal Green functions (4) of generalized Klein-Gordon equation (A.1) may be written as
_ 1 e*iqxd4q
G = , A.10
(). (27z) J.(—qz +m/ —ig)(—cf +m; —i(c:)....(—q2 +my —ig) (10

where ¢ is an infinitesimal positive number. The (A.5), (A.6), and (A.9) expressions have been used for calculation of
the Green function (A.10). According to Ref. [1] the causal Green function (A.10) is expressed through the cylindrical

K, (m\/x_2 ) function, which has singularities on the light cone (x> =0). The series for the K, (m\/x_2 ) function has

been used from Refs. [18, 19]. The use of the relations (A.6) at / =0,1 has allowed one to eliminate all the singularities.
It has been shown that the integral (A.10) converges at N >3 in all the space-time [20]. Thus, it may be concluded that
minimal number of the generations in the kinds of the spinless particles equals three.

o =

*®
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